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Propensity score weighting with
multilevel data
Fan Li,a*† Alan M. Zaslavskyb and Mary Beth Landrumb

Propensity score methods are being increasingly used as a less parametric alternative to traditional regression to
balance observed differences across groups in both descriptive and causal comparisons. Data collected in many
disciplines often have analytically relevant multilevel or clustered structure. The propensity score, however, was
developed and has been used primarily with unstructured data. We present and compare several propensity-
score-weighted estimators for clustered data, including marginal, cluster-weighted, and doubly robust estima-
tors. Using both analytical derivations and Monte Carlo simulations, we illustrate bias arising when the usual
assumptions of propensity score analysis do not hold for multilevel data. We show that exploiting the multilevel
structure, either parametrically or nonparametrically, in at least one stage of the propensity score analysis can
greatly reduce these biases. We applied these methods to a study of racial disparities in breast cancer screening
among beneficiaries of Medicare health plans. Copyright © 2013 John Wiley & Sons, Ltd.
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1. Introduction

Population-based observational studies often are the best methodology for investigating access to,
patterns of, and outcomes from medical care. Observational data are increasingly being used for causal
inferences, as in comparative effectiveness studies where the goal is to estimate the causal effect of alter-
native treatments on patient outcomes. In non-causal descriptive studies, a common goal is to conduct a
controlled and unconfounded comparison of two populations, such as comparing outcomes among popu-
lations of different races or of patients treated in two different years while making the comparison groups
similar with respect to the distributions of some covariates, such as baseline health status and diagnoses.

Whether the purpose of the study is descriptive or causal, comparisons between groups can be biased,
however, when the groups are unbalanced with respect to confounders. Standard analytic methods adjust
for observed differences between groups by stratifying or matching patients on a few observed covari-
ates or by regression adjustments. But if groups differ greatly in observed characteristics, estimates of
differences between groups from regression models rely on model extrapolations that can be sensitive to
model misspecification [1]. Rosenbaum and Rubin [2, 3] have proposed propensity score methods as a
less parametric alternative to regression adjustment to achieve balance in distributions of a large number
of covariates in different groups. Propensity score has been widely used in a variety of disciplines, such
as medical care, health policy studies, epidemiology, social sciences (e.g., [4, 5] and references therein).
These methods weight, stratify, or match subjects according to their propensity for group membership
(i.e., to receive treatment or to be in a minority racial group) to balance the distributions of observed
characteristics across groups.

Propensity score methods were developed and have been applied in settings with unstructured data.
However, data collected in many applied disciplines are typically clustered in ways that may be rele-
vant to the analysis, for example, by geographical area, treatment center (hospital or physician), or, in
the example we considered in this paper, health plan. The unknown mechanism that assigns subjects
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to clusters may be associated with measured subject characteristics that we are interested in (e.g., race,
age, and clinical characteristics), measured subject characteristics that are not of intrinsic interest and are
believed to be unrelated to outcomes except through their effects on assignment to clusters (e.g., loca-
tion), and unmeasured subject characteristics (e.g., unmeasured severity of disease and aggressiveness
in seeking treatment).

Such clustering or multilevel structure raises several issues that have been known in the literature. For
example, if clusters are randomly sampled, standard error calculations that ignore clustering are usually
inaccurate. A more interesting set of issues arises because measured and unmeasured factors may cre-
ate cluster-level variation in treatment quality and/or outcomes, which can be a source of confounding
if correlated with group assignment at the cluster level [6]. Multilevel regression models that include
fixed effects and/or random effects have been developed to give a more comprehensive description than
non-hierarchical models provided for such data (e.g., [7]). Despite the increasing popularity of propen-
sity score analyses and the vast literature regarding regional and provider variation in medical care and
health policy research [8, 9], the implications of multilevel data structures for propensity score analyses
have not been intensively studied, with a few exceptions [10, 11]. Arpino and Mealli [12] addressed this
issue explicitly through extensive Monte Carlo simulations that illustrated the benefit of respecting the
clustered structure in propensity score matching to protect against bias due to unmeasured cluster-level
confounders.

In this article, we focus on propensity score weighting strategies, widely used in medical care, health
policy, and economics [13–16]. Through analytical derivations and simulations, we show that ignoring
the multilevel structure in propensity score weighting analysis can bias estimates. In particular, we
investigate the performance of different modeling and weighting strategies under violation to uncon-
foundedness at the cluster level. In addition, we clarify the differences and connections between causal
and unconfounded descriptive comparisons, and rigorously define a class of estimands for the latter,
filling a gap in the literature. We focus on treatments assigned at the individual level. Discussions on
treatment assigned at the cluster level (e.g., hospital and health care provider) can be found in [17, 18],
among others.

Section 2 introduces our motivating example, a study of racial disparities in receipt of breast cancer
screening. Section 3 introduces the propensity score, defines the estimands, and presents propensity-
score-weighting analogues to some standard regression models for clustered data, including marginal,
cluster-weighted, and doubly robust estimators. Section 4 analytically illustrates the bias caused by
ignoring clustering in a simple scenario without observed covariates. Section 5 presents a comprehen-
sive simulation study to examine the performance of the estimators under model misspecification due
to observed and unobserved cluster-level covariates. We then apply the methods to the racial disparities
study in Section 6. Section 7 concludes with a discussion.

2. Motivating application

Our motivating application is based on the HEDIS® measures of care provided by Medicare health
plans. Each of these measures is an estimate of the rate at which a guideline-recommended clinical
service is provided to the appropriate population. We obtained individual-level data from the Centers for
Medicare and Medicaid Services on breast cancer screening of women in these plans [19]. We focused
on the difference between White and Black enrollees, excluding subjects of other races, for whom racial
identification is unreliable in this dataset. We also restricted the analysis to plans with at least 25 eligible
White enrollees and 25 eligible Black enrollees, leaving 64 plans. To avoid domination of the results by
a few very large plans, we drew a random subsample of size 3000 from each of the three large plans with
more than 3000 eligible subjects, leaving a total sample size of 56,480.

In a simple comparison, 39.3% of eligible Black women did not undergo breast cancer screening com-
pared with 33.5% of White women. Suppose, however, that we are interested in comparing these rates
for Black and White women with similar distributions of as many covariates as possible. The unadjusted
difference in receipt of recommended services ignores observed differences in individual (for example,
age and eligibility for Medicaid) and cluster (geographic region, tax status, and provider practice model)
characteristics between Black and White women. Standard propensity score analyses would account for
these observed differences, but there may also be unobserved differences among plans related to quality.
When such unmeasured confounders differ across groups but are omitted from the propensity score
model, the ensuing analysis will fail to control for such differences. For example, analyses that ignore
variations across the plans in proportions of minority enrollment might attribute these plan effects to
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race-based differences in treatment of similarly situated patients. Misspecification can also arise from
assuming an incorrect functional form. Zhao [20] examined sensitivity to misspecification of the propen-
sity score model for unclustered data. Clustering widens the range of model choices in each step of a
propensity-score analysis, as described in the next section.

Our goal was not to establish a causal relationship between race and health service utilization but to
simply assess the difference in the proportion undergoing breast cancer screening between White and
Black people, controlled for individual-level and plan-level effects. In fact, race is not a ‘treatment’ in
the conventional sense of causal inference, because it is not manipulable [21]. The propensity score is
a tool to balance the covariate distribution between groups for studies with either causal or non-causal
purposes, and the methods discussed here are applicable in both settings.

3. Propensity score weighted estimators for multilevel data

3.1. Basics

To simplify, we focus on two-level structures. Consider a sample or population of n units, from cluster
h .h D 1; :::;H/, each including nh units indexed by k D 1; :::; nh, and n D

P
h nh. Each unit belongs

to one of two groups for which covariate-balanced comparisons are of interest, possibly defined by a
treatment; in either case, we will use the terms ‘treatment’ and ‘control’ to refer to the groups. Let Zhk
be the binary variable indicating whether subject k in cluster h is assigned to the treatment (Z D 1) or
the control (Z D 0). Also let Uhk be a vector of unit-level covariates, Vh be a vector of cluster-level
covariates, and Xhk D .Uhk;Vh/. For each unit, an outcome Yhk is observed. The propensity score is
defined as e.X/D Pr.Z D 1 j X/, the conditional probability of being in (treatment or descriptive) group
Z D 1 given covariates X.

We differentiate between controlled descriptive comparisons and causal comparisons. In the descrip-
tive case, ‘assignment’ is to a nonmanipulable state defining membership in one of two groups (sub-
populations), and the objective is an unconfounded comparison of the observed outcomes between the
groups, for example, comparing outcomes among populations of different races or of patients treated in
two different years, but with balanced distributions of a selected set of covariates. In a causal comparison,
assignment is to a potentially manipulable intervention and the objective is estimation of a causal effect,
that is, comparison of the potential outcomes under treatment versus control in a common set of units, for
example, evaluating the treatment effect of a drug, therapy, or policy, which could be applied or withheld
for members of a given population.

For a descriptive comparison, we define a general estimand—the population average controlled
difference (ACD)—the difference in the means of Y in two groups with balanced covariate distributions:

�ACD D EXŒE.Y jX; Z D 1/�E.Y jX; Z D 0/�; (1)

where the outer expectation is with respect to the marginal distribution of X in the combined population.
One could also define similar descriptive estimands over some subpopulations.

For causal comparisons, we adopt the potential outcome framework for causal inference [22]. Under
the standard stable unit treatment value assumption (SUTVA) [23], which states that the outcomes
for each unit are unaffected by the treatment assignments of other units (whether within or across
clusters), each unit has two potential outcomes Yhk.´/ for ´ D 0; 1, corresponding to the two treat-
ments. Only one of the two is observed for each unit, and the observed outcome Yhk can be expressed
as Yhk D Yhk.1/Zhk C Yhk.0/.1�Zhk/.

A common causal estimand is the population average treatment effect (ATE):

�ATE D EŒY.1/� Y.0/�: (2)

Estimation of a causal effect from observed data is identified by assuming unconfoundedness (no
unmeasured confounders), claiming that the treatment is effectively randomized within cells defined
by the values of observed covariates, .Y.0/; Y.1// ? ZjX. Under unconfoundedness, Pr.Y.´/jX/ D
Pr.Y jX; Z D ´/, so the causal estimand �ATE equals the descriptive estimand �ACD:

�ATE D EŒY.1/� Y.0/�D EXŒE.Y jX; Z D 1/�E.Y jX; Z D 0/�D �ACD:

Alternative estimands, such as the population average treatment effect on the treated (ATT), EŒY.1/ �
Y.0/jZ D 1�, may also be of interest, as in [12]. What is common across these analyses is that means of
Y.1/ and Y.0/ are compared under the same hypothesized distribution of the covariates, as in (1).
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Both descriptive and causal comparisons require the overlap assumption, 0 < e.X/ < 1, which
states that the study population is restricted to values of covariates for which there can be both con-
trol and treated units; otherwise, the data cannot support an inference about comparisons of outcomes
under the two group assignments. Treatment assignment mechanisms satisfying both overlap and
nonconfoundedness are called strongly ignorable [2].

The utility of the propensity score resides in the fact that

E

�
ZY

e.X/
�
.1�Z/Y

1� e.X/

�
D �ACD D �ATE D �; (3)

if unconfoundedness is assumed for the causal comparison. This estimator weights both groups to a com-
mon distribution of covariates, namely the marginal distribution of X in the combined population. Thus,
the ACD or the ATE can be estimated by comparing weighted averages of the observed outcomes using
the inverse-probability (Horvitz–Thompson or HT) weights whk D 1=e.Xhk/ for units with Zhk D 1

and whk D 1=.1 � e.Xhk// for units with Zhk D 0. It can readily be verified that this weighting bal-
ances, in expectation, the weighted distribution of covariates in the two groups. The validity of this
method depends, however, on the correctness of the specification of the propensity score, which requires
special consideration in clustered data.

3.2. Models for the propensity score

We consider three alternative propensity score models for clustered data, corresponding to different
assumptions about the assignment mechanism. A marginal model uses cluster membership only as a link
to observed cluster-level covariates. The propensity score thus is a function of the observed covariates,
ehk D e.Xhk/, as in the logistic model

logit.ehk/D ı0CXhk˛: (4)

Such a model yields a valid balancing score as long as the unobserved covariates are conditionally
independent of treatment (group) assignment given the observed covariates.

A fixed-effects model [24, 25] is augmented with a cluster-level main effect ıh, as in the following
logistic model:

logit.ehk/D ıhCUhk˛: (5)

The ıh term absorbs the effects of both observed and unobserved cluster-level covariates Vh, protect-
ing against misspecification due to cluster-level confounders. With maximum likelihood estimation,
the observed and predicted numbers of treated cases within each cluster will agree, guaranteeing bal-
ance of the HT estimator on both observed and unobserved cluster-level covariates. The fixed-effects
model estimates a balancing score without requiring knowledge of Vh, but might lead to larger vari-
ance than the propensity score (the coarsest balancing score) estimated under a correct model with fully
observed Vh.

When there are many small clusters, the fixed-effects model may lead to unstable propensity score esti-
mates due to the large number of free parameters, an example of the Neyman–Scott incidental parameter
problem [26], and the possibility of separation (representation of only one group) in some clusters. In
the latter case, the overlap assumption would require exclusion of those clusters from the inferential
population. An alternative is to assume a random-effects model, augmenting (5) with a prior distribution
ıh � N.ı0; �2ı / on the cluster-specific main effects

logit.ehk/D ıhCXhk˛: (6)

More generally, the random effects may include random coefficients of some individual-level covari-
ates. To estimate propensity scores from (6), one can plug in a point estimate, such as the posterior
mode or the posterior mean of the inverse-probability weight. The distributional assumption on ıh in the
random-effects model greatly reduces the number of parameters compared with the fixed-effects model
and allows for ‘borrowing information’ across clusters [24]. However, the random-effects model does
not guarantee balance within each cluster, because of the shrinkage of random effects toward zero, and
therefore is somewhat reliant on inclusion of important cluster-level covariates Vh as regressors. Also,
as Mundlak [25] noted, it would produce a biased estimate if the cluster-specific random effects are cor-
related with any of the covariates. Thus the random-effects model represents a compromise between the
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marginal and fixed-effects models, with results converging to those from a corresponding fixed-effects
model as the sample size per cluster increases.

The goodness of fit of these models can be checked by conventional diagnostics of covariate balance
[3], checking the overall and within-cluster balance of the weighted distribution of covariates in the
two groups.

3.3. Estimators for the average controlled difference or the average treatment effect

In general, there are two types of propensity-score-weighted estimators for the ACD or the ATE,
applying the inverse weights to either the observed outcomes (nonparametric estimators) [16] or the fit-
ted outcomes from a parametric model (parametric estimators) as we will elaborate in Section 3.4. The
multilevel data structure offers possibilities for several variations on these inverse-probability-weighted
estimators, which we have considered here.

A nonparametric marginal estimator is the difference of the weighted overall means of the outcome
between the treatment and control groups, ignoring clustering,

O�ma D
X

ZhkD1

Yhkwhk

w1
�

X
ZhkD0

Yhkwhk

w0
; (7)

where whk is the inverse-probability weight of subject k in cluster h based on the estimated propensity
score (e.g., from one of the three models in Section 3.2) with whk D 1= Oehk for units with Zhk D 1 and
whk D 1=.1� Oehk/ for units with Zhk D 0, and w´ D

P
h;kWZhkD´

whk for ´D 0; 1.
A nonparametric clustered estimator first estimates the ACD or the ATE within each cluster:

O�h D

P´hkD1

k2h
Yhkwhk

wh1
�

P´hkD0

k2h
Yhkwhk

wh0
;

where wh´ D
P´hkD´

k2h
whk for ´D 0; 1, and then takes their mean weighted by the total weights in each

cluster, wh D
P
k2hwhk :

O�cl D

P
hwh O�hP
hwh

: (8)

The numerator and denominator of one of the terms of (8) will be zero for clusters where all units are
assigned to the same group, violating the overlap assumption. To implement the clustered estimator with
propensity scores estimated from a fixed-effects model, one needs to exclude the clusters with nh0 D 0
or nh1 D 0. This may change the estimand to the ACD/ATE on the subpopulation with overlap in
each cluster.

The standard errors of the nonparametric estimators can be obtained straightforwardly via the Delta
method. But our experience is that the Delta method tends to underestimate the uncertainty, and we
recommend to use the bootstrap where one obtains the bootstrap samples by resampling the clusters.

An attractive parametric weighted estimator is the doubly robust (DR) estimator (e.g., [13, 14, 27]):

O�dr D
X
h;k

O�hk=n; (9)

where

O�hk D

"
ZhkYhk

Oehk
�
.Zhk � Oehk/ OY

1
hk

Oehk

#
�

"
.1�Zhk/Yhk

1� Oehk
C
.Zhk � Oehk/ OY

0
hk

1� Oehk

#
;

with OY ´ being the fitted (potential) outcome from an outcome model in group ´. The name ‘doubly
robust’ refers to the large sample property that O�dr is a consistent estimator of � if either the propen-
sity score model or the potential outcome model is correctly specified, but not necessary both. In large
samples, if e is modeled correctly, O�dr has smaller variance than the nonparametric inverse weighted
estimators. If the potential outcome model is correctly specified, O�dr may have larger variance than the

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013



F. LI, A. M. ZASLAVSKY AND M. B. LANDRUM

direct regression estimator, but it provides protection when the model is misspecified. The standard error
of the DR estimator can be estimated using the delta method, which appears to work well in practice:

.sdr/2 D
X
h;k

�
O�hk � O�

dr
�2
=n2: (10)

Similarly, as for the nonparametric estimators, standard errors can also be estimated via the bootstrap.
Note that here the standard error calculation does not take into account the uncertainty in estimating the
propensity score. More discussions on this can be found in McCandless et al. [28].

3.4. Models for (potential) outcomes

We now consider several outcome models that can be used in the DR estimators. Note that for a causal
analysis, under confoundedness, these models translate to models for potential outcomes, which we do
not elaborate separately. An additive marginal outcome model has the form

Yhk D �0CZhk� CXhkˇC �hk; (11)

where �hk � N
�
0; ı2�

�
, and � is the constant treatment effect. Analogous to the marginal propensity

model (4), the marginal outcome model assumes that the cluster effect on the outcomes is only through
the covariates. The deeper connection is that the sufficient statistics that are balanced under the marginal
propensity score estimator are the same, which must be balanced to eliminate confounding differences
under model (11), namely the treatment and control group means of X.

A fixed-effects outcome model adjusts for cluster-level main effects and covariates:

Yhk D �hCZhk� CUhkˇC �hk; (12)

where �h is the cluster-specific main effect. Under this model, all information is obtained by com-
parisons within clusters, as the �h term absorbs all between-cluster information. The corresponding
random-effects outcome model is

Yhk D �hCZhk� CXhkˇC �hk; (13)

with �h � N
�
0; �2�

�
. A natural extension is to assume a random slope for ˇ and/or a random additive

treatment effect, replacing � by cluster-specific treatment effect �h with .�h; �h/0 � N.0;˙�� /.
One could also consider a random-effects model with adaptive centering for the outcome, by cen-

tering the treatment indicator .Zhk � NZh/ as well as the covariates in each cluster. Raudenbush [29]
comprehensively discussed the benefits of such a model in directly estimating causal effects.

Interactions between covariates and treatment can be added to models (11)–(13) to allow nonadditive
relationships. Analogous generalized linear models or generalized linear mixed models can be used for
binary or ordinal outcomes.

4. Large-sample properties with unobserved cluster-level confounding

In this section, we investigate the large-sample bias of these estimators under a data generating model
representing intra-cluster influence that causes violations of unconfoundedness, in a simple setting
with no observed covariates. Let nh´ denote the number of subjects with Z D ´ in cluster h; and
n´ D

P
h nh´; nh D nh1 C nh0; n D n1 C n0. We assume (1) a Bernoulli assignment mechanism with

varying rates by cluster:

Zhk � Bernoulli.ph/; (14)

and (2) a continuous outcome model with cluster-specific random intercepts �h and constant treatment
effect � ,

Yhk D �hCZhk� C �dhC �hk; (15)

where �h � N
�
�0; �

2
�

�
; �hk � N

�
0; �2�

�
, and � is the coefficient of the cluster-specific proportion treated

dh D nh1=nh. This model could result from common unmeasured cluster traits that affect both treatment
assignment and outcome. In a causal comparison, this could also result from violation of the SUTVA,
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and � measures the magnitude of the influence (contamination) within cluster. In either case, it is easy
to show the ACD or the ATE equals the constant � .

Under the marginal propensity score model, Oehk D n1=n is the same for every subject. Let O�ma
ma

denote the marginal estimator (7), where the subscript ‘ma’ indicates using the marginal model for the
propensity score and superscript ‘ma’ indicates using the marginal estimator for � . Then

O�ma
ma D � C

X
h

�h

�
nh1

n1
�
nh0

n0

�
C

0
@´hkD1X

h;k

�hk

n1
�

´hkD0X
h;k

�hk

n0

1
AC � V

V0
; (16)

where

V
V0
D

P
h nh

�
d2
h
� .n1=n/

2
�

.n1n0/=n2
;

that is, the weighted sample variance of the fdhg divided by its maximum possible value. The maximum
is attainable if each cluster is assigned to either all treatment or all control, corresponding to a cluster
randomized design where the cluster-level ACD or ATE is �C� . The second and third terms of (16) have
expectation zero under the model and approach zero as the number of clusters approaches infinity under
mild regularity conditions on nh1 and nh2. Therefore, under the generating models (14) and (15), the
large sample bias of the marginal estimator with propensity score estimated from the marginal model is
�V=V0. Heuristically, � measures the variation in the outcome generating mechanism between clusters,
and V=V0 measures the variation in the treatment assignment mechanism between clusters, both of
which are ignored in O�ma

ma . Firebaugh established a similar result without using the notion of propensity
score [6].

We next consider estimation when clustering information is taken into account in both steps. By using
the fixed-effects model (5), the estimated propensity score is Oehk D nh1=nh. Then the clustered esti-
mator (8) is O�cl

fe , where the subscript ‘fe’ refers to the fixed-effects model for the propensity score, and
superscript ‘cl’ refers to using the clustered estimator for � , given by

O�cl
fe D � C

1

H

X
h

´hkD1X
k2h

�hk

nh1
�
1

H

X
h

´hkD0X
k2h

�hk

nh0
; (17)

which converges to � as H and nh increase. A simple calculation shows that the clustered weighted
estimator combining the marginal propensity score model with the clustered estimator, O�cl

ma, is equiva-
lent to that in (17) and thus also consistent. Furthermore, the marginal estimator with propensity score
estimated from the fixed-effects model, O�ma

fe , is equivalent to (17) only under a balanced design (clusters
of equal size). Under an unbalanced design, the estimator remains consistent under the standard regular-
ity condition of

PH
hD1 n

2
h
=n2 being bounded as H goes to infinity, but its small-sample behavior can be

quite different.
In summary, in this simple case with violations of standard propensity score assumptions due to unob-

served cluster effects, ignoring the clustered structure in both the propensity score and potential outcome
models induces bias in estimating the ACD or the ATE; exploiting the structure in at least one of the
models gives consistent estimates.

5. Simulation studies

The asymptotics of the previous section assume cluster sample sizes nh going to infinity and thus do
not apply to studies with a large number of small clusters, corresponding to asymptotics in which nh
is constant while the number of clusters grows proportionally to the number of total observations. In
particular, in the fixed-effects model, the maximum likelihood estimates (MLEs) for ıh are inconsis-
tent (because of the fixed number of observations per cluster) and the MLE of ˛ is also inconsistent
because of the growing number of cluster-specific intercepts, an example of the Neyman–Scott problem.
However, as the primary role of propensity score in the HT estimator is to balance covariates between
groups, estimators with propensity scores obtained from a fixed-effects model may still give appropri-
ate results in the presence of large number of small clusters, despite the potential issue of consistency.
In the succeeding text, we conduct simulations to examine the performance of the proposed methods
under various combinations of cluster sample size and number of clusters. Moreover, the simulations are
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designed to investigate the impact of an unmeasured cluster-level confounder or controlled covariate to
the proposed methods.

5.1. Simulation design

The simulation design is similar to but more general than that in Arpino and Mealli [12]. We assume that
both treatment assignment and outcome generating mechanisms follow two-level random-effects models
with two individual-level covariates U1; U2 and a cluster-level covariate V . Specifically, the treatment
assignment follows

logit.ehk/D ıhCXhk˛; (18)

where Xhk D .U1;hk; U2;hk; Vh/, ˛ D .˛1; ˛2; ˛3/
0 are the coefficients for the fixed effects, and

ıh � N.0; 1/ are the cluster-specific random intercepts. We fix ˛1 D �1; ˛2 D �:5, and vary ˛3 D �1
or 1 to give low (around 0.2) or medium (around 0.5) overall rates of treatment assignment, respectively.
We generate the (potential) outcomes from random-effects models as (12), with an extra interaction term
between treatment and V :

Yhk D �hCZhk.�hC Vh	/CXhkˇC �hk; �hk � N.0; �2y /; (19)

where �h � N.0; 1/ are the cluster-specific random intercepts, ˇ D .ˇ1; ˇ2; ˇ3/0 are the coefficients of
the covariates, 	 is the coefficient of the interaction, and �h � N.0; 1/ are the cluster-specific random
slopes of treatment. We set 	 D 2 and ˇ D .1; 0:5; ˇ3/, while changing ˇ3 to control the magnitude of
the effect of V on the outcome.

The individual-level continuous covariate U1 is simulated from N.1; 1/ and binary U2 from
Bernoulli.0:4/. The cluster-level covariate V is generated in two ways that are plausible in real applica-
tions: (i) uncorrelated with U , with V � N.1; 2/; and (ii) correlated with the cluster-specific intercept
in the propensity score model, with Vh D 1 C 2ıh C u, where u is an error term. An extreme case
of (ii) is that V is a linear function of the cluster-average propensity score, when u � 0. Here we let
u� N.0; 1/. Case (ii) introduces an interaction between treatment and cluster-level random effects. This
is expected to cause differences between the fitting of fixed-effects and random-effects models when V
is omitted, because generally the former cannot readily accommodate the interaction, whereas the latter
with random slopes for Z can. Another common situation not examined here is that V is correlated with
U ; omitting V in the analysis in that case is expected to lead to smaller bias than case (i), as including
U as a covariate partially compensates for excluding V .

We compare the three propensity score models (4)–(6) in Section 3.2, all fitted with only the
individual-level covariatesU1; U2, omitting the cluster-level covariate V . We also estimate the propensity
score by the true model (18), referred to as the ‘benchmark model’. With the propensity score estimated
from each of these models, we calculate the ATE (or the ACD) by the marginal (7), clustered (8) and DR
(9) estimators. For the DR estimators, we fit the three potential outcome models (11), (12) (with cluster-
specific intercepts), and (13) (with random intercepts and random slopes for ´) in Section 3.4, each fitted
with only the individual-level covariates U1; U2, omitting the cluster-level covariate V . As a benchmark,
we also estimate the potential outcomes by the true model (19). In total, we compare four models for
propensity score and six ATE/ACD estimators (including four DR estimators), giving 24 combinations.

Under a two-level balanced design, we simulate from three combinations of number of clustersH and
cluster size nh: (i) H D 30; nh D 400, both of which are approximately half of the corresponding num-
bers in our real application; (ii) H D 200; nh D 20; and (iii) H D 400; nh D 10, representing moderate
and more extreme cases of large numbers of small clusters. We have also simulated unbalanced designs,
results of which are similar to those from the balanced designs and thus are not elaborated here.

Under each simulation scenario, 500 replicates from models (18) and (19) are generated. We fitted
the random-effects models by using the lmer command in the lme4 package in R2.13.2 [30]. For each
simulated dataset, we calculate the average absolute bias, the root mean square error (RMSE), and cov-
erage of the 95% confidence interval (CI) of each of the 24 estimators for � . The true value of � is
calculated by

P
h;kŒYhk.1/ � Yhk.0/�=n from the simulated units. This is the sample ATE rather than

the population ATE, which equals 	E.Vh/C E.�h/ D 4, but the difference between the two is usually
negligible given the sample sizes considered here.

We obtained the 95% CIs for the nonparametric estimators via the parametric bootstrap approach
O�˙1:96 O�bs, with O�bs being the bootstrap standard error, whereas we obtained the standard errors for the
DR estimators via the delta method as in formula (10).

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013
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5.2. Results

Table I presents the absolute bias, RMSE, and coverage of the 95% CI of the estimators in the simula-
tions under the three combinations of H;nh. In each case, ˛3 D 1 giving an average propensity score
of 0.5, and ˇ3 D 4 giving a large effect of V on the outcomes. In the second and third scenarios, there
are on average 20 and 40, respectively, clusters in which all units are assigned to the same treatment.
Such non-overlapping clusters are excluded when the cluster-weighted estimates are calculated, yielding
a slightly different estimand from that of the other methods.

Several consistent patterns emerge from the simulations. First, the estimators that ignore clustering in
both propensity score and outcome models (i.e., marginal propensity score with marginal nonparametric
or parametric outcome model) have much larger bias (over 100%) and RMSE than all the others. In
general, considering clustering in at least one stage greatly improves the estimates in bias and MSE,
consistent with the conclusions of Arpino and Mealli [12] in propensity score matching analysis.

Second, the choice of the outcome model appears to have a larger impact on the results than the choice
of the propensity-score model. In the presence of unmeasured confounders, ignoring the multilevel struc-
ture in the outcome model generally leads to much worse estimates than ignoring it in the propensity
score model. For example, in the nh D 400 simulation condition, bias with the nonparametric marginal
outcome model ranges from 0.19 to 0.26 for the three clustered propensity score models (differences
among propensity-score models became more pronounced at smaller cluster sizes). With the marginal
propensity score model, bias ranges from 0.28 for the fixed-effects outcome model to only 6 0.024 for
the benchmark and random-effects outcome models, with intermediate levels of bias for the nonparamet-
ric cluster-weighted estimator. With the best (benchmark or random effects) outcome models, the choice
of propensity-score model had little effect (with nh D 400), whereas with any propensity-score model,
the choice of outcome model was important. This result may not generalize to situations in which there
are larger differences between groups.

Third, among the DR estimators, those using the benchmark or random-effects outcome model per-
form the best, with virtually identical bias, RMSE, and coverage. Thus, inclusion of the random effect
protects against the misspecification due to omission of the cluster-level confounder in the benchmark
model. The DR estimators with the fixed-effects outcome model were more biased, whereas the ones
with the marginal outcome model perform the worst. For example, in the nh D 400 simulation condi-
tion, the absolute biases are 6 0.029 for the benchmark and random-effects outcome models, >0.10 for
the fixed-effects outcome model, and >0.23 for the marginal outcome model. The under-performance of
the fixed-effects outcome model is partly due to the extra uncertainty introduced by estimation of many
parameters, as is evident from the steady drop in performance when the number of cluster increases.
However, the comparison between the random and fixed-effects models here may be unfair, as the out-
comes are generated and fitted under a random-effects model with the same (normal) error distribution.
The fixed-effects model might be more robust against random-effects distributions that are far from the
normality. More broadly, all of the parametric outcome models in this simulation were specified with
knowledge of the correct individual-level predictors and specification. Hence, they do not illustrate one
of the important benefits of propensity-score analysis, which is the ability to explore specification of the
propensity-score model without the biasing potential of specification search in the outcome model [2].
Such a benefit is evident in the next point.

Fourth, given the same propensity score model, the nonparametric cluster-weighted estimator gener-
ally outperform the DR estimator with a fixed-effects outcome model. For example, in Table I, with
nh D 400 and the benchmark propensity score model, bias, RMSE, and coverage with the former
were 0.07, 0.10, and 99.4%, respectively, compared with 0.10, 0.13, and 95.2%, respectively, with the
latter. The advantage of the cluster-weighted estimator is even more pronounced when the cluster-level
covariate is correlated with the cluster-specific treatment assignment (Table II). Here the fixed-effects
outcome model is in fact misspecified. This highlights the main strength of the propensity score methods,
which is protection against misspecification of the outcome model. The propensity score methods may
increase the variance compared with a direct regression estimator when a close-to-truth outcome model
specification is known. But a good outcome model is often hard to obtain in practice, especially in
complex observational studies. In such situations, the nonparametric propensity score estimators provide
a more robust alternative to estimate the ATE or the ACD.

Finally, with smaller clusters (holding total sample size constant), performance decreases considerably
for all the estimators. The largest drop is observed in the nonparametric marginal estimator (e.g., bias is
60.21 when nh D 400;H D 30, but increases to >0.97 when nh D 10;H D 400 with the benchmark

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013
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propensity score) and the DR estimators with the marginal outcome model (e.g., bias is 60.23 when
nh D 400;H D 30, but increases to >1.06 when nh D 10;H D 400). Nonetheless, the DR estimators
with the benchmark or random-effects outcome model maintain their superiority over other estimators
as well as their coverage at nominal level regardless of the propensity score model. Considering that
H D 400; nh D 10 is a quite extreme example of ‘large number of small clusters’, these results support
the applicability of the DR estimators with a random-effects outcome model in such settings. The suc-
cess of this model may be partially due to its estimation using a penalized likelihood, which mitigates
inconsistency in estimation of ˛.

We also assessed the effect on the performance of the various estimators of doubling the coefficient ˇ3
of cluster-level covariate V in the true outcome model from 2 to 4. Compared with Table I, only the non-
parametric marginal estimators and the DR estimators with the marginal outcome model were affected,
giving nearly doubled biases and RMSEs, while all other estimators performed nearly as before.

The simulations with low average propensity score ( NZ � :2 with ˛3 D �1) displayed very similar
patterns as the preceding simulations, but as there were more non-overlapping clusters, performance of
the nonparametric cluster-weighted estimator and the DR estimators with fixed-effects outcome model
deteriorated rapidly with shrinking cluster size.

Simulation results with V correlated with the cluster-specific random intercept in propensity score
(setting (ii) in Section 5.1) appear in Table II. Whereas the patterns across the estimators remain similar
to those observed in the previous simulations, much larger biases and MSEs, and lower coverages are
observed in all the estimators. For example, in the nh D 400 condition, with the benchmark propensity
score model, the biases of the cluster-weighted estimator, the DR estimator with the benchmark outcome
model, and the DR estimator with the fixed-effects outcome model are 0.34, 0.074, and 0.57, respec-
tively, compared with 0.07, 0.029, and 0.10, respectively, of the same estimators when V is uncorrelated
with ıh.

6. Application

We applied our methods to the racial disparity study introduced in Section 2. The individual-level covari-
ates Uhk considered include two indicators of age category (70–80 years,>80 years with reference group
65–69 years; eligibility for Medicaid (1D yes); neighborhood status indicator (1D poor). The plan-level
covariates Vh include nine geographical region indicators, tax status (1D for-profit), the practice model
of providers (1D staff or group model; 0D network-independent practice association model), and affil-
iation (1D national; 2D Blue Cross/Blue Shield; 3D independent). The outcome Y is a binary variable
equal to 1 if the enrollee underwent breast cancer screening and 0 otherwise, and the ‘treatment’ ´ is
race (1D Black, 0DWhite).

As race is not manipulable, the objective of this study was to make a controlled descriptive com-
parison. The ACD is the difference between White and Black screening rates among patients with
characteristics X (implicitly smoothed by models), averaged over the distribution of X in the combined
Black and White populations. There may be interest in a variety of estimators that control for different
sets of covariates. For example, if X only contains individual-level covariates, we interpret the ACD as
the difference between groups controlled for differences in these individual characteristics such as age or
poverty. Including V in the analysis controls for differences in treatment that result from differences in
the types of plans in which the two groups enroll. Similarly, balancing on cluster membership accounts
for unobserved differences in the quality of health plans that enroll minorities and provides an estimate
of differences in treatments between minorities and White patients within individual health plans. In
the ensuing analyses, we control for all covariates to illustrate their effects and for consistency with the
original study [19], although by some definitions these would not all be controlled in a policy-oriented
disparities calculation [31].

We first estimated the propensity score by using the three models introduced in Section 3.2 with all the
aforementioned covariates included. All models suggest that living in a poor neighborhood, being eli-
gible for Medicaid, and enrollment in a for-profit insurance plan are significantly associated with Black
race. The distributions of the estimated propensity scores for Black patients and White patients from the
marginal model are quite different from those from the random-effects and fixed-effects models, which
are similar to each other. Inverse-probability weighting using a well-estimated propensity score should
balance the cluster membership between races. Figure 1 shows histograms of the proportion of Black
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Figure 1. Histogram of cluster-specific proportions of the weighted numbers of Black enrollees using propen-
sity scores estimated from different models. Values close to 0.5 indicate good balance in cluster membership

between races.

Table III. Adjusted difference in percentage with standard error (in parentheses) in the
proportion of obtaining breast cancer screening between Black people and White people.

Weighted Doubly robust

Marginal Clustered Marginal Fixed Random

Marginal �4.96 (0.79) �1.73 (0.83) �4.43 (0.85) �2.15 (0.41) �1.65 (0.43)
Fixed �2.49 (0.92) �1.78 (0.81) �1.93 (0.82) �2.21 (0.42) �1.96 (0.41)
Random �2.56 (0.91) �1.78 (0.82) �2.00 (0.44) �2.22 (0.39) �1.95 (0.39)

Different rows correspond to different propensity score models, and different columns correspond to
different outcome models.

enrollees in each cluster, unweighted and weighted using propensity scores estimated from each model.
These proportions vary substantially when unweighted or weighted using the propensity score from the
marginal model, but are tightly clustered around 50% when weighted using the fixed-effects or random-
effects models. Thus, only the latter models provide balance on unmeasured characteristics associated
with cluster assignment.

Using the estimated propensity score, we estimated racial disparity in breast cancer screening among
the elder women participating with Medicare health plans by the estimators in Section 3.3. As the out-
come is binary, for the DR estimators, we use the logistic regression models corresponding to the three
outcome models in Section 3.4 in combination with each of the three propensity score models. Table III
displays the point estimates with bootstrap standard errors.

As in the simulations, we observed few differences across estimators that account for clustering in at
least one stage of the analysis. The DR estimates have smaller standard errors because some variation
is explained by covariates in the outcome models. All estimators show the rate of receipt breast cancer
screening is significantly lower among Black patients than among White patients with similar character-
istics. Accounting for differences in individual and plan-level covariates, but not plan membership, we
estimate that the rate of screening for breast cancer is five percentage points lower in Black patients than
White patients. That is, among the elders who participate in Medicare health plans, Black patients on
average have a significantly lower rate of breast cancer screening than White patients, after adjusting for
age, geographical region, some socioeconomic status variables, and observed health plan characteristics.
Accounting for plan membership in either stage of the analysis decreases this difference by about half,
suggesting that approximately half of the magnitude of the racial difference in breast cancer screening
rates in this population is a result of Black women enrolling in plans with low screening rates because
of factors unobserved in this study, and half results from lower probability of Black women undergoing
screening within each plan.
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7. Concluding remarks

The propensity score is a powerful tool to achieve balance in distributions of covariates in different
groups, for both causal and descriptive comparisons. Since they were first proposed in 1983, propen-
sity score methods have gained increased popularity in observational studies in multiple disciplines. In
medical care and health policy research, data with hierarchical structure are the norm rather than the
exception. However, despite the wide appreciation of propensity score methods among both statisticians
and health policy researchers, only a limited literature deals with the methodological issues of propensity
score methods in the context of multilevel data. In this paper, we first clarified the differences and con-
nections between non-causal (descriptive) and causal studies, arguing that propensity score methods are
applicable to both. We then compared three models for estimating the propensity score and three types
of propensity-score-weighting estimators for the ATE or the ACD for multilevel data. We explored the
consequences of the violation to the key unconfoundedness assumption in propensity score weighting
analysis of multilevel data by using both analytical derivations and Monte Carlo simulations.

In summary, for multilevel data, ignoring the multilevel structure in both stages of the propensity-
score-weighting analysis leads to severe bias for estimating the ATE or the ACD, whereas exploiting
the multilevel structure, either parametrically or nonparametrically, in at least one stage can greatly
reduce the bias. In complex multilevel observational data, correctly specifying the outcome model may
sometimes be challenging. In such situations, propensity score methods provide a more robust alternative
to regression adjustment.

Individuals in the same cluster might influence each other’s treatment assignment or outcome, par-
ticularly in applications involving social networks, behavioral outcomes, or infectious disease [32, 33].
Such interference may entail violations of SUTVA, introducing cluster-level effects even when there are
no unmeasured cluster-level confounders. We have shown that accounting for clustering in propensity
score analyses can account for violations that occur at the cluster level. However, more than one level
of clustering may be relevant. For example, high-volume surgeons may have improved outcomes that
would not be accounted for in an analysis that balances on treating hospital but not surgeon. In addition,
in some situations, there may be direct interest in spill-over effects, such as in volume-outcome stud-
ies. Hong and Raudenbush [34] described the use of a two-stage propensity score model to estimate the
propensity for elementary schools to retain low performing kindergarten students and then the propensity
for students nested within schools to be retained. These authors relax SUTVA and allow the effectiveness
of retention to vary according to how many peers within a child’s school were also retained.

Propensity score weighting without common support can lead to bias. As noted by a reviewer, strat-
ification on the estimated propensity score can reveal regions in the covariate space lacking common
support, which should be removed from the causal or descriptive comparison. Stratification also offers
some protection against bias arising from the misspecification of the propensity model [35]. A proce-
dure that may combine the virtues of weighting and stratification is to first stratify on the propensity
score, then exclude the units (or clusters) without common support, then compute the weighted estima-
tors by stratum, and finally combine the stratum-specific estimates to produce the overall estimate. An
interesting topic would be the implication of multilevel structure on such hybrid procedures.

These issues are among a range of open questions that remain to be explored. Further systematic
research efforts are desired to shed light on the methodological issues and to provide guidelines for
practical applications.
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