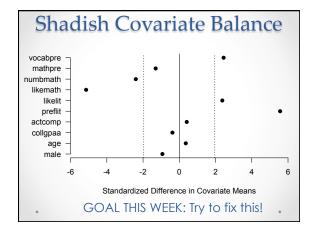
Subclassification

STA 320
Design and Analysis of Causal Studies
Dr. Kari Lock Morgan and Dr. Fan Li
Department of Statistical Science
Duke University

Covariate Balance

- In randomized experiments, the randomization creates covariate balance between treatment groups
- In observational studies, treatment groups will be naturally unbalanced regarding covariates
- Solution? compare similar units
- (How? Propensity score methods.)

(Hew. Troponsily seere memorals)



Select Facts about Classical Randomized Experiments

Timing of treatment assignment clear

Design and Analysis separate by definition: design automatically "prospective," without outcome data

Unconfoundedness, probabilisticness by definition

Assignment mechanism – and so propensity scores – known

Randomization of treatment assignment leads to expected balance on covariates

("Expected Balance" means that the joint distribution of covariates is the same in the active treatment and control groups, on average)

Analysis defined by protocol rather than exploration

Slide by Cassandro

Select Facts about Observational Studies

Timing of treatment assignment may not be specified

Separation between design and analysis may become obscured, if covariates and outcomes arrive in one data set

Unconfoundedness, probabilisticness not guaranteed

Assignment mechanism – and therefore propensity scores – unknown

Lack of randomization of treatment assignment leads to imbalances on covariates

Analysis often exploratory rather than defined by protocol

Slide by Cassandra Pattanavak

Best Practices for Observational Studies

Timing of treatment assignment may not be specified

Separation between design and analysis may become obscured, if covariates and outcomes arrive in one data set

Unconfoundedness, probabilisticness not guaranteed

Assignment mechanism – and therefore propensity scores – unknown

Lack of randomization of treatment assignment leads to imbalances on covariates

Analysis often exploratory rather than defined by protocol

Slide by Cassandra Pattanayal

Best Practices for Observational Studies

1. Determine timing of treatment assignment relative to measured variables

Separation between design and analysis may become obscured, if covariates and outcomes arrive in one data set

Unconfoundedness, probabilisticness not guaranteed

Assignment mechanism – and therefore propensity scores – unknown

Lack of randomization of treatment assignment leads to imbalances on covariates

Analysis often exploratory rather than defined by protocol

Nide by Cassandra Pottona

Best Practices for Observational Studies

- Determine timing of treatment assignment relative to measured variables
- 2. Hide outcome data until design phase is complete

Unconfoundedness, probabilisticness not guaranteed

Assignment mechanism – and therefore propensity scores –

Lack of randomization of treatment assignment leads to imbalances on covariates

Analysis often exploratory rather than defined by protocol

Slide by Cassandra Pattanavak

Best Practices for Observational Studies

- 1. Determine timing of treatment assignment relative to measured variables
- 2. Hide outcome data until design phase is complete
- 3. Identify key covariates likely related to outcomes and/or treatment assignment. If key covariates not observed or very noisy, usually better to give up and find a better data source.
- 4. Remove units not similar to any units in opposite treatment group

Assignment mechanism – and therefore propensity scores – unknown

Lack of randomization of treatment assignment leads to imbalances on covariates

Analysis often exploratory rather than defined by protocol

Best Practices for Observational Studies

- Determine timing of treatment assignment relative to measured variables
- 2. Hide outcome data until design phase is complete
- 3. Identify key covariates likely related to outcomes and/or treatment assignment. If key covariates not observed or very noisy, usually better to give up and find a better data source.
- 4. Remove units not similar to any units in opposite treatment group

Assignment mechanism – and therefore propensity scores – unknown

Lack of randomization of treatment assignment leads to imbalances on covariates

Analysis often exploratory rather than defined by protocol
Slide by Cossandra Pattanaya

Best Practices for Observational Studies

- 1. Determine timing of treatment assignment relative to measured variables
- 2. Hide outcome data until design phase is complete
- 3. Identify key covariates likely related to outcomes and/or treatment assignment. If key covariates not observed or very noisy, usually better to give up and find a better data source.
- 4. Remove units not similar to any units in opposite treatment group
- 5. Estimate propensity scores, as a way to...
- 6. Find subgroups (subclasses or pairs) in which the active treatment and control groups are balanced on covariates (not always possible; inferences limited to subgroups where balance is achieved)

Analysis often exploratory rather than defined by protocol

Slide by Cassandra Pattanayak

Best Practices for Observational Studies

- Determine timing of treatment assignment relative to measured variables
- 2. Hide outcome data until design phase is complete
- 3. Identify key covariates likely related to outcomes and/or treatment assignment. If key covariates not observed or very noisy, usually better to give up and find a better data source.
- 4. Remove units not similar to any units in opposite treatment group
- 5. Estimate propensity scores, as a way to...
- 6. Find subgroups (subclasses or pairs) in which the treatment groups are balanced on covariates (not always possible; inferences limited to subgroups where balance is achieved)

Analysis often exploratory rather than defined by protocol

Slide by Cassandra Pattanayak

Best Practices for Observational Studies

- 1. Determine timing of treatment assignment relative to measured variables
- 2. Hide outcome data until design phase is complete
- 3. Identify key covariates likely related to outcomes and/or treatment assignment. If key covariates not observed or very noisy, usually better to give up and find a better data source.
- 4. Remove units not similar to any units in opposite treatment group
- 5. Estimate propensity scores, as a way to...
- Find subgroups (subclasses or pairs) in which the active treatment and control groups are balanced on covariates (not always possible; inferences limited to subgroups where balance is achieved)
- 7. Analyze according to pre-specified protocol

Slide by Cassandra Pattanavak

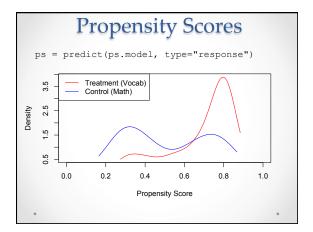
Best Practices for Observational Studies

1. Determine timing of treatment assignment relative to measured variables

Design Observational Study to Approximate Hypothetical, Parallel Randomized Experiment

- 5. Estimate propensity scores, as a way to...
- Find subgroups (subclasses or pairs) in which the active treatment and control groups are balanced on covariates (not always possible; inferences limited to subgroups where balance is achieved)
- 7. Analyze according to pre-specified protocol

Slide by Cassandra Pattanavak



Trimming

- Eliminate cases without comparable units in the opposite group
- One option: set boundaries on the allowable propensity score and eliminate units with propensity scores close to 0 or 1
- Another option: eliminate all controls with propensity scores below the lowest treated unit, and eliminate all treated units with propensity scores above the highest control

ps = predict(ps.model, type="response") Treatment (Vocab) Control (Math) Output Out

Trimming

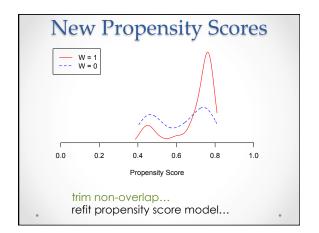
- > overlap(ps, data\$W) #these units should be eliminated
- [1] "8 controls below any treated"
- [1] "5 treated above any controls"
- > data = data[ps>=min(ps[data\$W==1]) & ps
 <= max(ps[data\$W==0]),]</pre>

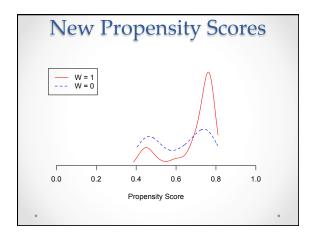
Estimating Propensity Scores

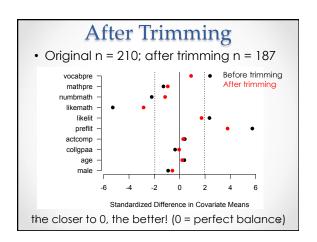
Go back

and refit

- In practice, estimating the propensity score is an iterative process:
- 1. Estimate propensity score
- 2. Eliminate units with no overlap
 (eliminate units with no comparable
 units in other groups)
- Repeat until propensity scores overlapping everywhere for both groups







Trimming

- Trimming can improve covariate balance, improving internal validity (better causal effects for remaining units)
- But hurts external validity (generalizability)
- Changes the estimand estimate the causal effect for those units who are comparable
- How many units to trim is a tradeoff between decreasing sample size and better comparisons – Ch 16 gives optimal threshold

Subclasses

- If we have enough covariates (unconfounded), within subclasses of people with identical covariates, observational studies look like randomized experiments
- Idea: subclassify people based on similar covariate values, and estimate treatment effect within each subclass
- (similar to stratified experiments)

One Key Covariate Smoking, Cochran (1968)

Population: Male smokers in U.S.
Active treatment: Cigar/pipe smoking
Control treatment: Cigarette smoking
Outcome: Death in a given year

Decision-Maker: Individual male smoker

Reason for smoking male to choose cigarettes

versus cigar/pipe?

Age is a key covariate for selection of smoking

type for males

Slide by Cassandra Pattanavak

Subclassification to Balance Age

To achieve balance on age, compare:

- "young" cigar/pipe smokers with "young" cigarette smokers
- "old" cigar/pipe smokers with "old" cigarette smokers

Better: young, middle-aged, old, or more age subclasses

Objective of study design, without access to outcome data: approximate a completely randomized experiment within each subclass

Only after finalizing design, reveal outcome data

Comparison of Mortality Rates for Two Smoking Treatments in U.S.

	Cigarette Smokers	Cigar/Pipe Smokers
Mortality Rate per 1000 person-years, %	13.5	17.4

Cochran WG. The Effectiveness of Adjustment of Subclassification in Removing Bias in

Observational Studies. Biometrics 1968; 24: 295-313.

Slide by Cassandra Pattanayak

Comparison of Mortality Rates for Two Smoking Treatments in U.S.

0		
	Cigarette Smokers	Cigar/Pipe Smokers
Mortality Rate per 1000 person-years, %	13.5	17.4
Averaging Over Age Subclasses		
2 Age Subclasses	16.4	14.9
3 Age Subclasses	17.7	14.2
11 Age Subclasses	21.2	13.7

Cochran WG. The Effectiveness of Adjustment of Subclassification in Removing Bias in

28
Observational Studies. Biometrics 1968; 24: 295-313.
Slide by Cassandra Pathonaya

What if we had 20 covariates, with 4 levels each?

Over a million million subclasses

Slide by Cassandra Pattanava

Solution?

How can we balance many covariates?

BALANCE THE PROPENSITY SCORE!

5

Propensity Score

 Amazing fact: balancing on just the propensity score balances ALL COVARIATES included in the propensity score model!!!

•

Toy Example

· One covariate, X, which takes levels A, B, C

	X = A	X = B	X = C
Treatment	90 /	2	5
Control	10	8	20
e(x)	0.9	0.2	0.2

- Within circled subclass, are treatment and control balanced with regard to X?
- Yes! Each has 2/7 B and 5/7 C

Hypothetical Example

Population: 2000 patients whose medical information was reported to government database

Units: Patients

Active Treatment: New surgery (1000 patients)

Control Treatment: Old surgery (1000 patients)

Outcome: Survival at 3 years

Remove outcomes from data set

.

© 33 Slide by Cassandra Pattanaya

Reasonable to assume propensity score = 0.5 for all?

Age Range	Total Number	Number New Surgery	Number Old Surgery	Estimated Probability New Surgery, given Age
0-19	137	94	43	94/137 = 0.69
20-39	455	276	179	276/455 = 0.61
40-59	790	393	397	393/790 = 0.50
60-79	479	193	286	193/479 = 0.28
80-99	118	31	87	31/118 = 0.26

Does propensity score depend on age only?

		0	2	
Cholesterol Range	Total Number	Number New Surgery	Number Old Surgery	Estimated Probability New Surgery, given Cholesterol
0-199	175	155	20	155/175 = 0.89
200-249	475	354	121	354/475 = 0.75
250-299	704	343	361	343/704 = 0.49
300-349	464	130	334	130/464 = 0.28
350-400	162	16	146	16/162 = 0.10
				0.35

Proportion of units assigned to active treatment rather than control treatment Age 0-19 20-39 40-59 60-79 80-99 Cholesterol 0-199 11/11 32/38 32/49 17/29 2/7 1.00 0.84 0.65 0.59 0.29 57/61 100/119 75/141 40/103 4/25 200-249 0.84 0.53 0.39 0.16 148/293 250-299 48/57 145/191 43/177 7/67 0.24 0.84 0.76 0.51 0.10 28/33 63/98 72/172 28/125 2/46 300-349 0.64 0.42 0.22 0.04 11/43 2/28 1/13 350-400 9/10 8/22 0.36 0.90 0.26 0.07 0.08

Slide by Cassandra Pattanayak

Age	0-19	20-39	40-59	60-79	80-99
Cholesterol					
0-199	11/11	32/38	32/49	17/29	2/7
	1.00	0.84	0.65	0.59	0.29
200-249	57/61	100/119	75/141	40/103	4/25
	0.93	0.84	0.53	0.39	0.16
250-299	48/57	145/191	148/293	43/177	7/67
	0.84	0.76	0.51	0.24	0.10
300-349	28/33	63/98	72/172	28/125	2/46
	0.85	0.64	0.42	0.22	0.04
350-400	9/10	8/22	11/43	2/28	1/13
	0.90	0.36	0.26	0.07	0.08

Age Cholesterol	0-19	20-39	40-59	60-79	80-99
0-199	11/11 1.00	32/38 0.84			
200-249	57/61 0.93	100/119 0.84			
250-299	48/57 0.84	145/191 0.76			
300-349	28/33 0.85				
350-400	9/10 0.90				

Age	0-19	20-39	40-59	60-79	80-99
Cholesterol					
0-199	11	32			
200-249	57	100			
250-299	48	145			
300-349	28				
350-400	9				

Age	0-19	20-39	40-59	60-79	80-99
Cholesterol					
0-199	11/430	32/430			
	0.03	0.07			
200-249	57/430	100/430			
	0.13	0.23			
250-299	48/430	145/430			
	0.11	0.34			
300-349	28/430				
	0.07				
350-400	9/430				
	0.02				

Age	0-19	20-39	40-59	60-79	80-99
Cholesterol					
0-199	11/11 1.00	32/38 0.84			
200-249	57/61 0.93	100/119 0.84			
250-299	48/57 0.84	145/191 0.76			
300-349	28/33 0.85				
350-400	9/10 0.90				

Age	0-19	20-39	40-59	60-79	80-99
Cholesterol					
0-199	0	6			
200-249	4	19			
250-299	9	46			
300-349	5				
350-400	1				

Age	0-19	20-39	40-59	60-79	80-99
Cholesterol					
0-199	0/90 0.00	6/90 0.07			
200-249	4/90 0.04	19/90 0.21			
250-299	9/90 0.10	46/90 0.51			
300-349	5/90 0.06				
350-400	1/90 0.01				

Covariate distribution among active treatment units, subclass 1			Covariate distribution among control treatment units, subclass 1		
Age	0-19	20-39	Age	0-19	20-39
Cholesterol			Cholesterol		
0-199	11/430 0.03	32/430 0.07	0-199	0/90 0.00	6/90 0.07
200-249	57/430 0.13	100/430 0.23	200-249	4/90 0.04	19/90 0.21
250-299	48/430 0.11	145/430 0.34	250-299	9/90 0.10	46/90 0.51
300-349	28/430 0.07		300-349	5/90 0.06	
350-400	9/430 0.02		350-400	1/90 0.01	
Slide by Cassandra Pattanayak					

Stratified randomized experiment:

- Create strata based on covariates
- Assign different propensity score to each stratum
- Units with similar covariates are in same stratum and have same propensity scores

Observational study:

- Estimate propensity scores based on covariates
- Create subclasses based on estimated propensity scores
- Units within each subclass have similar propensity scores and, on average, similar covariates

Works if we have all the important covariates – i.e., if assignment mechanism unconfounded given observed covariates

Slide by Cassandra Pattanaya

Subclassification

- Divide units into subclasses within which the propensity scores are relatively similar
- Estimate causal effects within each subclass
- Average these estimates across subclasses (weighted by subclass size)
- (analyze as a stratified experiment)

Estimate within Subclass

- If propensity scores constant enough within subclass, often a simple difference in observed means is adequate as an estimate
- If covariate differences between treatment groups persist, even within subclasses, regression or model-based imputation may be used

How many subclasses?

- It depends! (covariate balance, n, etc.)
- More subclasses: propensity scores will be closer to the same within each subclass
- Fewer subclasses: sample sizes will be larger within each subclass, so estimates will be less variable
- Larger sample size can support more subclasses

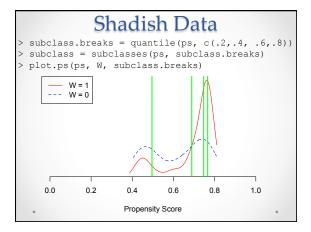
8

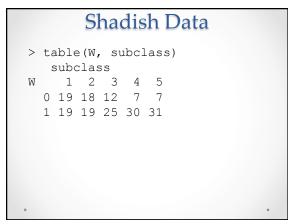
How many subclasses?

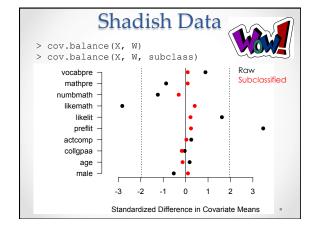
- Start with 5 equally sized subclasses (usually 5-10 are sufficient)
- · Check...
 - o Propensity score balance within subclasses
 - Number of treated and controls within subclasses
 - o Overall covariate balance
- If balance needs improving and subclasses have enough treated and controls, try more subclasses

Subclass Breaks

- Starting with 5 equally sized subclasses
- Subclass breaks would be at the 20th, 40th, 60th, and 80th percentiles of the propensity score
- Subclasses do not have to be equally sized, that's just a convenient starting point







Outcomes

- Once we are happy with the covariate balance, we can analyze the outcomes
- (Note: once you look at the outcomes, there is no turning back, so make sure you are happy with balance first!)

Inference: Estimate

- Analyze as a stratified experiment
- General (where j indexes subclasses):

$$\hat{\tau} = \sum_{j=1}^{J} \lambda_j \hat{\tau}_j$$

• One common option:

$$\hat{\tau} = \sum_{j=1}^{J} \frac{N(j)}{N} \left(\overline{Y}_{T}^{obs}(j) - \overline{Y}_{C}^{obs}(j) \right)$$

Shadish Data: Outcomes!

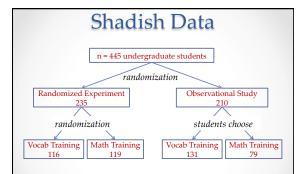
```
> subclass.average(MathOutcome, W, subclass)
$`Difference in Means within Each Subclass`
[1] -1.263158 -4.681287 -4.016667 -6.633333 -3.658986
$`Weighted Average Difference in Means`
[.1]
```

[1,] -4.033685

> subclass.average(VocabOutcome, W, subclass)
\$`Difference in Means within Each Subclass`
[1] 9.000000 9.289474 7.856667 5.828571 8.626728
\$`Weighted Average Difference in Means`

[,1] [1,] 8.127701

Taking the vocab training rather than the math training course causes a decrease of about 4 points on the math test and an increase of about 8 points on the vocab test, on average.



Shadish, M. R., Clark, M. H., Steiner, P. M. (2008). Can nonrandomized experiments yield accurate answers? A randomized experiment comparing random and nonrandom assignments. *JASA*. **103**(484): 1334-1344.

Shadish Data: Outcomes!

> subclass.average(MathOutcome, W, subclass) \$`Difference in Means within Each Subclass` [1] -1.263158 -4.681287 -4.016667 -6.633333 -3.658986 \$`Weighted Average Difference in Means`

[1,] -4.033685 Estimate from randomized experiment: -4.189

> subclass.average(VocabOutcome, W, subclass) \$`Difference in Means within Each Subclass` [1] 9.000000 9.289474 7.856667 5.828571 8.626728 \$`Weighted Average Difference in Means`

[1,] 8.127701 Estimate from randomized experiment: 8.114

Taking the vocab training rather than the math training course causes a decrease of about 4 points on the math test and an increase of about 8 points on the vocab test.

Inference: Variance

• General (where j indexes subclasses):

$$\operatorname{var}(\hat{\tau}) = \sum_{j=1}^{J} \lambda_j^2 \operatorname{var}(\hat{\tau}_j)$$

• If using simple difference in means:

$$\sum_{j=1}^{J} \frac{N(j)^{2}}{N^{2}} \left(\frac{s_{T,j}^{2}}{N_{T}(j)} + \frac{s_{C,j}^{2}}{N_{C}(j)} \right)$$

Shadish Data: Inference

Shadish Data: Math

 $CI:-4.034 \pm 2 \times 0.534 = (-5.102, -2.966)$

$$t = \frac{-4.034}{0.534} = -7.55$$

 We are 95% confident that taking the math training course (as opposed to the vocab course) increases math scores by between about 3 and 5 points, on average. This is highly significant – taking the math course does improve your math test score.

To Do

- Read Ch 16, 17
- Homework 4 (due Monday)
- Bring laptops to class on Wednesday

•