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1 Introduction

For fixed «, 5 > 0 these notes present six different stationary time series, each with Gamma
X, ~ Ga(a, ) univariate marginal distributions and autocorrelation function pl*~* for
X,, X;. Each will be defined on some time index set 7, either 7 =Z or T = R.

Five of the six constructions can be applied to other Infinitely Divisible (ID) distribu-
tions as well, both continuous ones (normal, a-stable, etc.) and discrete (Poisson, negative
binomial, etc.). For specifically the Poisson and Gaussian distributions, all but one of them
(the Markov change-point construction) coincide— essentially, there is just one “AR(1)-like”
Gaussian process (namely, the AR(1) process in discrete time, or the Ornstein-Uhlenbeck
process in continuous time), and there is just one AR(1)-like Poisson process. For other ID
distributions, however, and in particular for the Gamma, each of these constructions yields
a process with the same univariate marginal distributions and the same autocorrelation but
with different joint distributions at three or more times.

First, by “Ga(a, )7 we mean the Gamma distribution with mean o/ and variance /32,
i.e., with shape parameter « and rate parameter 5. The pdf and chf are given by:

/BOL
f(ZE | aaﬂ) - F(Oé)

x(wla,f) =1 —iw/f)"

= exp {—/ e e Py du} . (1)
Ry

The sum &, = > &, of independent random variables &; S Ga(wj, f) with the same rate
parameter also has a Gamma distribution, £ ~ Ga(ay, ), if {e;} C R4 are summable
with sum o = Yo, < co. Eqn (1) shows that the “Lévy measure” for this distribution is
v(du) = ae™P u g0y du.

From the Poisson representation of ID distributions

xa—le—ﬂx1{$>0}

X = /R N (du)
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for N'(du) ~ Po(v(du)) we can show that the extremal properties of ID random variables
depend only on the Lévy measure v(du): for large u € R,

PLX > u] ~ PIAT((1, ) 0
=1—exp (—v((u,00))
~ V((u, oo)) ~ (o) pu)e ", (2)

from which one might mount a study of the multivariate extreme properties of the six
processes presented below.

2 Six Stationary Gamma Processes

2.1 The Gamma AR(1) Process
Fix a, > 0 and 0 < p < 1. Let Xy ~ Ga(«, 5) and for ¢ € N define X; recursively by

Xyi=pXii + ¢ (3)

for iid {¢;} with chf Ee™S = (1 —iw/B) (1 — ipw/B)* = [[5] (easily seen to be
positive-definite, with Lévy measure v¢(du) = o [e 7" — e 74/P] w112 01du). A simple way
of generating {(;} with this distribution is presented in the Appendix. The process {X;} has
Gamma univariate marginal distribution X; ~ Ga(«, 8) for every t € R, and, at consecutive

times 0, 1, joint chf

X(s,t) = Eexp(isXo + it X))
= Eexp(i(s + pt) Xy + it(1)
(1 —i(s+pt)/B) (1 —it/B)}

B T itp/B | @

Since this is asymmetric in s, ¢, the process is not time-reversible; this is also evident from
the observation that

PIX, > pX; 1] = P[¢, > 0] =1 > P[¢, < Xi1(1 = p*)/p] = P[Xyo1 > pXy].

This process has marginal distribution X; ~ Ga(c, 3) at all times ¢, and has autocorrelation
Corr(X,, X;) = pls=! (easily found from either (3) or (4)). It is clearly Markov (from (3)),
and can be shown to have infinitely-divisible (ID) multivariate marginal distributions of all
orders, since the {(;} are ID.



2.2 Thinned Gamma Process

If X ~ Ga(ay, ) and Y ~ Ga(ag, ) are independent, then Z := X +Y ~ Ga(ay, ) and
U := X/Z ~ Be(ay, ) are also independent (where «; := «; + «a3), because under the
change of variables © = uz, y = (1 — u)z with Jacobian J(u, z) = z,

flu,z) = {F’E:)xalleﬂm} {—Ffz)y”leﬁy} J(u, 2)
_ ﬂa+ } ual—l —u az—lza+—2e—[3z2
) K

Thus if Z ~ Ga(ay + ay, f) and U ~ Be(ay, ay) are independent then X = UZ ~ Ga(ay, )
and Y = (1 — U)Z ~ Ga(as, 8) are independent too. Let

Xo ~ Ga(a, B)
and, for t € N (or t € =N, resp.) set

X =6+G
where

gt = Bt . th].a Bt ~ Be(Oép, Oéﬁ),
G ~ Ga(aﬁa ﬁ)

(or & = By - X441, resp.), where p:= (1—p) and all the {B,;} and {(;} are independent.

Then, by induction, & ~ Ga(ap, 5) and (; ~ Ga(ap, ) are independent, with sum X; ~
Ga(a, B). Thus {X,} is a Markov process with Gamma univariate marginal distribution
X; ~ Ga(a, ), now with symmetric joint chf

X(s,t) = Eexp(isXo + it X))
= Eexp {is(Xo — &) +i(s + )& +1t¢i }
= (1 —1s/B)"* (1 —i(s +1)/B) (1 —it/B) ™" (5)
and autocorrelation Corr (Xs, Xy) = pl*~tl. The process of passing from X;_; to & = X,_1 B,

is called thinning, so X, is called the thinned gamma process. A similar construction is
available for any ID marginal distribution.



2.3 Random Measure Gamma Process

Let G(dxdy) be a countably additive random measure that assigns independent random
variables G(A;) ~ Ga(a|A;|, B) to disjoint Borel sets A; € B(R?) of finite area |A;| (this is
possible by the Kolmogorov consistency conditions, and is illustrated in the Appendix) and,
for A\ := —log p, consider the collection of sets:

Gri={(z,y): zeR, 0<y< Ae‘”"t_“}

shown in Figure (1) whose intersections have area |G, NG| = e N*7!l. For t € T =R, set
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Figure 1: Random measure construction of process X; = G(Gy)

X, :=G(Gy). (6)

For any n times t; < ty < --- < t, the sets {G;,} partition R? into n(n + 1)/2 sets of
finite area (and one with infinite area, (UGY,)¢), so each X, can be written as the sum of
some subset of n(n + 1)/2 independent Gamma random variables. In particular, any n = 2
variables X, and X; can be written as

Xs =G(G,\Gy) + G(GsNGY), X = G(G\Gs) + G(Gs N GY)

just as in the thinning approach of Section (2.2), so both 1-dimensional and 2-dimensional
marginal distributions for the random measure process coincide with those for the thinning
process. Again the joint chf is

X(s,t) = Eexp(isXo + it X))
= (L—is/B) (L —i(s+1)/B) ™ (L—it/B)7 (7)
and the autocorrelation is Corr(Xs,Xt) = exp ( — As = t|) or, for integer times, pl* ! for
p = exp(—A). The distribution for consecutive triplets differs from those of the Thinned
Gamma Process, however, an illustration that the thinning process is Markov but the random

measure is not. The Random Measure process does feature infinitely-divisible (ID) marginal
distributions of all orders, while the thinned process does not.
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2.4 The Markov change-point Gamma Process

Let {¢, : n € Z} n Ga(a, ) be iild Gamma random variables and let N; be a standard
Poisson process indexed by t € R (so Ny = 0 and (N, — Ny) ~ Po(t — s) for all —oco < s <
t < 0o, with independent increments), and set

Xy = Gy, n = Ny.

Then each X; ~ Ga(a, ) and, for s,t € R, X and X, are either identical (with probability
p*~!) or independent— reminiscent of a Metropolis MCMC chain. The chf is

X(s,t) = Eexp(isXo + it X)
=p(L—i(s+1)/B) “+p(l —is/B)"*(L—it/B)™® (8)

and once again the marginal distribution is X; ~ Ga(«, ) and the autocorrelation function
is Corr(Xs,Xt) = pls—tl,

2.5 The Squared O-U Gamma Diffusion

Let {Z;} &y OU(A/2,1) be independent Ornstein-Uhlenbeck velocity processes, mean-zero

Gaussian processes with covariance Cov(Z;(s), Z;(t)) = exp ( — 3]s — t])d;;, and set

1 n
X, = o Z_} Zi(t)?

for n € Nand 8 € R;. Note Z;(t) ~ No(0,1), so EZ;(t)> = 1 and EZ;(t)* = 3; it follows that
EZi(5)2Z;(t)> = 1+ 2exp(—A|s —t]). Then X; ~ Ga(a, 3) for « = n/2, with EX; = /3 and

EX,X, = %62 {n(1+2exp(=Als —t[)) + n(n —1)}
B o + aexp (— As — t|)

32
so the autocovariance is Cov (X, X;) = 5 e~5=! and the autocorrelation at integer times
is Corr (X, X;) = pl* 'l for p := exp(—\). The chf at consecutive integer times is

X(s,t) = Eexp(isXy + it X))
= (1—i(s+1)/8—st(1—p)/B%) °, (9)

distinct from (4), (5)=(7), and (8), so this process is new. It6’s formula is used in (Wolpert,
2011) to show that X; has stochastic differential equation (SDE) representation

Xt:Xo—/t2)\(Xs—a/ﬁ) ds+\/2)\/ﬁ/t\/ZdWs (10)



and hence has generator A¢(z) = (0/0¢)E[p(Xite) | Xi = ] ‘e:o given by

Ap(x) = =2AM(z — o/ )¢ (x) + (A/B)zd" (), (11)

which we will use to distinguish this process from that of Section (2.6). While the construc-
tion above required half-integer values for «, (9) is positive-definite and the SDE (10) has a
unique strong solution for all a > 0, so a time-reversible stationary Markov diffusion process
exists with this distribution.

2.6 Continuously Thinned Gamma Process

Pick a large integer n and set € := 1/n, ¢ := exp(—Xe), and p := 1 — ¢ = Xe + o(€). Draw
Xy ~ Ga(a, ) and, for integers i, j € N, draw independently

Ci ~ Ga(apa ﬂ) b] ~ Be(apa CY(])

Set:
Xo = Xp
Xe=Xo(I-by) +G
Xoe = Xc (1 —bo) + G2
= Xo(1 = 01)(1 = by) + G (1 = by) + (2
X3e = Xo(1 = b1)(1 = b2)(1 —b3) + (1 (1 —bo)(1 —bs) + (1l —b3) + (3

and, in general,

k

XkE:XOH(l—bj)—i-Z{Q 11 (1—b,-)}. (12a)

j=1 i<j<k

In the limit as n — oo and ke — ¢ the products converge to the product integral of the beta
process introduced by Hjort (1980, §3) (and described lucidly by Thibaux and Jordan, 2007,
§2) and the sum to an ordinary gamma stochastic integral,

X=X, [] 1 —dB(s)] +/ [] (1 =aB(s)] p ¢ar), (12b)

s€(0,1] O | sery

where ((dr) ~ Ga(aAdr, 8) is a Gamma random measure and B(s) ~ BP(, Ads) is a Beta
process, i.e., an SII Lévy process with Lévy measure

vp(du) = dau™" (1 = u)*™" Ligcycry du



with constant “concentration function” «a(s) = « and translation-invariant “base measure”
A(ds) = Ads. The product integral can be written as a ratio

[T - ) =1 =55
se(rt]
where F'(t) = [ [c(s,00)[1 — dB(s)] satisfies
dF(t) B dF(s)
i = AB). B /(O’t] T (13)

2.6.1 Generator

The Gamma process of Eqn (12b) is stationary and Markov, with generator
Ap(x) :/ [6(x +u) — ¢(2)] adu™'e " du
0
+/ [p(z —u) — ¢(z)] cdu (1 — u/z)* " du (14)
0

Because this differs from (11) (and in particular because it is a non-local operator, showing
X, has jumps), this process is new. Once again the one-dimensional marginal distributions
are X, ~ Ga(a, f) and the autocorrelation is Corr(X;, X;) = exp ( — A|s — t]).a

3 Discussion

We have now constructed six distinct processes that share the same univariate marginal
distribution and autocorrelation function, but which all differ in their n-variate marginal
distributions for n > 3. Some are Markov, some not; some are time-reversible, some not;
some have ID marginal distributions of all orders, some don’t. Similar methods can be used
to construct AR(1)-like processes with any ID marginal distribution, such as those listed on
p.9; only in the two cases of Gaussian and Poisson do all these constructions coincide. Many
of these are useful for modeling time-dependent phenomena whose dependence falls off over
time, but for which traditional Gaussian methods are unsuitable because of heavy tails, or
integer values, or positivity, or for other reasons. I know of very little work (yet!) exploring
inference for processes like these; a beginning appears in (Wang, 2013, §3). T have written
code in R to generate samples from each of these six processes; available on request.



Appendix

Proposition 1 (Walker (2000)). The innovations (; in Eqn (3) can be constructed succes-
swely as follows:

A\~ Ga(a, 1), Ny | A~ Po(%ﬂAt), G | Ny ~ Ga(IV,, g).
Proof. For w € R,
Ee“ |N, = (1 —iwp/B) ™

Ee's |\, = Z(l - iwp/ﬁ)’”(%)\t)nexp (- 1%”)\,5)/71!
n=0
B (1 —pw
= exp (i)
, (1= pwy—« B —iw @
O PR )L R Wl R
¢ [ Zﬂ—ipw] [5—2’pw]
a
Poisson and Gamma SII Processes
The chf for a Poisson random variable X ~ Po(v) is
0) — EleX] = = i0k vk v _ (-1
) =B =S e =

so for any u € R the re-scaled random variable Y := uX has chf

Xux (0) = E[e"%] = xx (uf)

_ e(eieu_l)u

and a linear combination Y := > u;X; of independent X; ~ Po(v;) has chf
v (0) = [ {0}
J
= exp {Z (e — l)uj} (15a)

J

— exp { /R (ci® — 1)y(du)} (15b)

for the discrete measure



that assigns mass v; to each point u;, provided the sum in (15a) converges. Of course the
sum converges if it has only finitely-many terms, or even if there are infinitely-many with
S v < oo (because |e?* — 1| < 2), but that condition isn’t actually necessary. Since also
e — 1| < |Qul, the random variable Y will be well-defined and finite provided

Z (LA uy])v; < o0 (16a)

J

or, in integral form,

/R (LA Jul)w(du) < oo. (16b)

A random variable with chf of form (15a) for a sequence satisfying (16a) is called a “com-
pound Poisson” distribution; one with the more general chf of form (15b) for a measure
satisfying (16b) is called Infinitely Divisible, or ID.

ID Distributions

For any o-finite measure satisfying (16b) it’s easy to make a stochastic process with station-
ary independent increments of the more general form of (15b), beginning a Poisson random
measure N (duds) on R x R, with intensity measure EN (du ds) = v(du) ds:

X, = / /R g ) (17)

This is a right-continuous independent-increment nondecreasing process that begins at X, =
0 and has jumps A; = [X; — X;_| = [X; — lim, ~ X of magnitudes A, € E at rate v(£) for
any Borel £/ C R. The Poisson process itself is the special case where v(E) = v1{cpy, with
jumps of magnitude A; =1 at rate v € R,.

[Khinchine and Lévy (1936) showed that a random variable Y has a chf of the form (15b)
if and only! if, for every n € N, one can write Y = (; + ---(, as the sum of n iid random
variables (j. This property is called “Infinite Divisibility” (abbreviated ID), and the processes
we have constructed whose increments have this property are called “SII” processes for their
stationary independent increments. Examples of ID distributions (or SII processes) and their
Lévy measures include:

Poisson Po()\) v(du) = A1 (du)

Negative Binomial ~ NB(«,p) v(du) = en a%&k(du), q:=(1-p)
Gamma Ga(a, ) v(du) = au~te 1,50y du

a-Stable Sto(, B,7,0)  v(du) = 2LT() sin T2 {u|~*" (1 + Ssgnu) du
Symmetric a-Stable SaS(a, ) v(du) = ZLT(a) sin 22 u| 7>~ du

Cauchy Ca(d,7) v(du) = 2lu|? du.

!For nonnegative random variables this is true as stated, but a slightly more general form is necessary
for real-valued ID random variables, with a condition on v(du) somewhat weaker than (16b) (see (18c))—
if you get interested, ask me about “compensation”. This is needed for the Ca(d,~) example and, for a > 1,
the Sto(a, 8,7,0d) and SaS(a,y) examples below.



The defining condition for a random variable Y to be “Infinitely Divisible” (ID) is that
for each n € N there must exist iid random variables {¢; : 1 < j < n} such that Y and
2?21 ¢; have the same distribution. This is clearly equivalent to the condition that every
power x*(w) of the characteristic function y(6) := Eexp(i0Y’) must also be a characteristic
function (i.e., must be positive-definite) for each inverse integer o« = 1/n, because we can
just take {¢;} to be iid with chf y'/"(w) and verify that their sum has chf x(w). Less obvious
but also true is that Y is ID if and only if x*(w) is positive-definite for all real oo > 0, and
even less obvious is the [Khinchine and Lévy theorem that y must take the specific form

x(0) = exp {206 — 0*0%/2 + /R [e" — 1] Z/(du)} (18a)

for some § € R, 0 > 0, and Borel measure v satisfying v({0}) = 0 and (16b) or, a little
more generally, the form

(0) = exp {wa 90?2+ /R [ 1 — i0h(w)] z/(du)} (18b)

for any bounded function h that satisfies h(u) = u 4+ O(u?) near u ~ 0 (like arctanu or
ulqy <1y or u/(1+wu?)) and a Borel measure v satisfying the weaker restriction

/R (1A w?)v(du) < oo. (18¢)

Some properties of ID distributions beyond our scope, but covered in (Steutel and van Harn,
2004) (see also (Bose et al., 2002)), include:

Theorem 1 (S&vH, Thm 2.13). Let x(6) be the chf of an Infinitely Divisible distribution.
Then (V8 € R){x(0) #0}. Also, if x(0) is analytic in some open domain Q@ C C, then
(V8 € Q){x(0) #0}. Thus, ID chfs do not vanish on R or anywhere in C that x(0) is
analytic.

Theorem 2 (S&vH, Thm 9.8). Let X be an infinitely divisible random variable that is not
normal or degenerate. Then the two-sided tail of X satisfies
—log P[] X| > z]

lim =c
z—00 xlogx

for a number 0 < ¢ < oo given by ¢! = max[v(Ry),v(R_)]. An ID random variable that is
not degenerate has a normal distribution if and only if the same limit is ¢ = oo.

Theorem 3 (S&vH, Prop 2.3). No non-degenerate bounded random variable is ID

This one’s easy enough to prove. If || X||oc = B < 0o and X has the same distribution as
> i1 G for iid {¢;} then [|Gjlloo = B/n and 02 := V(X) = nV((;) < nEC; < B?/n, s0 0® =0
and X must be degenerate.
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Gamma Variables & Processes

The Gamma distribution X ~ Ga(a, ) with mean /3 and variance «/3% has chf
Xx(0) = E[e"]

Ooiﬂa; ﬁafl —Bx
/Oe {F(a)x e }dx

=(1-0/8)""
= exp {—alog(1 —i0/B)}

= exp {—/ (ew“ — l)au_le_ﬂ“ du} ,
0

exactly of the form of (15b) with Lévy measure

v(du) = au™'e 1,50y du.

This measure, while infinite, does satisfy condition (16b):

1 0
/(1/\|u|)l/(du) :/ (|u|)auleﬂ“du+/ (D)au e P du
R 0 1
S/ ae P du = a/f < co.
0

Thus gamma-distributed random variables are ID and the SII gamma process

X, = // uN (du ds)
Rx(0,t]

has infinitely-many non-negative “jumps” A; = X; — X;_ in any time interval a < ¢t < b.
Their sum > {A;: a <t <b} = X, — X, is finite, however, with probability distribution

X, — X, ~ Ga(a(b—a), B).

The gamma random measure G(dx dy) ~ Ga(adx dy, () of Section (2.3) has a similar con-

struction,
G(A) = /// uN (du dx dy)
RxA

as the sum of the heights u; of a Poisson cloud of points (u;,z;,y;) for which (z;,y;) € A.
Wolpert and Ickstadt (1998) show how to simulate such random measures very efficiently,
drawing the jumps {u;} in monotone decreasing order.
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