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Inference:  Neyman’s  
Repeated  Sampling	


STA 320 
Design and Analysis of Causal Studies 

Dr. Kari Lock Morgan and Dr. Fan Li 
Department of Statistical Science 

Duke University 

Office  Hours 	
	

•  My Monday office hours will be 12-1pm 

for the next 3 weeks (2/10, 2/17, 2/24), 
not 3-4pm 

•  Wednesdays: 3-4pm 

•  Fridays: 1-3pm 

R	

•  R code corresponding to all the problems 

from last class is available 

•  There are many different ways to code 
each problem – this is just an example 

•  For more information on any of it (for 
loops, subsetting data, handling NAs, 
etc.) see this R guide I wrote for intro stat 

•  You will have to do your own coding for 
homework and your project (you can 
talk, but do not share code) 

 

HW  2	
	

•  Because the due date for HW 2 has 

gotten pushed back a week (now due 
Monday, 2/10), the next hw was 
dropped and instead I’ve added some 
problems to HW corresponding to 
today’s class 

•  If you already downloaded it, make sure 
to look at the updated version 

Causal  Inference	


Sleep  or  Caffeine?	

•  Is sleep or caffeine better for memory? 

•  24 adults were given a list of words to 
memorize, then randomly divided into 
two groups 

•  During a break one group took a nap 
for an hour and a half, while the other 
group stayed awake and then took a 
caffeine pill after an hour 

•  Y: number of words recalled 
Mednick  S.,  Cai  D.,  Kanady  J.,  and  Drummond  S.,  “Comparing  the  
benefits  of  caffeine,  naps  and  placebo  on  verbal,  motor  and  
perceptual  memory”,  Behavioural  Brain  Research,  2008;  193:  79-­‐‑86.  	
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Sleep  or  Caffeine	
 Jerzy  Neyman	


1894 – 1981
  

Fisher  and  Neyman	

•  At the same time Fisher was developing 

his framework for inference, Neyman 
was developing his own framework… 

•  Fisher: more focused on testing 
o  is there a difference? 
o p-values 

•  Neyman: more focused on estimation 
o average treatment effect 
o unbiased estimators 
o confidence intervals 

Sleep  or  Caffeine	

•  Fisher: Is there any difference between 

napping or staying awake and 
consuming caffeine, regarding number 
of words recalled? 

•  Neyman: On average, how many more 
words are recalled if a person naps 
rather than stays awake and consumes 
caffeine? 

Neyman’s  Plan  for  Inference	

1.  Define the estimand 

2.  Look for an unbiased estimator of the 
estimand 

3.  Calculate the true sampling variance of 
the estimator 

4.  Look for an unbiased estimator of the 
true sampling variance of the estimator  

5.  Assume approximate normality to obtain 
p-value and confidence interval 
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Finite  Sample  vs  Super  Population	

•  Finite sample inference: 

o Only concerned with units in the sample 
o Only source of randomness is random 

assignment to treatment groups 
o  (Fisher exact p-values) 

•  Super population inference: 
o Extend inferences to greater population 
o Two sources of randomness: random sampling, 

random assignment 
o “repeated sampling” 

•  We’ll first explore finite sample inference… 
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Estimand	

•  Neyman was primarily interested in 

estimating the average treatment effect 

•  In the finite sample setting, this is defined 
as  

τ ≡ Y (1)−Y (0) ≡
Yi

i=1

N

∑ (1)

N
−

Yi
i=1

N

∑ (0)

N

Estimator	

•  A natural estimator is the difference in 

observed sample means: 

τ̂ ≡ YT
obs −YC

obs

≡
WiYi

i=1

N

∑ (1)

NT

−
(1−Wi )Yi

i=1

N

∑ (0)

NC

Sleep  vs  Caffeine	

•  Estimand: the average word recall for 

all 24 people if they had napped – 
average word recall for all 24 people if 
they had caffeine 

•  Estimator: 

•  (Sleep – Caffeine) 

τ̂ ≡ YS
obs −YC

obs = 15.25 −12.25 = 3

Unbiased	

•  An estimator is unbiased is the average 

of the estimator computed over all 
assignment vectors (W) will equal the 
estimand 

•  The estimator is unbiased if  

E τ̂( ) = τ

Unbiased	

For completely randomized experiments,  

 

 

is an unbiased estimator for 

τ̂ ≡ YT
obs −YC

obs ≡
WiYi

i=1

N

∑ (1)

NT

−
(1−Wi )Yi

i=1

N

∑ (0)

NC

τ ≡ Y (1)−Y (0) ≡
Yi

i=1

N

∑ (1)

N
−

Yi
i=1

N

∑ (0)

N

Neyman’s  Inference  (Finite  Sample)	

1.  Define the estimand: 

2.   unbiased estimator of the estimand: 

 

3.  Calculate the true sampling variance 
of the estimator 
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τ ≡ Y (1)−Y (0)

τ̂ ≡ YT
obs −YC

obs
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True  Variance  over  W	


var(YT
obs −YC

obs ) = ST
2

NT

+ SC
2

NC

− STC
2

N
ST
2 = 1

N −1 i=1

N

∑ Yi (1)−Y (1)( )2

SC
2 = 1

N −1 i=1

N

∑ Yi (0)−Y (0)( )2

STC
2 = 1

N −1 i=1

N

∑ (Yi (1)−Yi (0))− (Y (1)−Y (0))( )2

For  the  derivation  of  this,  see  Chapter  6.	


Sample  variance  of  
potential  outcomes  
under  treatment  
and  control,  for  all  
units.	


Extra  Term	


•  Always positive 

•  Equal to zero if the treatment effect is 
constant for all i 

•  Related to the correlation between Y(0) 
and Y(1), (perfectly correlated if 
constant treatment effect) 

STC
2 = 1

N −1 i=1

N

∑ (Yi (1)−Yi (0))− (Y (1)−Y (0))( )2

Neyman’s  Inference  (Finite  Sample)	

1.  Define the estimand: 

2.   unbiased estimator of the estimand: 

3.   true sampling variance of the estimator 

4.  Look for an unbiased estimator of the 
true sampling variance of the estimator  
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τ ≡ Y (1)−Y (0)

τ̂ ≡ YT
obs −YC

obs

var(τ̂ ) = ST
2

NT

+ SC
2

NC

− STC
2

N

(IMPOSSIBLE!)	


Estimator  of  Variance    
(of  estimator)	


 
var(τ̂ ) = sT

2

NT

+ sC
2

NC

sT
2 = 1

NT −1 i=1

N

∑Wi Yi (1)−YT
obs( )2

sC
2 = 1

NC −1 i=1

N

∑(1−Wi ) Yi (0)−YC
obs( )2

Sample  variances  
of  observed  
outcomes  under  
treatment  and  
control	


(look  familiar???)	


Estimator  of  Variance	

•  This is the standard variance estimate 

used in the familiar t-test 

•  For finite samples, this is may be an 
overestimate of the true variance  

•  Resulting inferences may be too 
conservative (confidence intervals will 
be too wide, p-values too large) 

Sleep  vs  Caffeine	


 

var(τ̂ ) = sT
2

NT

+ sC
2

NC

= 3.3
2

12
+ 3.5

2

12
= 1.958
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Neyman’s  Inference  (Finite  Sample)	

1.  Define the estimand: 

2.   unbiased estimator of the estimand: 

3.   true sampling variance of the estimator 

4.   unbiased estimator of the true sampling 
variance of the estimator  

5.  Assume approximate normality to obtain p-
value and confidence interval 25 

τ ≡ Y (1)−Y (0)

τ̂ ≡ YT
obs −YC

obs

var(τ̂ ) = ST
2

NT

+ SC
2

NC

− STC
2

N

(IMPOSSIBLE!)    Overestimate:	

 
var(τ̂ ) = sT

2

NT

+ sC
2

NC
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Central  Limit  Theorem	

•  Neyman’s inference relies on the central 

limit theorem: sample sizes must be large 
enough for the distribution of the 
estimator to be approximately normal 

•  Depends on sample size AND distribution 
of the outcome (need larger N if highly 
skewed, outliers, or rare binary events) 

Confidence  Intervals	


•  z* (or t*) is the value leaving the desired 
percentage in between –z* and z* in the 
standard normal distribution 

•  (Confidence intervals due to Neyman!) 

 τ̂ ± z* var(τ̂ )

YT
obs −YC

obs ± z* sT
2

NT

+ sC
2

NC

Confidence  Intervals	

For finite sample inference: 

•  Intervals may be too wide 

•  Inference may be too conservative  

•  A 95% interval will contain the estimand 
at least 95% of the time 

Sleep  vs  Caffeine	


15.25 −12.25 ± 2.2 3.32

12
+ 3.5

2

12

> qt(.975, df=11) 
[1] 2.200985 

YT
obs −YC

obs ± z* sT
2

NT

+ sC
2

NC

95% CI: (-0.08, 6.08) 

Confidence  Intervals  -­‐‑  Fisher	

•  You can also get confidence intervals from 

inverting the Fisher randomization test 

•  Rather than assuming no treatment effect, 
assume a constant treatment effect, c, 
and do a randomization test 

•  The 95% confidence interval is all values of 
c that would not be rejected at the 5% 
significance level 



2/4/14	
  

6	
  

Hypothesis  Testing	

•  Fisher: sharp null hypothesis of no 

treatment effect for any unit 

•  Neyman: null hypothesis of no treatment 
effect on average  

H0 :Y (1) = Y (0)

H0 :Yi (1) = Yi (0) for all i

Hypothesis  Testing	

•  Fisher: compare any test statistic to 

empirical randomization distribution  

•  Neyman: compare t-statistic to normal 
or t distribution (relies on large n) 

 

t = τ̂
var(τ̂ )

= YT
obs −YC

obs

sT
2

NT

+ sC
2

NC

(Neyman’s approach is the familiar t-test) 

Sleep  vs  Caffeine	


t = YS
obs −YC

obs

sS
2

NS

+ sC
2

NC

= 15.25 −12.25
3.32

12
+ 3.5

2

12

= 2.14

> pt(2.14, df=11, lower.tail=FALSE) 
[1] 0.02780265 

Sleep  vs  Caffeine	


Exact p-value = 0.0252  

Super  Population	

•  Suppose we also want to consider 

random sampling from the population 
(in addition to random assignment) 

•  How do things change? 

Neyman  Inference  (Super  Population)	

1.  Define the estimand: 

2.   unbiased estimator of the estimand: 

3.   true sampling variance of the estimator 

4.   unbiased estimator of the true sampling 
variance of the estimator  

5.  Assume approximate normality to obtain p-
value and confidence interval 36 

 E Yi (1)−Yi (0)( )

τ̂ ≡ YT
obs −YC

obs

var(τ̂ ) = σ T
2

NT

+ σ C
2

NC

 
var(τ̂ ) = sT

2

NT

+ sC
2

NC
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Super  Population	

•  Neyman’s results (and therefore all the 

familiar t-based inference you are used 
to) are considering both random 
sampling from the population and 
random assignment 

Fisher  vs  Neyman	

Fisher Neyman 

Goal: testing Goal: estimation 

Considers only random 
assignment 

Considers random assignment 
and random sampling 

H0: no treatment effect H0: average treatment effect 
= 0 

Works for any test statistic Difference in means 

Exact distribution Approximate, relies on large n 

Works for any known 
assignment mechanism 

Only derived for common 
designs  

To  Do	
	

•  Read Ch 6 

•  HW 2 due Monday 2/10 


