
Stationary Gamma ProessesRobert L. WolpertApril 25, 2014(Draft 2.6)1 IntrodutionFor �xed �; � > 0 these notes present six di�erent stationary time series, eah with GammaXt � Ga(�; �) univariate marginal distributions and autoorrelation funtion �js�tj forXs; Xt. Eah will be de�ned on some time index set T , either T = Z or T = R.Five of the six onstrutions an be applied to other In�nitely Divisible (ID) distribu-tions as well, both ontinuous ones (normal, �-stable, et.) and disrete (Poisson, negativebinomial, et.). For spei�ally the Poisson and Gaussian distributions, all but one of them(the Markov hange-point onstrution) oinide| essentially, there is just one \AR(1)-like"Gaussian proess (namely, the AR(1) proess in disrete time, or the Ornstein-Uhlenbekproess in ontinuous time), and there is just one AR(1)-like Poisson proess. For other IDdistributions, however, and in partiular for the Gamma, eah of these onstrutions yieldsa proess with the same univariate marginal distributions and the same autoorrelation butwith di�erent joint distributions at three or more times.First, by \Ga(�; �)" we mean the Gamma distribution with mean �=� and variane �=�2,i.e., with shape parameter � and rate parameter �. The pdf and hf are given by:f(x j �; �) = ���(�) x��1e��x1fx>0g�(! j �; �) = (1� i!=�)��= exp�� ZR+ ei!u �e��u u�1 du� : (1)The sum �+ := P �j of independent random variables �j ind� Ga(�j; �) with the same rateparameter also has a Gamma distribution, �+ � Ga(�+; �), if f�jg � R+ are summablewith sum �+ := ��j < 1. Eqn (1) shows that the \L�evy measure" for this distribution is�(du) = �e��u u�11fu>0gdu.From the Poisson representation of ID distributionsX = ZR uN (du)1



for N (du) � Po��(du)� we an show that the extremal properties of ID random variablesdepend only on the L�evy measure �(du): for large u 2 R+,P[X > u℄ � P�N �(u;1)� 6= ;℄= 1� exp �� ��(u;1)�� ��(u;1)� � (�=�u)e��u; (2)from whih one might mount a study of the multivariate extreme properties of the sixproesses presented below.2 Six Stationary Gamma Proesses2.1 The Gamma AR(1) ProessFix �; � > 0 and 0 � � < 1. Let X0 � Ga(�; �) and for t 2 N de�ne Xt reursively byXt := �Xt�1 + �t (3)for iid f�tg with hf Eei!�t = (1 � i!=�)��(1 � i�!=�)� = � ��i!��i�!��� (easily seen to bepositive-de�nite, with L�evy measure ��(du) = � �e��u � e��u=��u�11fu>0gdu). A simple wayof generating f�tg with this distribution is presented in the Appendix. The proess fXtg hasGamma univariate marginal distribution Xt � Ga(�; �) for every t 2 R+ and, at onseutivetimes 0; 1, joint hf �(s; t) = E exp(isX0 + itX1)= E exp(i(s+ �t)X0 + it�1)= h(1� i(s+ �t)=�) (1� it=�)1� it�=� i��: (4)Sine this is asymmetri in s; t, the proess is not time-reversible; this is also evident fromthe observation thatP[Xt � �Xt�1℄ = P[�t � 0℄ = 1 > P[�t � Xt�1(1� �2)=�℄ = P[Xt�1 � �Xt℄:This proess has marginal distribution Xt � Ga(�; �) at all times t, and has autoorrelationCorr�Xs; Xt) = �js�tj (easily found from either (3) or (4)). It is learly Markov (from (3)),and an be shown to have in�nitely-divisible (ID) multivariate marginal distributions of allorders, sine the f�tg are ID.
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2.2 Thinned Gamma ProessIf X � Ga(�1; �) and Y � Ga(�2; �) are independent, then Z := X + Y � Ga(�+; �) andU := X=Z � Be(�1; �2) are also independent (where �+ := �1 + �2), beause under thehange of variables x = uz, y = (1� u)z with Jaobian J(u; z) = z,f(u; z) = � ��1�(�1)x�1�1e��x�� ��2�(�2)y�2�1e��y� J(u; z)= � ��+�(�1)�(�2)�u�1�1(1� u)�2�1z�+�2e��zz= � �(�+)�(�1)�(�2)u�1�1(1� u)�2�1� � ��+�(�+)z�+�1e��z� :Thus if Z � Ga(�1 + �2; �) and U � Be(�1; �2) are independent then X = UZ � Ga(�1; �)and Y = (1� U)Z � Ga(�2; �) are independent too. LetX0 � Ga(�; �)and, for t 2 N (or t 2 �N, resp.) setXt := �t + �twhere �t := Bt �Xt�1; Bt � Be(��; ���);�t � Ga(���; �)(or �t = Bt �Xt+1, resp.), where �� := (1��) and all the fBtg and f�tg are independent.Then, by indution, �t � Ga(��; �) and �t � Ga(���; �) are independent, with sum Xt �Ga(�; �). Thus fXtg is a Markov proess with Gamma univariate marginal distributionXt � Ga(�; �), now with symmetri joint hf�(s; t) = E exp(isX0 + itX1)= E exp fis(X0 � �1) + i(s+ t)�1 + it�1g= (1� is=�)����(1� i(s+ t)=�)���(1� it=�)���� (5)and autoorrelation Corr�Xs; Xt) = �js�tj. The proess of passing from Xt�1 to �t = Xt�1Btis alled thinning, so Xt is alled the thinned gamma proess. A similar onstrution isavailable for any ID marginal distribution. 3



2.3 Random Measure Gamma ProessLet G(dx dy) be a ountably additive random measure that assigns independent randomvariables G(Ai) � Ga(�jAij; �) to disjoint Borel sets Ai 2 B(R2) of �nite area jAij (this ispossible by the Kolmogorov onsisteny onditions, and is illustrated in the Appendix) and,for � := � log �, onsider the olletion of sets:Gt := �(x; y) : x 2 R; 0 � y < �e�2�jt�xj	shown in Figure (1) whose intersetions have area jGs \Gtj = e��js�tj. For t 2 T = R, set
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Figure 1: Random measure onstrution of proess Xt = G(Gt)Xt := G(Gt): (6)For any n times t1 < t2 < � � � < tn the sets fGtig partition R2 into n(n + 1)=2 sets of�nite area (and one with in�nite area, ([Gti)), so eah Xti an be written as the sum ofsome subset of n(n + 1)=2 independent Gamma random variables. In partiular, any n = 2variables Xs and Xt an be written asXs = G(GsnGt) + G(Gs \Gt); Xt = G(GtnGs) + G(Gs \Gt)just as in the thinning approah of Setion (2.2), so both 1-dimensional and 2-dimensionalmarginal distributions for the random measure proess oinide with those for the thinningproess. Again the joint hf is�(s; t) = E exp(isX0 + itX1)= (1� is=�)����(1� i(s+ t)=�)���(1� it=�)���� (7)and the autoorrelation is Corr�Xs; Xt) = exp � � �js � tj� or, for integer times, �js�tj for� := exp(��). The distribution for onseutive triplets di�ers from those of the ThinnedGamma Proess, however, an illustration that the thinning proess is Markov but the randommeasure is not. The Random Measure proess does feature in�nitely-divisible (ID) marginaldistributions of all orders, while the thinned proess does not.4



2.4 The Markov hange-point Gamma ProessLet f�n : n 2 Zg iid� Ga(�; �) be iid Gamma random variables and let Nt be a standardPoisson proess indexed by t 2 R (so N0 = 0 and (Nt � Ns) � Po(t � s) for all �1 < s <t <1, with independent inrements), and setXt := �n; n = N�t:Then eah Xt � Ga(�; �) and, for s; t 2 R, Xs and Xt are either idential (with probability�js�tj) or independent| reminisent of a Metropolis MCMC hain. The hf is�(s; t) = E exp(isX0 + itX1)= ��1� i(s+ t)=���� + ��(1� is=�)��(1� it=�)�� (8)and one again the marginal distribution is Xt � Ga(�; �) and the autoorrelation funtionis Corr�Xs; Xt) = �js�tj.2.5 The Squared O-U Gamma Di�usionLet fZig iid� OU(�=2; 1) be independent Ornstein-Uhlenbek veloity proesses, mean-zeroGaussian proesses with ovariane Cov�Zi(s); Zj(t)� = exp �� �2 js� tj�Æij, and setXt := 12� nXi=1 Zi(t)2for n 2 N and � 2 R+. Note Zi(t) � No(0; 1), so EZi(t)2 = 1 and EZi(t)4 = 3; it follows thatEZi(s)2Zi(t)2 = 1+2 exp(��js� tj). Then Xt � Ga(�; �) for � = n=2, with EXs = �=� andEXsXt = 14�2 �n�1 + 2 exp(��js� tj)�+ n(n� 1)	= �2 + � exp �� �js� tj��2so the autoovariane is Cov�Xs; Xt) = ��2 e��js�tj and the autoorrelation at integer timesis Corr�Xs; Xt) = �js�tj for � := exp(��). The hf at onseutive integer times is�(s; t) = E exp(isX0 + itX1)= �1� i(s+ t)=� � st(1� �)=�2���; (9)distint from (4), (5)=(7), and (8), so this proess is new. Itô's formula is used in (Wolpert,2011) to show that Xt has stohasti di�erential equation (SDE) representationXt = X0 � Z t0 2��Xs � �=�� ds+p2�=� Z t0 pXs dWs (10)5



and hene has generator A�(x) = (�=��)E[�(Xt+�) j Xt = x℄���=0 given by
A�(x) = �2�(x� �=�)�0(x) + (�=�)x�00(x); (11)whih we will use to distinguish this proess from that of Setion (2.6). While the onstru-tion above required half-integer values for �, (9) is positive-de�nite and the SDE (10) has aunique strong solution for all � > 0, so a time-reversible stationary Markov di�usion proessexists with this distribution.2.6 Continuously Thinned Gamma ProessPik a large integer n and set � := 1=n, q := exp(���), and p := 1 � q = �� + o(�). DrawX0 � Ga(�; �) and, for integers i; j 2 N, draw independently�i � Ga(�p; �) bj � Be(�p; �q):Set: X0 = X0X� = X0(1� b1) + �1X2� = X� (1� b2) + �2= X0(1� b1)(1� b2) + �1(1� b2) + �2X3� = X0(1� b1)(1� b2)(1� b3)+ �1(1� b2)(1� b3)+ �2(1� b3)+ �3and, in general, Xk� = X0 kYj=1(1� bj) + kXi=1 (�i Yi<j�k(1� bj)) : (12a)In the limit as n!1 and k�! t the produts onverge to the produt integral of the betaproess introdued by Hjort (1980, x3) (and desribed luidly by Thibaux and Jordan, 2007,x2) and the sum to an ordinary gamma stohasti integral,Xt = X0 Ys2(0;t℄[1� dB(s)℄ + Z t0 8<: Ys2(r;t℄[1� dB(s)℄9=; �(dr); (12b)where �(dr) � Ga��� dr; �� is a Gamma random measure and B(s) � BP��; � ds� is a Betaproess, i.e., an SII L�evy proess with L�evy measure�B(du) = ��u�1(1� u)��1 1f0<u<1g du6



with onstant \onentration funtion" �(s) � � and translation-invariant \base measure"�(ds) = �ds. The produt integral an be written as a ratioYs2(r;t℄[1� dB(s)℄ = 1� F (t)1� F (r)where F (t) =Qs2(t;1)[1� dB(s)℄ satis�esdF (t)1� F (t) = dB(t); Bt = Z(0;t℄ dF (s)1� F (s) : (13)2.6.1 GeneratorThe Gamma proess of Eqn (12b) is stationary and Markov, with generator
A�(x) = Z 10 ��(x + u)� �(x)���u�1e��u du+ Z x0 ��(x� u)� �(x)���u�1(1� u=x)��1 du (14)Beause this di�ers from (11) (and in partiular beause it is a non-loal operator, showingXt has jumps), this proess is new. One again the one-dimensional marginal distributionsare Xt � Ga(�; �) and the autoorrelation is Corr(Xs; Xt) = exp �� �js� tj�.a3 DisussionWe have now onstruted six distint proesses that share the same univariate marginaldistribution and autoorrelation funtion, but whih all di�er in their n-variate marginaldistributions for n � 3. Some are Markov, some not; some are time-reversible, some not;some have ID marginal distributions of all orders, some don't. Similar methods an be usedto onstrut AR(1)-like proesses with any ID marginal distribution, suh as those listed onp. 9; only in the two ases of Gaussian and Poisson do all these onstrutions oinide. Manyof these are useful for modeling time-dependent phenomena whose dependene falls o� overtime, but for whih traditional Gaussian methods are unsuitable beause of heavy tails, orinteger values, or positivity, or for other reasons. I know of very little work (yet!) exploringinferene for proesses like these; a beginning appears in (Wang, 2013, x3). I have writtenode in R to generate samples from eah of these six proesses; available on request.
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AppendixProposition 1 (Walker (2000)). The innovations �t in Eqn (3) an be onstruted sues-sively as follows:�t � Ga(�; 1); Nt j �t � Po�1��� �t�; �t j Nt � Ga�Nt; �� �:Proof. For ! 2 R,Eei�t! jNt = (1� i!�=�)�NtEei�t! j �t = 1Xn=0(1� i!�=�)�n�1��� �t�n exp �� 1��� �t�=n!= exp �i(1� �)!� � i�! �t�Eei�t! = h1� i(1� �)!� � i�! i�� = h � � i!� � i�!i��:
Poisson and Gamma SII ProessesThe hf for a Poisson random variable X � Po(�) is�X(�) = E[ei�X ℄ = 1Xk=0 ei�k��kk! e��� = e(ei��1)�so for any u 2 R the re-saled random variable Y := uX has hf�uX(�) = E[ei�uX ℄ = �X(u�)= e(ei�u�1)�and a linear ombination Y :=P ujXj of independent Xj � Po(�j) has hf�Y (�) =Yj ne(ei�uj�1)�jo= exp(Xj (ei�uj � 1)�j) (15a)= exp�ZR (ei�u � 1)�(du)� (15b)for the disrete measure �(du) =X �jÆuj (du)8



that assigns mass �j to eah point uj, provided the sum in (15a) onverges. Of ourse thesum onverges if it has only �nitely-many terms, or even if there are in�nitely-many withP �j < 1 (beause jei�u � 1j � 2), but that ondition isn't atually neessary. Sine alsojei�u � 1j � j�uj, the random variable Y will be well-de�ned and �nite providedXj �1 ^ jujj��j <1 (16a)or, in integral form, ZR �1 ^ juj��(du) <1: (16b)A random variable with hf of form (15a) for a sequene satisfying (16a) is alled a \om-pound Poisson" distribution; one with the more general hf of form (15b) for a measuresatisfying (16b) is alled In�nitely Divisible, or ID.ID DistributionsFor any �-�nite measure satisfying (16b) it's easy to make a stohasti proess with station-ary independent inrements of the more general form of (15b), beginning a Poisson randommeasure N (du ds) on R� R+ with intensity measure EN (du ds) = �(du) ds:Xt := ZZR�(0;t℄ uN (du ds): (17)This is a right-ontinuous independent-inrement nondereasing proess that begins at X0 =0 and has jumps �t = [Xt�Xt�℄ � [Xt� lims%tXs℄ of magnitudes �t 2 E at rate �(E) forany Borel E � R. The Poisson proess itself is the speial ase where �(E) = �1f12Eg, withjumps of magnitude �t = 1 at rate � 2 R+.Khinhine and L�evy (1936) showed that a random variable Y has a hf of the form (15b)if and only1 if, for every n 2 N, one an write Y = �1 + � � � �n as the sum of n iid randomvariables �j. This property is alled \In�nite Divisibility" (abbreviated ID), and the proesseswe have onstruted whose inrements have this property are alled \SII" proesses for theirstationary independent inrements. Examples of ID distributions (or SII proesses) and theirL�evy measures inlude:Poisson Po(�) �(du) = �Æ1(du)Negative Binomial NB(�; p) �(du) =Pk2N � qkk Æk(du); q := (1� p)Gamma Ga(�; �) �(du) = �u�1e��u1fu>0g du�-Stable St0(�; �; ; Æ) �(du) = �� �(�) sin ��2 juj���1(1 + � sgn u) duSymmetri �-Stable S�S(�; ) �(du) = �� �(�) sin ��2 juj���1 duCauhy Ca(Æ; ) �(du) = � juj�2 du:1For nonnegative random variables this is true as stated, but a slightly more general form is neessaryfor real-valued ID random variables, with a ondition on �(du) somewhat weaker than (16b) (see (18))|if you get interested, ask me about \ompensation". This is needed for the Ca(Æ; ) example and, for � � 1,the St0(�; �; ; Æ) and S�S(�; ) examples below. 9



The de�ning ondition for a random variable Y to be \In�nitely Divisible" (ID) is thatfor eah n 2 N there must exist iid random variables f�j : 1 � j � ng suh that Y andPnj=1 �j have the same distribution. This is learly equivalent to the ondition that everypower ��(!) of the harateristi funtion �(�) := E exp(i�Y ) must also be a harateristifuntion (i.e., must be positive-de�nite) for eah inverse integer � = 1=n, beause we anjust take f�jg to be iid with hf �1=n(!) and verify that their sum has hf �(!). Less obviousbut also true is that Y is ID if and only if ��(!) is positive-de�nite for all real � > 0, andeven less obvious is the Khinhine and L�evy theorem that � must take the spei� form�(�) = exp�i�Æ � �2�2=2 + ZR �ei�u � 1� �(du)� (18a)for some Æ 2 R, �2 � 0, and Borel measure � satisfying �(f0g) = 0 and (16b) or, a littlemore generally, the form�(�) = exp�i�Æ � �2�2=2 + ZR �ei�u � 1� i�h(u)� �(du)� (18b)for any bounded funtion h that satis�es h(u) = u + O(u2) near u � 0 (like artan u oru1fjuj<1g or u=(1 + u2)) and a Borel measure � satisfying the weaker restritionZR �1 ^ u2��(du) <1: (18)Some properties of ID distributions beyond our sope, but overed in (Steutel and van Harn,2004) (see also (Bose et al., 2002)), inlude:Theorem 1 (S&vH, Thm 2.13). Let �(�) be the hf of an In�nitely Divisible distribution.Then (8� 2 R) f�(�) 6= 0g. Also, if �(�) is analyti in some open domain 
 � C, then(8� 2 
) f�(�) 6= 0g. Thus, ID hfs do not vanish on R or anywhere in C that �(�) isanalyti.Theorem 2 (S&vH, Thm 9.8). Let X be an in�nitely divisible random variable that is notnormal or degenerate. Then the two-sided tail of X satis�eslimx!1 � logP[jXj > x℄x log x = for a number 0 �  <1 given by �1 = max[�(R+); �(R�)℄. An ID random variable that isnot degenerate has a normal distribution if and only if the same limit is  =1.Theorem 3 (S&vH, Prop 2.3). No non-degenerate bounded random variable is IDThis one's easy enough to prove. If kXk1 = B <1 and X has the same distribution asPnj=1 �j for iid f�jg then k�jk1 = B=n and �2 := V(X) = nV(�j) � nE�2j � B2=n, so �2 = 0and X must be degenerate. 10



Gamma Variables & ProessesThe Gamma distribution X � Ga(�; �) with mean �=� and variane �=�2 has hf�X(�) = E[ei�X ℄= Z 10 ei�x� ���(�)x��1e��x� dx= �1� i�=����= exp f�� log(1� i�=�)g= exp�� Z 10 �ei�u � 1��u�1e��u du� ;exatly of the form of (15b) with L�evy measure�(du) = �u�1e��u1fu>0g du:This measure, while in�nite, does satisfy ondition (16b):ZR �1 ^ juj��(du) = Z 10 �juj��u�1e��u du+ Z 11 �1��u�1e��u du� Z 10 �e��u du = �=� <1:Thus gamma-distributed random variables are ID and the SII gamma proessXt = ZZR�(0;t℄ uN (du ds)has in�nitely-many non-negative \jumps" �t = Xt � Xt� in any time interval a < t � b.Their sum Pf�t : a < t � bg = Xb �Xa is �nite, however, with probability distributionXb �Xa � Ga��(b� a); ��:The gamma random measure G(dx dy) � Ga(� dx dy; �) of Setion (2.3) has a similar on-strution, G(A) = ZZZR�A uN (du dx dy)as the sum of the heights uj of a Poisson loud of points (uj; xj; yj) for whih (xj; yj) 2 A.Wolpert and Ikstadt (1998) show how to simulate suh random measures very eÆiently,drawing the jumps fujg in monotone dereasing order.
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