Duke U STA 961: Lecture 14 R. L. Wolpert

Applications of Martingale Methods
Karlin & Taylor, A First Course in Stochastic Processes, pp 297-325

BAYESIAN ESTIMATION

Let 8 € © be an unknown parameter governing the probability distribution of IID observable random vari-
ables X;. If the distribution of each X; has a density function f(z|f), the joint density for n observations
is the so-called likelihood function:
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Some statisticians would recommend “estimating” € by that value 6,, that maximizes the likelihood
or, equivalently, its logarithm £(6) = """ | log (f(Xi|0)); others, notably Bayesians, would describe uncer-
tainty about 6 using a probability distribution 7(df) on a suitable BF of events in ©, and would describe
uncertainty about 6 after seeing the data X, = {X1, -+, X,,} using the posterior distribution,
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or, if a point estimate is required, its mean
6, = E[f|X,]
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Quite generally this estimate 8,, constitutes a martingale:
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If we can verify the conditions for the Martingale Convergence Theorem, e.g., E[|f,,|] < M for some
M < oo and all n, and possibly that the ,, are Uniformly Integrable, then we will know that there exists
a random variable 6, such that 8, — . a.s. asn — 00, i.e., that the Bayes estimates converge. The
estimates are called consistent if 6,, — 0 a.s., , if the #,, converge and moreover f, is a.s. equal to the
constant 6.



