Matching

STA 320
Design and Analysis of Causal Studies
Dr. Kari Lock Morgan and Dr. Fan Li
Department of Statistical Science
Duke University

Quiz 2

- one-sided or two-sided p-value? (depends on question being asked)
- imputation: use observed control outcomes to impute missing treatment outcomes and vice versa.
 - class year: use observed outcomes from control sophomores to impute missing outcomes for treatment sophomores
- biased or unbiased

Matching

- Matching: Find control units to "match" the units in the treatment group
- Restrict the sample to matched units
- Analyze the difference for each match (analyze as matched pair experiment)
- Useful when one group (usually the control) is much larger than the other

Estimand

- Changes the estimand: now estimating the causal effect for the subpopulation of treated units
- ATE: Average treatment effect
- ATT: Average treatment effect for the treated
- ATC: Average treatment effect for the controls

Exact Matching

- For exact matching, covariate values must match exactly
- 21 year old female in treatment group must be matched with 21 year old female in control group

•

Inexact Matches

- Often, exact matching is not feasible, and matches are just as close as possible
- The farther apart the matches are, the more bias there will be
- Bias: covariate imbalance
- There are ways of adjusting for bias (ch 18)

•	Can use calipers: only matches within a certain caliper are acceptable (remove units without an acceptable match)
	•

Matching		
Y(1)	Y(0)	X (Age)
observed	Ś	19
observed	Ś	22
observed	Ś	23
Ś	observed	51
Ś	observed	30
Ś	observed	20
Ś	observed	15
Ś	observed	42
Ś	observed	21
ŝ	observed	25

Matching			
Y(1)	Y(0)	X (Age)	
observed	d 's	19	
observed	d ∖s	22	
observed	d \ s	23	
ŝ	observed	51	
Ś	øbserved	30	
Ś	observed	20	
Ś	observed	15	
Ś	observed	42	
Ś	observed	21	
Ś	observed	25	

Matching				
	Y(1)	Y(0)	X (Age)	
	observed	Ś	19	
	observed	Ś	22	
	observed	Ś	23	
	Ś	observed	51	
	Ś	øbserved	30	
	Ś	observed	20	
	Ś	observed	15	
	Ś	observed	42	
	Ś	observed	21	
٠	Ś	observed	25	•

Matching			
Y(1)	Y(0)	X (Age)	
observed	Ś	19	
observed	Ś	22	
observed	Ś	23	
Ś	observed	51	
Ś	øbserved	30	
Ś	observed	20	
Ś	observed	15	
Ś	observed	42	
Ś	observed	21	
ŝ	observed	25	0

Matching		
Y(1)	Y(0)	X (Age)
observed	ŝ	19
observed	Ś	22
observed	Ś	23
Ś	observed	51
Ś	observed	30
Ś	observed	20
Ś	observed	15
Ś	observed	42
Ś	observed	21
Ś	observed	60

Matching		
Y(1)	Y(0)	X (Age)
observed	Ś	19
observed	Ś	22
observed	Ś	23
Ś	observed	51
Ś	observed	30
Ś	observed	20
Ś	observed	15
Ś	observed	42
Ś	observed	21
Ś	observed	60

Matching		
Y(1)	Y(0)	X (Age)
observed	Ś	19
observed	Ś	22
observed	Ś	23
Ś	observed	51
Ś	observed	30
Ś	observed	20
Ś	observed	15
Ś	observed	42
Ś	observed	21
Ś	observed	60

Matching				
	Y(1)	Y(0)	X (Age)	
	observed	Ś	19	
	observed	Ś	22	
	observed	Ś	23	uh oh
	Ś	observed	51	
	Ś	observed	35	
	Ś	observed	20	
	Ś	observed	15	
	Ś	observed	42	
	Ś	observed	21	
	Ś	observed	60	

Ideal Matches

- Ideal: minimize total (or average) covariate distance for pairs
- Hard to do computationally, especially for large sample sizes

"Greedy" Matching

- Greedy matching orders the treated units, and then sequentially chooses the closest control (ignoring effect on later matches)
- When doing this, helps to first match units that will be hardest to match
- One possibility: order by decreasing propensity score (treated units with highest propensity scores are most unlike controls)

Matching with Replacement

- Matching can be done with replacement
- Pros
 - Easier computationally (ideal matches overall same as just closest for each unit)
 - o Better matches
- Cons
 - Variance of estimator higher (controls can be used more than once, so less information)
 - Variance is harder to estimate (no longer independent)

Matching with Replacement

- Matching with replacement is necessary if the group you want to make inferences about is the smaller group
- Matching with replacement also allows you to make inferences about the entire sample (find a match for every unit, from opposite group)
- Units more similar to those in the opposite group will be selected more

Multiple Covariates

- With multiple covariates, how do you know which to prioritize?
- 21 year old female
- Which is a better match:
 - o 18 year old female
 - o 21 year old male
- Want a way to measure multivariate covariate distance

Distance Metric

- Lots of different possible distance metrics
- Mahalanobis distance?
- Sum of squared (standardized) covariate difference in means?
- Difference in propensity scores?
- · Linearized propensity score...

Linearized Propensity Score

- Difference between propensity scores of 0.001 and 0.01 is larger than difference between propensity scores 0.1 and 0.109
- Better option: linearized propensity score, the log odds of propensity score:

$$\log\left(\frac{e(x)}{1-e(x)}\right)$$

• Logistic regression: $\log\left(\frac{e(x)}{1-e(x)}\right) = \alpha + \beta'$

Linearized Propensity Score

PS	Linearized PS	
0.001	-3	
0.01	-2	
0.10	-0.95	
0.109	-0.91	
0.5	0	
0.9	0.95	

Linearized Propensity Score

- Note: the linearized propensity score is recommended for subclassification as well, although it isn't as important in that setting
- Won't change subclasses, but will change your view of whether a subclass is small enough

Hybrid Matching

- In hybrid matching, match on more than one criteria
- Example: exact matches are required for some covariates, and other covariates are just as close as possible
 Example: 21 year old female; look for closest age only within female controls
- Example: match on propensity score and important covariate(s)

Multiple Matches

- Paired matching is called 1:1 matching (1 control to 1 treated)
- If the control group is much bigger than the treatment group, can do 2:1 matching (2 controls to 1 treatment unit), or more to one matching
- Another option: caliper matching in which all controls within a certain distance (based on some metric) of a treated unit are matched with that unit

Matching

- · Like propensity score estimation...
- and like subclassification....
- ... there are no "right" matches
- If the matches you choose give good covariate balance, then you did a good job!

Decisions

- Estimating propensity score:
 - o What variables to include?
 - o How many units to trim, if any?
- Subclassification:
 - o How many subclasses and where to break?
- · Matching:
 - o with or without replacement?
 - o 1:1, 2:1, ... ?
 - o how to weight variables / distance measure?
 - o exact matching for any variable(s)?
 - o calipers for which a match is "acceptable"?
- . .

Lalonde Data

- Analyze the causal effect of a job training program on wages
- Data on 185 treated (participated in job training program) and 2490 controls (did not participate in job training program)
- GOAL: achieve covariate balance!

To Do

- Read Ch 15, 18
- Homework 4 (due Monday)