Randomized Experiments

STA 320
Design and Analysis of Causal Studies Dr. Kari Lock Morgan and Dr. Fan Li Department of Statistical Science Duke University

Review of Last Class

- Covariates (pre-treatment variables) are often important in causal inference
- Assignment probabilities:
$\circ \operatorname{Pr}(\mathbf{W} \mid \mathbf{X}, \mathbf{Y}(1), \mathbf{Y}(0))$
$\circ \mathrm{p}_{\mathrm{i}}(\mathbf{X}, \mathbf{Y}(1), \mathbf{Y}(0))=\operatorname{Pr}\left(\mathrm{W}_{\mathrm{i}} \mid \mathbf{X}, \mathbf{Y}(1), \mathbf{Y}(0)\right)$
- Properties of the assignment mechanism:
- individualistic
- probabilistic
- unconfounded
. o known and controlled

GOAL

- For estimating causal effects, we want treatment groups that are similar regarding covariates
- Main theme of the course: create covariate balance across treatment groups
- Easiest way to accomplish this: randomized experiments

Randomized Experiment

- The assignment mechanism is random, known, and controlled by the researcher
- Because the treatments are randomly assigned, the treatment groups should all look similar regarding covariates (observed and unobserved)

Classical Randomized Experiments

- For classical randomized experiments, the assignment mechanism is individualistic, probabilistic, and unconfounded by design
- For the next few weeks we'll talk only about classical randomized experiments

A Look Ahead

- Today: Designing randomized experiments
- Next week: inference from classical randomized experiments
- Following week: doing more to ensure covariate balance in experiments
- After that: observational studies
- After spring break: more complicated scenarios

Knee Surgery for Arthritis

- Researchers conducted a study on the effectiveness of a knee surgery to cure arthritis. It was randomly determined whether people got the knee surgery. Everyone who underwent the surgery reported feeling less pain.
- Is this evidence that the surgery causes a decrease in pain?

Placebo Effect

- Often, people will experience the effect they think they should be experiencing, even if they aren't actually receiving the treatment
- Example: Eurotrip
- This is known as the placebo effect
- One study estimated that 75% of the effectiveness of anti-depressant medication is due to the placebo effect
- For more information on the placebo effect (it's amazing!) read The Placebo Prescription

Placebo and Blinding

- Control groups should be given a placebo, a fake treatment that resembles the active treatment as much as possible
- Using a placebo is only helpful if participants do not know whether they are getting the placebo or the active treatment
- If possible, randomized experiments should be double-blind: neither the participants or the researchers involved should know which treatment the patients are actually getting

Causal effects are statistically welldefined no matter what treatments are being compared (placebo, blinding, etc. irrelevant)

Causal effects are substantively more relevant if experiment is well-designed with a placebo and blinding

Stats versus Substance

Green Tea and Prostate Cancer

- A study involved 60 men with PIN lesions, some of which turn into prostate cancer
- Half were randomized to take 600 mg of green tea extract daily, the other half were given a placebo pill
- The study was double-blind
- After one year, 1 person taking green tea and 9 taking the placebo had gotten cancer
- This is statistically significant
- Can we conclude that green tea really does help prevent prostate cancer?

Propensity Score

- The propensity score at x is the average unit assignment probability for units with $X_{i}=x$:

$$
e(x) \equiv \frac{1}{N_{x}} \sum_{i, X_{i}=x} p_{i}(\mathbf{X}, \mathbf{Y}(1), \mathbf{Y}(0))
$$

- Assuming individualistic and unconfounded assignment, the propensity score is just the probability of units with $X=x$ getting the active treatment

Randomized Experiments

- We'll cover four types of classical randomized experiments:
- Bernoulli randomized experiment - Completely randomized experiment - Stratified randomized experiment - Paired randomized experiment
- Increasingly restrictive regarding possible assignment vectors -

Possible Assignment Vectors

- Bernoulli: 2^{N}

$\mathrm{i}=1$	0	0	0	0	1	0	0	1	1	0	1	0	1	1	1	1
$\mathrm{i}=2$	0	0	0	1	0	0	1	0	0	1	1	1	0	1	1	1
$\mathrm{i}=3$	0	0	1	0	0	1	0	0	1	1	0	1	1	0	1	1
$\mathrm{i}=4$	0	1	0	0	0	1	1	1	0	0	0	1	1	1	0	1

- Why might this not be a good design?
- e(x) can depend on covariates (rare)
- Any assignment vector, \mathbf{W}, is possible

Completely Randomized

- In a completely randomized experiment, sample sizes for each treatment group are fixed in advance
- $\mathrm{N}_{\mathrm{T}}=$ size of treatment group
- $N_{C}=$ size of control group
- Often $N_{T}=N / 2$, but not always
- $e(x)=N_{T} / N$
- Group sizes are the only restriction

Possible Assignment Vectors

- Bernoulli: 2^{N}

$\mathrm{i}=1$	0	0	0	0	1	0	0	1	1	0	1	0	1	1	1	1
$\mathrm{i}=2$	0	0	0	1	0	0	1	0	0	1	1	1	0	1	1	1
$\mathrm{i}=3$	0	0	1	0	0	1	0	0	1	1	0	1	1	0	1	1
$\mathrm{i}=4$	0	1	0	0	0	1	1	1	0	0	0	1	1	1	0	1

- Completely randomized experiment: $\binom{N}{N_{t}}$ | $\mathrm{i}=1$ | | | | | | 0 | 0 | 1 | 1 | 0 | T | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Stratified

- In a stratified randomized experiment, units are partitioned into blocks or strata that are similar with respect to one or more covariates
- Units are completely randomized within each block/strata
- Ensures balance for important covariate(s)
- Also called blocking
- Advice: "block what you can, randomize what you cannot"

Possible Assignment Vectors

- Bernoulli: 2^{N}

$\mathrm{i}=1$	0	0	0	0	1	0	0	1	1	0	1	0	1	1	1	1
$\mathrm{i}=2$	0	0	0	1	0	0	1	0	0	1	1	1	0	1	1	1
$\mathrm{i}=3$	0	0	1	0	0	1	0	0	1	1	0	1	1	0	1	1
$\mathrm{i}=4$	0	1	0	0	0	1	1	1	0	0	0	1	1	1	0	1

- Completely randomized experiment:($\left.\begin{array}{c}N \\ N_{t}\end{array}\right)$

- Stratified randomized experiment:

Paired

- In a paired randomized experiment, units are first matched into pairs of similar units
- Within each pair, randomize which unit is treated
- Special case of blocking
- Goal: improve covariate balance and increase precision
- Also called matched pairs experiments -

Example

- Does drinking a sports drink (e.g. Gatorade) make you run faster, as opposed to just drinking water?
- How would you design an experiment with each of the following designs?
- Bernoulli?
- Completely randomized?
- Stratified?
- Paired?

To Do

- Read Ch 4
- Bring laptops to class on Monday (and make sure you have R)
- HW 2 due next Wednesday

