
Stationary Gamma Pro
essesRobert L. WolpertApril 25, 2014(Draft 2.6)1 Introdu
tionFor �xed �; � > 0 these notes present six di�erent stationary time series, ea
h with GammaXt � Ga(�; �) univariate marginal distributions and auto
orrelation fun
tion �js�tj forXs; Xt. Ea
h will be de�ned on some time index set T , either T = Z or T = R.Five of the six 
onstru
tions 
an be applied to other In�nitely Divisible (ID) distribu-tions as well, both 
ontinuous ones (normal, �-stable, et
.) and dis
rete (Poisson, negativebinomial, et
.). For spe
i�
ally the Poisson and Gaussian distributions, all but one of them(the Markov 
hange-point 
onstru
tion) 
oin
ide| essentially, there is just one \AR(1)-like"Gaussian pro
ess (namely, the AR(1) pro
ess in dis
rete time, or the Ornstein-Uhlenbe
kpro
ess in 
ontinuous time), and there is just one AR(1)-like Poisson pro
ess. For other IDdistributions, however, and in parti
ular for the Gamma, ea
h of these 
onstru
tions yieldsa pro
ess with the same univariate marginal distributions and the same auto
orrelation butwith di�erent joint distributions at three or more times.First, by \Ga(�; �)" we mean the Gamma distribution with mean �=� and varian
e �=�2,i.e., with shape parameter � and rate parameter �. The pdf and 
hf are given by:f(x j �; �) = ���(�) x��1e��x1fx>0g�(! j �; �) = (1� i!=�)��= exp�� ZR+ ei!u �e��u u�1 du� : (1)The sum �+ := P �j of independent random variables �j ind� Ga(�j; �) with the same rateparameter also has a Gamma distribution, �+ � Ga(�+; �), if f�jg � R+ are summablewith sum �+ := ��j < 1. Eqn (1) shows that the \L�evy measure" for this distribution is�(du) = �e��u u�11fu>0gdu.From the Poisson representation of ID distributionsX = ZR uN (du)1



for N (du) � Po��(du)� we 
an show that the extremal properties of ID random variablesdepend only on the L�evy measure �(du): for large u 2 R+,P[X > u℄ � P�N �(u;1)� 6= ;℄= 1� exp �� ��(u;1)�� ��(u;1)� � (�=�u)e��u; (2)from whi
h one might mount a study of the multivariate extreme properties of the sixpro
esses presented below.2 Six Stationary Gamma Pro
esses2.1 The Gamma AR(1) Pro
essFix �; � > 0 and 0 � � < 1. Let X0 � Ga(�; �) and for t 2 N de�ne Xt re
ursively byXt := �Xt�1 + �t (3)for iid f�tg with 
hf Eei!�t = (1 � i!=�)��(1 � i�!=�)� = � ��i!��i�!��� (easily seen to bepositive-de�nite, with L�evy measure ��(du) = � �e��u � e��u=��u�11fu>0gdu). A simple wayof generating f�tg with this distribution is presented in the Appendix. The pro
ess fXtg hasGamma univariate marginal distribution Xt � Ga(�; �) for every t 2 R+ and, at 
onse
utivetimes 0; 1, joint 
hf �(s; t) = E exp(isX0 + itX1)= E exp(i(s+ �t)X0 + it�1)= h(1� i(s+ �t)=�) (1� it=�)1� it�=� i��: (4)Sin
e this is asymmetri
 in s; t, the pro
ess is not time-reversible; this is also evident fromthe observation thatP[Xt � �Xt�1℄ = P[�t � 0℄ = 1 > P[�t � Xt�1(1� �2)=�℄ = P[Xt�1 � �Xt℄:This pro
ess has marginal distribution Xt � Ga(�; �) at all times t, and has auto
orrelationCorr�Xs; Xt) = �js�tj (easily found from either (3) or (4)). It is 
learly Markov (from (3)),and 
an be shown to have in�nitely-divisible (ID) multivariate marginal distributions of allorders, sin
e the f�tg are ID.
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2.2 Thinned Gamma Pro
essIf X � Ga(�1; �) and Y � Ga(�2; �) are independent, then Z := X + Y � Ga(�+; �) andU := X=Z � Be(�1; �2) are also independent (where �+ := �1 + �2), be
ause under the
hange of variables x = uz, y = (1� u)z with Ja
obian J(u; z) = z,f(u; z) = � ��1�(�1)x�1�1e��x�� ��2�(�2)y�2�1e��y� J(u; z)= � ��+�(�1)�(�2)�u�1�1(1� u)�2�1z�+�2e��zz= � �(�+)�(�1)�(�2)u�1�1(1� u)�2�1� � ��+�(�+)z�+�1e��z� :Thus if Z � Ga(�1 + �2; �) and U � Be(�1; �2) are independent then X = UZ � Ga(�1; �)and Y = (1� U)Z � Ga(�2; �) are independent too. LetX0 � Ga(�; �)and, for t 2 N (or t 2 �N, resp.) setXt := �t + �twhere �t := Bt �Xt�1; Bt � Be(��; ���);�t � Ga(���; �)(or �t = Bt �Xt+1, resp.), where �� := (1��) and all the fBtg and f�tg are independent.Then, by indu
tion, �t � Ga(��; �) and �t � Ga(���; �) are independent, with sum Xt �Ga(�; �). Thus fXtg is a Markov pro
ess with Gamma univariate marginal distributionXt � Ga(�; �), now with symmetri
 joint 
hf�(s; t) = E exp(isX0 + itX1)= E exp fis(X0 � �1) + i(s+ t)�1 + it�1g= (1� is=�)����(1� i(s+ t)=�)���(1� it=�)���� (5)and auto
orrelation Corr�Xs; Xt) = �js�tj. The pro
ess of passing from Xt�1 to �t = Xt�1Btis 
alled thinning, so Xt is 
alled the thinned gamma pro
ess. A similar 
onstru
tion isavailable for any ID marginal distribution. 3



2.3 Random Measure Gamma Pro
essLet G(dx dy) be a 
ountably additive random measure that assigns independent randomvariables G(Ai) � Ga(�jAij; �) to disjoint Borel sets Ai 2 B(R2) of �nite area jAij (this ispossible by the Kolmogorov 
onsisten
y 
onditions, and is illustrated in the Appendix) and,for � := � log �, 
onsider the 
olle
tion of sets:Gt := �(x; y) : x 2 R; 0 � y < �e�2�jt�xj	shown in Figure (1) whose interse
tions have area jGs \Gtj = e��js�tj. For t 2 T = R, set
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Figure 1: Random measure 
onstru
tion of pro
ess Xt = G(Gt)Xt := G(Gt): (6)For any n times t1 < t2 < � � � < tn the sets fGtig partition R2 into n(n + 1)=2 sets of�nite area (and one with in�nite area, ([Gti)
), so ea
h Xti 
an be written as the sum ofsome subset of n(n + 1)=2 independent Gamma random variables. In parti
ular, any n = 2variables Xs and Xt 
an be written asXs = G(GsnGt) + G(Gs \Gt); Xt = G(GtnGs) + G(Gs \Gt)just as in the thinning approa
h of Se
tion (2.2), so both 1-dimensional and 2-dimensionalmarginal distributions for the random measure pro
ess 
oin
ide with those for the thinningpro
ess. Again the joint 
hf is�(s; t) = E exp(isX0 + itX1)= (1� is=�)����(1� i(s+ t)=�)���(1� it=�)���� (7)and the auto
orrelation is Corr�Xs; Xt) = exp � � �js � tj� or, for integer times, �js�tj for� := exp(��). The distribution for 
onse
utive triplets di�ers from those of the ThinnedGamma Pro
ess, however, an illustration that the thinning pro
ess is Markov but the randommeasure is not. The Random Measure pro
ess does feature in�nitely-divisible (ID) marginaldistributions of all orders, while the thinned pro
ess does not.4



2.4 The Markov 
hange-point Gamma Pro
essLet f�n : n 2 Zg iid� Ga(�; �) be iid Gamma random variables and let Nt be a standardPoisson pro
ess indexed by t 2 R (so N0 = 0 and (Nt � Ns) � Po(t � s) for all �1 < s <t <1, with independent in
rements), and setXt := �n; n = N�t:Then ea
h Xt � Ga(�; �) and, for s; t 2 R, Xs and Xt are either identi
al (with probability�js�tj) or independent| reminis
ent of a Metropolis MCMC 
hain. The 
hf is�(s; t) = E exp(isX0 + itX1)= ��1� i(s+ t)=���� + ��(1� is=�)��(1� it=�)�� (8)and on
e again the marginal distribution is Xt � Ga(�; �) and the auto
orrelation fun
tionis Corr�Xs; Xt) = �js�tj.2.5 The Squared O-U Gamma Di�usionLet fZig iid� OU(�=2; 1) be independent Ornstein-Uhlenbe
k velo
ity pro
esses, mean-zeroGaussian pro
esses with 
ovarian
e Cov�Zi(s); Zj(t)� = exp �� �2 js� tj�Æij, and setXt := 12� nXi=1 Zi(t)2for n 2 N and � 2 R+. Note Zi(t) � No(0; 1), so EZi(t)2 = 1 and EZi(t)4 = 3; it follows thatEZi(s)2Zi(t)2 = 1+2 exp(��js� tj). Then Xt � Ga(�; �) for � = n=2, with EXs = �=� andEXsXt = 14�2 �n�1 + 2 exp(��js� tj)�+ n(n� 1)	= �2 + � exp �� �js� tj��2so the auto
ovarian
e is Cov�Xs; Xt) = ��2 e��js�tj and the auto
orrelation at integer timesis Corr�Xs; Xt) = �js�tj for � := exp(��). The 
hf at 
onse
utive integer times is�(s; t) = E exp(isX0 + itX1)= �1� i(s+ t)=� � st(1� �)=�2���; (9)distin
t from (4), (5)=(7), and (8), so this pro
ess is new. Itô's formula is used in (Wolpert,2011) to show that Xt has sto
hasti
 di�erential equation (SDE) representationXt = X0 � Z t0 2��Xs � �=�� ds+p2�=� Z t0 pXs dWs (10)5



and hen
e has generator A�(x) = (�=��)E[�(Xt+�) j Xt = x℄���=0 given by
A�(x) = �2�(x� �=�)�0(x) + (�=�)x�00(x); (11)whi
h we will use to distinguish this pro
ess from that of Se
tion (2.6). While the 
onstru
-tion above required half-integer values for �, (9) is positive-de�nite and the SDE (10) has aunique strong solution for all � > 0, so a time-reversible stationary Markov di�usion pro
essexists with this distribution.2.6 Continuously Thinned Gamma Pro
essPi
k a large integer n and set � := 1=n, q := exp(���), and p := 1 � q = �� + o(�). DrawX0 � Ga(�; �) and, for integers i; j 2 N, draw independently�i � Ga(�p; �) bj � Be(�p; �q):Set: X0 = X0X� = X0(1� b1) + �1X2� = X� (1� b2) + �2= X0(1� b1)(1� b2) + �1(1� b2) + �2X3� = X0(1� b1)(1� b2)(1� b3)+ �1(1� b2)(1� b3)+ �2(1� b3)+ �3and, in general, Xk� = X0 kYj=1(1� bj) + kXi=1 (�i Yi<j�k(1� bj)) : (12a)In the limit as n!1 and k�! t the produ
ts 
onverge to the produ
t integral of the betapro
ess introdu
ed by Hjort (1980, x3) (and des
ribed lu
idly by Thibaux and Jordan, 2007,x2) and the sum to an ordinary gamma sto
hasti
 integral,Xt = X0 Ys2(0;t℄[1� dB(s)℄ + Z t0 8<: Ys2(r;t℄[1� dB(s)℄9=; �(dr); (12b)where �(dr) � Ga��� dr; �� is a Gamma random measure and B(s) � BP��; � ds� is a Betapro
ess, i.e., an SII L�evy pro
ess with L�evy measure�B(du) = ��u�1(1� u)��1 1f0<u<1g du6



with 
onstant \
on
entration fun
tion" �(s) � � and translation-invariant \base measure"�(ds) = �ds. The produ
t integral 
an be written as a ratioYs2(r;t℄[1� dB(s)℄ = 1� F (t)1� F (r)where F (t) =Qs2(t;1)[1� dB(s)℄ satis�esdF (t)1� F (t) = dB(t); Bt = Z(0;t℄ dF (s)1� F (s) : (13)2.6.1 GeneratorThe Gamma pro
ess of Eqn (12b) is stationary and Markov, with generator
A�(x) = Z 10 ��(x + u)� �(x)���u�1e��u du+ Z x0 ��(x� u)� �(x)���u�1(1� u=x)��1 du (14)Be
ause this di�ers from (11) (and in parti
ular be
ause it is a non-lo
al operator, showingXt has jumps), this pro
ess is new. On
e again the one-dimensional marginal distributionsare Xt � Ga(�; �) and the auto
orrelation is Corr(Xs; Xt) = exp �� �js� tj�.a3 Dis
ussionWe have now 
onstru
ted six distin
t pro
esses that share the same univariate marginaldistribution and auto
orrelation fun
tion, but whi
h all di�er in their n-variate marginaldistributions for n � 3. Some are Markov, some not; some are time-reversible, some not;some have ID marginal distributions of all orders, some don't. Similar methods 
an be usedto 
onstru
t AR(1)-like pro
esses with any ID marginal distribution, su
h as those listed onp. 9; only in the two 
ases of Gaussian and Poisson do all these 
onstru
tions 
oin
ide. Manyof these are useful for modeling time-dependent phenomena whose dependen
e falls o� overtime, but for whi
h traditional Gaussian methods are unsuitable be
ause of heavy tails, orinteger values, or positivity, or for other reasons. I know of very little work (yet!) exploringinferen
e for pro
esses like these; a beginning appears in (Wang, 2013, x3). I have written
ode in R to generate samples from ea
h of these six pro
esses; available on request.
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AppendixProposition 1 (Walker (2000)). The innovations �t in Eqn (3) 
an be 
onstru
ted su

es-sively as follows:�t � Ga(�; 1); Nt j �t � Po�1��� �t�; �t j Nt � Ga�Nt; �� �:Proof. For ! 2 R,Eei�t! jNt = (1� i!�=�)�NtEei�t! j �t = 1Xn=0(1� i!�=�)�n�1��� �t�n exp �� 1��� �t�=n!= exp �i(1� �)!� � i�! �t�Eei�t! = h1� i(1� �)!� � i�! i�� = h � � i!� � i�!i��:
Poisson and Gamma SII Pro
essesThe 
hf for a Poisson random variable X � Po(�) is�X(�) = E[ei�X ℄ = 1Xk=0 ei�k��kk! e��� = e(ei��1)�so for any u 2 R the re-s
aled random variable Y := uX has 
hf�uX(�) = E[ei�uX ℄ = �X(u�)= e(ei�u�1)�and a linear 
ombination Y :=P ujXj of independent Xj � Po(�j) has 
hf�Y (�) =Yj ne(ei�uj�1)�jo= exp(Xj (ei�uj � 1)�j) (15a)= exp�ZR (ei�u � 1)�(du)� (15b)for the dis
rete measure �(du) =X �jÆuj (du)8



that assigns mass �j to ea
h point uj, provided the sum in (15a) 
onverges. Of 
ourse thesum 
onverges if it has only �nitely-many terms, or even if there are in�nitely-many withP �j < 1 (be
ause jei�u � 1j � 2), but that 
ondition isn't a
tually ne
essary. Sin
e alsojei�u � 1j � j�uj, the random variable Y will be well-de�ned and �nite providedXj �1 ^ jujj��j <1 (16a)or, in integral form, ZR �1 ^ juj��(du) <1: (16b)A random variable with 
hf of form (15a) for a sequen
e satisfying (16a) is 
alled a \
om-pound Poisson" distribution; one with the more general 
hf of form (15b) for a measuresatisfying (16b) is 
alled In�nitely Divisible, or ID.ID DistributionsFor any �-�nite measure satisfying (16b) it's easy to make a sto
hasti
 pro
ess with station-ary independent in
rements of the more general form of (15b), beginning a Poisson randommeasure N (du ds) on R� R+ with intensity measure EN (du ds) = �(du) ds:Xt := ZZR�(0;t℄ uN (du ds): (17)This is a right-
ontinuous independent-in
rement nonde
reasing pro
ess that begins at X0 =0 and has jumps �t = [Xt�Xt�℄ � [Xt� lims%tXs℄ of magnitudes �t 2 E at rate �(E) forany Borel E � R. The Poisson pro
ess itself is the spe
ial 
ase where �(E) = �1f12Eg, withjumps of magnitude �t = 1 at rate � 2 R+.Khin
hine and L�evy (1936) showed that a random variable Y has a 
hf of the form (15b)if and only1 if, for every n 2 N, one 
an write Y = �1 + � � � �n as the sum of n iid randomvariables �j. This property is 
alled \In�nite Divisibility" (abbreviated ID), and the pro
esseswe have 
onstru
ted whose in
rements have this property are 
alled \SII" pro
esses for theirstationary independent in
rements. Examples of ID distributions (or SII pro
esses) and theirL�evy measures in
lude:Poisson Po(�) �(du) = �Æ1(du)Negative Binomial NB(�; p) �(du) =Pk2N � qkk Æk(du); q := (1� p)Gamma Ga(�; �) �(du) = �u�1e��u1fu>0g du�-Stable St0(�; �; 
; Æ) �(du) = �
� �(�) sin ��2 juj���1(1 + � sgn u) duSymmetri
 �-Stable S�S(�; 
) �(du) = �
� �(�) sin ��2 juj���1 duCau
hy Ca(Æ; 
) �(du) = 
� juj�2 du:1For nonnegative random variables this is true as stated, but a slightly more general form is ne
essaryfor real-valued ID random variables, with a 
ondition on �(du) somewhat weaker than (16b) (see (18
))|if you get interested, ask me about \
ompensation". This is needed for the Ca(Æ; 
) example and, for � � 1,the St0(�; �; 
; Æ) and S�S(�; 
) examples below. 9



The de�ning 
ondition for a random variable Y to be \In�nitely Divisible" (ID) is thatfor ea
h n 2 N there must exist iid random variables f�j : 1 � j � ng su
h that Y andPnj=1 �j have the same distribution. This is 
learly equivalent to the 
ondition that everypower ��(!) of the 
hara
teristi
 fun
tion �(�) := E exp(i�Y ) must also be a 
hara
teristi
fun
tion (i.e., must be positive-de�nite) for ea
h inverse integer � = 1=n, be
ause we 
anjust take f�jg to be iid with 
hf �1=n(!) and verify that their sum has 
hf �(!). Less obviousbut also true is that Y is ID if and only if ��(!) is positive-de�nite for all real � > 0, andeven less obvious is the Khin
hine and L�evy theorem that � must take the spe
i�
 form�(�) = exp�i�Æ � �2�2=2 + ZR �ei�u � 1� �(du)� (18a)for some Æ 2 R, �2 � 0, and Borel measure � satisfying �(f0g) = 0 and (16b) or, a littlemore generally, the form�(�) = exp�i�Æ � �2�2=2 + ZR �ei�u � 1� i�h(u)� �(du)� (18b)for any bounded fun
tion h that satis�es h(u) = u + O(u2) near u � 0 (like ar
tan u oru1fjuj<1g or u=(1 + u2)) and a Borel measure � satisfying the weaker restri
tionZR �1 ^ u2��(du) <1: (18
)Some properties of ID distributions beyond our s
ope, but 
overed in (Steutel and van Harn,2004) (see also (Bose et al., 2002)), in
lude:Theorem 1 (S&vH, Thm 2.13). Let �(�) be the 
hf of an In�nitely Divisible distribution.Then (8� 2 R) f�(�) 6= 0g. Also, if �(�) is analyti
 in some open domain 
 � C, then(8� 2 
) f�(�) 6= 0g. Thus, ID 
hfs do not vanish on R or anywhere in C that �(�) isanalyti
.Theorem 2 (S&vH, Thm 9.8). Let X be an in�nitely divisible random variable that is notnormal or degenerate. Then the two-sided tail of X satis�eslimx!1 � logP[jXj > x℄x log x = 
for a number 0 � 
 <1 given by 
�1 = max[�(R+); �(R�)℄. An ID random variable that isnot degenerate has a normal distribution if and only if the same limit is 
 =1.Theorem 3 (S&vH, Prop 2.3). No non-degenerate bounded random variable is IDThis one's easy enough to prove. If kXk1 = B <1 and X has the same distribution asPnj=1 �j for iid f�jg then k�jk1 = B=n and �2 := V(X) = nV(�j) � nE�2j � B2=n, so �2 = 0and X must be degenerate. 10



Gamma Variables & Pro
essesThe Gamma distribution X � Ga(�; �) with mean �=� and varian
e �=�2 has 
hf�X(�) = E[ei�X ℄= Z 10 ei�x� ���(�)x��1e��x� dx= �1� i�=����= exp f�� log(1� i�=�)g= exp�� Z 10 �ei�u � 1��u�1e��u du� ;exa
tly of the form of (15b) with L�evy measure�(du) = �u�1e��u1fu>0g du:This measure, while in�nite, does satisfy 
ondition (16b):ZR �1 ^ juj��(du) = Z 10 �juj��u�1e��u du+ Z 11 �1��u�1e��u du� Z 10 �e��u du = �=� <1:Thus gamma-distributed random variables are ID and the SII gamma pro
essXt = ZZR�(0;t℄ uN (du ds)has in�nitely-many non-negative \jumps" �t = Xt � Xt� in any time interval a < t � b.Their sum Pf�t : a < t � bg = Xb �Xa is �nite, however, with probability distributionXb �Xa � Ga��(b� a); ��:The gamma random measure G(dx dy) � Ga(� dx dy; �) of Se
tion (2.3) has a similar 
on-stru
tion, G(A) = ZZZR�A uN (du dx dy)as the sum of the heights uj of a Poisson 
loud of points (uj; xj; yj) for whi
h (xj; yj) 2 A.Wolpert and I
kstadt (1998) show how to simulate su
h random measures very eÆ
iently,drawing the jumps fujg in monotone de
reasing order.
11
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