Duke U STA 961: Lecture 12 R. L. Wolpert

Martingales: Optional Sampling
Karlin & Taylor, A First Course in Stochastic Processes, pp 253-278
I. Review of Uniform Integrability
A. Definitions

1. X,, are Ul if Veda < ooVn f[an|>a] | Xn| dP < €

2. X, are UL if Ve30Vn P[E] < 0 = [, |X,|dP <€
B. Sufficient Conditions
1. X,, are ULif 3Y € L}, | X,,| <Y a.s.
2. X, are ULifIp > 1, M < oo, E|X,|P < M
3. If X; is a martingale and T < oo then {X; : t <T'} is Ul
C. Counsequences
1. If X, = X in pr. (or a.s.), then X,, — X in L' iff E| X,,| — E|X| iff the X, are UL

II. Markov Times

A. Definition: [w: 7(w) <t] € F
1. Discrete time: [w: 7(w) = n] € F,, is good enough
2. w:7(w) < n] €F, is not good enough

B. Examples
1. Constant times: 7 =t
2. Hitting times: 7 = inf[t > 0: X; € B] (especially, 7 = inf[t > 0 : |X¢| > R]; Xiary,

is bounded)

3. Jump times: 7 =inf[t > 0: |X; — X;_| > €] (including € = 0)
4. Successive hitting times: 7, = inf[t > 7,1 : X; € B]

C. Stability: If 7,, > 0 are Markov times,

1. Minimum: 71 A 75 is Markov

2. Maximum: 7y V 79 is Markov

3. Sum: T1 + T2 is Markov

4. Difference: 711 — 73 is not Markov

5. Sup: SUDP,, < oo Tn 18 Markov

6. Approx: T, = [2"7] /2™ is a discrete Markov time, 7, < 7, and 7,, /' T a.s.

III. Optional Sampling Theorem: If 7 is a Markov time and M,, a martingale, E[My] = E[Ma¢]
for every t < oo, and so E[Mp] = limy—, oo E[Ma¢]. Maybe E[My] = E[M,].
A. E[My] = E[M,p4]
1. Easy for discrete 7's: 37, _, fT:ti M;, dP + f7->t M;dP = [ M;dP = EM,
2. Now extend to all 7’s, using 1.B.3 and 11.C.6
B. E[My] = E[M,] if {M, : t < 0o} is UL
1. e.g., 'Y =sup,.o, |My] € L*; or
2. e.g.,if Ip > 13 sup, ., E[M|P < o0
3. e.g., if E|[M| < 0o and limy_y [; o 1 |My[ dP =0
C. Applications of Optional Sampling Theorem
1. Wald’s identity: Let Y; be iid with ¢(6) = E[e?Y?] satisfying 1 < ¢(#) < oo for some
0; then if §,, = > . Y;, then X, = e?Snp(0)~" is a martingale. If —a < 0 < b
and 7 = inf[n : S, < —a or S, > b], and if #(6y) = 1, then 1 = EXy = EXps_ ~
e%PP[S, > b] + e %P[S, < —a], from which we can estimate P[S, > b] and
E[r] = E[S.]/E[Y4].
2. Examples: Dams, option prices, markov chains
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Karlin & Taylor’s Dam Example

Let Z; be the reservoir water level on day ¢. A dam of height b leads to the bound Z; < b; on day
t, I; flows into the reservoir and (at most) O; flows out, so

Zt+1=0\/(Zt+It—Ot)/\b.

Although we can control b and Oy, I; is random and so Z; is a stochastic process. Suppose that
it is important to have Z; > a for some 0 < a < b; set 7 = inf[t > 0 : Z; < a|. How should b and
O: be chosen to make sure G(z) = E[7 | Zy = 2] is large? How can we estimate G(z)?7

Denote the net inflow by Y; = I; — Oy, so that Z;; is just Z; 4+ Y;, truncated to the interval
[0,0]. Extend the definition of G(z) so that G(z) =0, z < a, and G(z) = G(b), z > b. Then G(z)
is increasing and satisfies, for a < z < b,

G(z) =E[r| Zo = 2] =1+ E[G(z + Y1) | Fi] *
The stochastic process X; = G(Z;) + t satisfies

Xe=G(Z) +t =1+ E[G(Z: + Y2) | Fi] +t = E[G(Z441) + (t + 1) | o] = E[Xea | F),

i.e., Xy is a martingale. The strategy is to try to find a function g(z) that nearly satisfies *; to
bound E[7] from below, we’ll need a g(z) satisfying

9(z) <1 +E[g(z + Y1) | F] ok

which will make X; = g(Z;) + t into a submartingale, satisfying

Xt =g(Z) +t <E[Xiqr | Bl = E[g(Zegr) + (E+1) | F,
so if the optional sampling theorem applies, we can conclude
9(z) =E[Xo | Zo = 2] <E[X, | Zg = 2] =Elg(Z;) + 7| Zo = 2] = E[1 | Zy = 7]
and so that E[7 | Zyp = z] > g(z). The text verifies that, under stated conditions,
1 1 — e~ AMz—qa)
g(2) = — [P — (s )]

m
satisfies xx and, therefore, E[7 | Zy = z] > g(z).
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