
Duke U STA 961: Leture 14 R. L. WolpertAppliations of Martingale MethodsKarlin & Taylor, A First Course in Stohasti Proesses, pp 297{325BAYESIAN ESTIMATIONLet � 2 � be an unknown parameter governing the probability distribution of IID observable random vari-ables Xi. If the distribution of eah Xi has a density funtion f(xj�), the joint density for n observationsis the so-alled likelihood funtion: L(�) = nYi=1 f(Xij�):Some statistiians would reommend \estimating" � by that value �̂n that maximizes the likelihoodor, equivalently, its logarithm `(�) = Pni=1 log �f(Xij�)�; others, notably Bayesians, would desribe uner-tainty about � using a probability distribution �(d�) on a suitable BF of events in �, and would desribeunertainty about � after seeing the data Xn = fX1; � � � ; Xng using the posterior distribution,�(d�jXn) = �(d�)Qni=1 f(Xij�)R� �(d _�)Qni=1 f(Xij _�) =  �(d�)L(�)or, if a point estimate is required, its mean��n = E[�jXn℄= R� ��(d�)Qni=1 f(Xij�)R� �(d _�)Qni=1 f(Xij _�)=  Z� � �(d�)L(�)Quite generally this estimate ��n onstitutes a martingale:E���n+1 j Xn� = ZX h��n+1i hf(Xn+1 j Xn)i dXn= ZX h��n+1i h Z� f(Xn+1 j �)�(d�jXn)i dXn= ZX hR� ��(d�)Qn+1i=1 f(Xij�)R� �(d _�)Qn+1i=1 f(Xij _�) ih Z� f(Xn+1 j _�) �(d _�)Qni=1 f(Xij _�)R� �(d��)Qni=1 f(Xij��)i dXn= ZX hR� ��(d�)Qn+1i=1 f(Xij�)1 ih 1R� �(d��)Qni=1 f(Xij��)i dXn= hR� ��(d�)Qni=1 f(Xij�)1 ih 1R� �(d��)Qni=1 f(Xij��)i= hR� ��(d�)Qni=1 f(Xij�)R� �(d��)Qni=1 f(Xij��) i= ��nIf we an verify the onditions for the Martingale Convergene Theorem, e.g., E[j��nj℄ � M for someM < 1 and all n, and possibly that the ��n are Uniformly Integrable, then we will know that there existsa random variable ��1 suh that ��n ! ��1 a.s. as n ! 1, i.e., that the Bayes estimates onverge. Theestimates are alled onsistent if ��n ! � a.s., i.e., if the ��n onverge and moreover ��1 is a.s. equal to theonstant �.


