Martingales: Optional Sampling

Karlin & Taylor, A First Course in Stochastic Processes, pp 253–278 I. Review of Uniform Integrability A. Definitions 1. X_n are UI if $\forall \epsilon \exists a < \infty \forall n \int_{[|X_n| > a]} |X_n| dP < \epsilon$ 2. X_n are UI if $\forall \epsilon \exists \delta \forall n \mathsf{P}[E] < \delta \Rightarrow \int_E |X_n| dP < \epsilon$ **B.** Sufficient Conditions 1. X_n are UI if $\exists Y \in L^1$, $|X_n| \leq Y$ a.s. 2. X_n are UI if $\exists p > 1, M < \infty$, $\mathsf{E}|X_n|^p \leq M$ 3. If X_t is a martingale and $T < \infty$ then $\{X_t : t \leq T\}$ is UI C. Consequences 1. If $X_n \to X$ in pr. (or a.s.), then $X_n \to X$ in L^1 iff $\mathsf{E}[X_n] \to \mathsf{E}[X]$ iff the X_n are UI. II. Markov Times A. Definition: $[\omega : \tau(\omega) \leq t] \in \mathcal{F}_t$ 1. Discrete time: $[\omega : \tau(\omega) = n] \in \mathcal{F}_n$ is good enough 2. $[\omega : \tau(\omega) < n] \in \mathcal{F}_n$ is not good enough B. Examples 1. Constant times: $\tau = t_0$ 2. Hitting times: $\tau = \inf[t \ge 0 : X_t \in B]$ (especially, $\tau_R = \inf[t \ge 0 : |X_t| > R]; X_{t \land \tau_R}$ is bounded) 3. Jump times: $\tau = \inf[t \ge 0 : |X_t - X_{t-}| > \epsilon]$ (including $\epsilon = 0$) 4. Successive hitting times: $\tau_n = \inf[t > \tau_{n-1} : X_t \in B]$ C. Stability: If $\tau_n \geq 0$ are Markov times, 1. Minimum: $au_1 \wedge au_2$ is Markov 2. Maximum: $\tau_1 \lor \tau_2$ is Markov 3. Sum: $\tau_1 + \tau_2$ is Markov $\tau_1 - \tau_2$ is **not** Markov 4. Difference: $\sup_{n<\infty} \tau_n$ is Markov 5. Sup: $\tau_n = \lfloor 2^n \tau \rfloor / 2^n$ is a discrete Markov time, $\tau_n \leq \tau$, and $\tau_n \nearrow \tau$ a.s. 6. Approx: III. Optional Sampling Theorem: If τ is a Markov time and M_n a martingale, $\mathsf{E}[M_0] = \mathsf{E}[M_{\tau \wedge t}]$ for every $t < \infty$, and so $\mathsf{E}[M_0] = \lim_{t \to \infty} \mathsf{E}[M_{\tau \wedge t}]$. Maybe $\mathsf{E}[M_0] = \mathsf{E}[M_{\tau}]$. A. $\mathsf{E}[M_0] = \mathsf{E}[M_{\tau \wedge t}]$ 1. Easy for discrete τ 's: $\sum_{t_i \leq t} \int_{\tau=t_i} M_{t_i} dP + \int_{\tau>t} M_t dP = \int M_t dP = \mathsf{E} M_0$ 2. Now extend to all τ 's, using I.B.3 and II.C.6 B. $E[M_0] = E[M_{\tau}]$ if $\{M_t : t < \infty\}$ is UI: 1. e.g., if $Y = \sup_{t < \infty} |M_t| \in L^1$; or 2. e.g., if $\exists p > 1 \ni \sup_{t < \infty} \mathsf{E}|M_t|^p < \infty$ 3. e.g., if $\mathsf{E}|M_{\tau}| < \infty$ and $\lim_{t \to \infty} \int_{[\tau > t]} |M_t| dP = 0$ C. Applications of Optional Sampling Theorem 1. Wald's identity: Let Y_i be iid with $\phi(\theta) = \mathsf{E}[e^{\theta Y_i}]$ satisfying $1 < \phi(\theta) < \infty$ for some θ ; then if $S_n = \sum_{i \le n} Y_i$, then $X_n = e^{\theta S_n} \phi(\theta)^{-n}$ is a martingale. If -a < 0 < band $\tau = \inf[n : S_n^{-1} < -a \text{ or } S_n > b]$, and if $\phi(\theta_0) = 1$, then $1 = \mathsf{E} X_0 = \mathsf{E} X_{\theta S_{\tau}} \approx$ $e^{\theta_0 b} \mathsf{P}[S_\tau \geq b] + e^{-\theta_0 a} \mathsf{P}[S_\tau \leq -a]$, from which we can estimate $\mathsf{P}[S_\tau \geq b]$ and $\mathsf{E}[\tau] = \mathsf{E}[S_{\tau}]/\mathsf{E}[Y_1].$

2. Examples: Dams, option prices, markov chains

 \star

Karlin & Taylor's Dam Example

Let Z_t be the reservoir water level on day t. A dam of height b leads to the bound $Z_t \leq b$; on day t, I_t flows into the reservoir and (at most) O_t flows out, so

$$Z_{t+1} = 0 \lor (Z_t + I_t - O_t) \land b.$$

Although we can control b and O_t , I_t is random and so Z_t is a stochastic process. Suppose that it is important to have $Z_t > a$ for some 0 < a < b; set $\tau \equiv \inf[t \ge 0 : Z_t < a]$. How should b and O_t be chosen to make sure $G(z) = \mathsf{E}[\tau \mid Z_0 = z]$ is large? How can we estimate G(z)?

Denote the net inflow by $Y_t = I_t - O_t$, so that Z_{t+1} is just $Z_t + Y_t$, truncated to the interval [0, b]. Extend the definition of G(z) so that G(z) = 0, $z \le a$, and G(z) = G(b), $z \ge b$. Then G(z) is increasing and satisfies, for a < z < b,

$$G(z) = \mathsf{E}[\tau \mid Z_0 = z] = 1 + \mathsf{E}[G(z + Y_t) \mid \mathcal{F}_t]$$

The stochastic process $X_t = G(Z_t) + t$ satisfies

$$X_t = G(Z_t) + t = 1 + \mathsf{E}[G(Z_t + Y_t) \mid \mathcal{F}_t] + t = \mathsf{E}[G(Z_{t+1}) + (t+1) \mid \mathcal{F}_t] = \mathsf{E}[X_{t+1} \mid \mathcal{F}_t] = \mathsf$$

i.e., X_t is a martingale. The strategy is to try to find a function g(z) that nearly satisfies \star ; to bound $\mathsf{E}[\tau]$ from below, we'll need a g(z) satisfying

$$g(z) \le 1 + \mathsf{E}[g(z+Y_t) \mid \mathcal{F}_t] \tag{**}$$

which will make $X_t = g(Z_t) + t$ into a *submartingale*, satisfying

$$X_t = g(Z_t) + t \le \mathsf{E}[X_{t+1} \mid \mathcal{F}_t] = \mathsf{E}[g(Z_{t+1}) + (t+1) \mid \mathcal{F}_t],$$

so if the optional sampling theorem applies, we can conclude

$$g(z) = \mathsf{E}[X_0 \mid Z_0 = z] \le \mathsf{E}[X_\tau \mid Z_0 = z] = \mathsf{E}[g(Z_\tau) + \tau \mid Z_0 = z] = \mathsf{E}[\tau \mid Z_0 = z]$$

and so that $\mathsf{E}[\tau \mid Z_0 = z] \ge g(z)$. The text verifies that, under stated conditions,

$$g(z) = \frac{1}{m} \left[e^{\lambda(b-a)} \frac{1 - e^{-\lambda(z-a)}}{\lambda} - (z-a) \right]$$

satisfies $\star\star$ and, therefore, $\mathsf{E}[\tau \mid Z_0 = z] \ge g(z)$.