
Introdution to Computer ExperimentsRobert L. WolpertDepartment of Statistial SieneDuke University, Durham, NC, USAVersion: April 2, 2014, 11:361 IntrodutionIt is now ommon in siene (physis, astronomy, geology, hemistry, et.) to study physialsystems by onstruting omplex omputer-resident mathematial models intended to simulatethose systems, and to try to learn about the physial system or to predit its later behavior byexploring how the omputer simulation model behaves.For now let's onsider only the simulation of non-random salar (univariate) quantities Y (x),that may depend on a vetor x 2 X � R
d of d observable (and perhaps even adjustable) quantitiessuh as loation, time, pressure, temperature, et. Typially measurements of the physial systemwill entail measurement error of some kind, so we an write the �eld observations as:Y Fi = Y (xi) + �i; i 2 IFMost ommonly one takes the f�ig to be independent and normally distributed, but possibly het-eroskedasti. No serious ompliations arise in allowing them to have an arbitrary but knownovariane ��, or even a known orrelation R� but unertain preision ��, so �� = ��1� R�.Without a mathematial model there is no way to predit what Y (x) might be at some untriedpoint x 2 X . A omputer simulation model, or \Simulator", is a omputer program intendedto generate preditions Y M(x) of Y (x), usually based on an underlying mathematial model (forexample, the omputer ode might generate numerial solutions to a partial di�erential equation(PDE) whose initial onditions, boundary onditions, and perhaps other features are somehowdetermined by x). Most often Simulators require the spei�ation of additional input quantitiest 2 T that might inlude \tuning" parameters or physial onstants that might be variable in theSimulator but not in nature. Thus the model output will be Y M(x; t), whih is intended to be loseto Y (x).But� How lose is it, at the input loations fxig where we have data?� And how lose an we expet it to be, at an untried point x?� And at what new input points fxjg should we run the Simulator to learn more about it mosteÆiently?These are some of the questions that led to the study of the Calibration and Validation of ComputerModels. 1



2 Gaussian ProessesWithout some kind of smoothness assumptions the problem is hopeless. If the dependene ofvalues of the physial system fY (xi)g on their inputs fxig is wild or haoti, then observations atsome loations won't help guide preditions at others, and we an learn nothing from the suessesand failures of a Simulator at some loations about its performane at others. Often, however,ontinuity is a natural feature to expet| that near-by points x1; x2 2 X will lead to similar valuesY (x1); Y (x2) of the system and to similar Simulator outputs Y M(x1; t1); Y M(x2; t2) for similar t1; t2.Beginning in the 1980s and 1990s a number of authors (e.g., Saks et al., 1989; Currin et al., 1991;Kennedy and O'Hagan, 2000, 2001; Higdon et al., 2004; Heitmann et al., 2006; Bayarri et al., 2007b;Higdon et al., 2008; Bayarri et al., 2009, 2014, et.) have pursued the theme of treating the valuesof Y (x) (and even of Y M(x; t)) at untried points x 2 X (and of t 2 T ) as a olletion of randomvariables indexed by x 2 X and t 2 T , whose joint distribution is partially unknown and aboutwhih we might learn from data.The most ommon approah is to onstrut two random �eld models: one \Y M(x; t)", the Em-ulator, intended to repliate the Simulator model however well or badly it sueeds in simulatingnature; and another \Æt(x)", the Disrepany, intended to model the di�erene between the Sim-ulator and the natural system Y (x). Gaussian Proesses (GPs) are used for eah of these, butwith some di�erenes. Typially the mean funtions for both the Emulator and Disrepany aretaken to be linear funtions of known basis funtions, �M(x; t) =Pk2KM  k(x; t)�k = 	M(x; t)�Mand �Æ(x) = Pk2KÆ  k(x)�k = 	Æ(x)�Æ , intended to pik up any systemati trends that wouldotherwise onit with the isotropy of Y M and the disrepany between Y M and Y , respetively.In the absene of onern about suh trends or prior experiene about disrepanies, it's ommonto take a single term KM = f0g with  0 � 1 for a onstant mean �M(x; t) � �0 for the emulator,and empty KÆ = ; for zero disrepany mean �Æ(x) � 0, but more elaborate hoies don't addmuh more diÆulty.3 Emulation In Three Stages3.1 Univariate Model Without DisrepanyFirst we onsider the problem of making preditions and inferene upon observing the real-valuedoutomes yi = Y M(xi) of a omputer simulation at a olletion of design points D = fxi : i 2 IDg �X (more suintly, upon observing y = Y M(D)). Typially the design points are taken from aspae-�lling maxi-min Latin Hyperube design (LHD) (see Tang, 1993). Often the objetive isto make preditions of simulation outomes fY M(xi) : i 2 ISg at a set S = fxi : i 2 ISg � X ofuntried input vetors, along with estimates of the predition preision. All input omponents areusually transformed and saled to the unit interval, making X = [0; 1℄d a hyperube.We model Y M as a GP with mean of regression form �M(D) = EY M(D) = 	M(D)�M =Pk2K  Mk (xi)�Mk for a vetor 	M(x) of p = #(K) spei�ed basis funtions  Mk (x) and unertainregression oeÆients �Mk , and with stationary ovariane of the form ��1M RM(x; x0) with unknownpreision �M and with stationary orrelation matrix RM(x; x0) = rM(x � x0 j �) from a spei�edparametri family governed by an unknown parameter vetor � 2 �. The most ommon hoie fororrelation funtion is the power exponential rM(h) = exp f�P jhj=`j j�g with unertain lengthsales f`jg. Beause the data are seldom informative about the power � 2 [1; 2℄, this smoothnessparameter is usually spei�ed to be � = 2 or, for numerial reasons, something just a bit smaller2



like 1:9, leaving � = f`jg. It is possible, but seldom useful, to allow �j to vary aross dimen-sions. An appealing alternative to the power exponential is the produt of Mat�ern ovarianes withsmoothness parameter �xed at 3=2 or 5=2, with ovariane funtions:rM3=2(h j �) = e�Pj2J hj`j Yj2J h1 + hj`j i rM5=2(h j �) = e�Pj2J hj`j Yj2J h1 + hj`j + �hj`j �2=3i: (1)Although other options are possible, it is ustomary to aord �M and �M independent onjugateprior distributions �M � No(m�; ��1� I) and �M � Ga(aM ; bM) (where Ga(�; �) denotes the gammadistribution with rate �, or mean �=�), often with �� = 0 and aM = bM = 0 for the refereneor weakly-informative prior distributions �M � d�M and �M � ��1m d�M . Sometimes referenedistributions suÆe for � as well. The model then is:Y M(�) � No��M ; ��1M RM� (stationary GP)�M(x) = 	M(x)�M (linear regression)RM(x; x0) = rM(x� x0 j �)rM(h j �) = expn�Xj2J jhj=`j j�o (or, alternately, Mat�ern| see (1) above)�M � d�M (improper onjugate referene)�M � ��1M d�M (improper onjugate referene)� � �(d�) (arbitrary, maybe with density �(�))Upon observing the model output yM = Y M(D) at the n design points, eah d-dimensional, theonditional mean and variane at a new input point x areŷ(x j yM ; �M ; �M ; �) = �M(x) +RM (x;D)R�1M (D)�yM � �M(D)� (2a)�̂2(x j yM ; �M ; �M ; �) = ��1M h1�RM (x;D)R�1M (D)RM (D; x)i (2b)and the preditive distribution is Y M(x) j yM ; �M ; �M ; � � No(ŷ; �̂2), where �M(x) = 	M(x)�Mand �M(D) = 	M(D)�M are the unonditional (or prior) means and whereRM (D) = 26664 1 r(x1 � x2 j �) � � � r(x1 � xn)r(x2 � x1 j �) 1 � � � r(x2 � xn)... � � � r(xi � xj) r(xi � xn)r(xn � x1) � � � � � � 1 37775 (3a)RM (x;D) = RM (D; x)0 = �r(x� x1); r(x� x2); � � � r(x� xn)� (3b)where n := #(D) denotes the number of design points. To improve numerial stability it is ommonto replae the ones on the diagonal of RM with 1+ � for some small \nugget" � > 0. The negativelog likelihood funtion is`(�M ; �M ; � j yM) = 12� log jRM j � n log �M+ �M [yM � �M(D)℄0R�1M (D)[yM � �M(D)℄	 (4a)3



and the negative log prior density is� log �(�M ; �M ; �) = log �M � log �(�) (4b)where jRM j denotes the determinant of the positive-de�nite matrix RM .One way to proeed is to draw an MCMC stream of f(�M ; �M ; �)g using Eqn (4) and, from this,use Eqn (2) to generate a stream of preditive quantiles or means. A less omputationally intensiveapproah is to �nd MLE or MAP estimates f(�̂M ; �̂M ; �̂)g from Eqn (4) and use this and Eqn (2) toonstrut \plug-in" preditive estimates. While quiker, these will systematially under-representpreditive unertainty.With their onjugate distributions spei�ed, either or both of the parameters �M and �M may beintegrated in losed form to redue the dimensionality of the problem. The MLEs for the regressionoeÆient �M and preision �M from Eqn (4) are�̂M = [	0R�1	℄�1	0R�1yM (5a)�̂M = n(yM �	�̂M)0R�1(yM �	�̂M) (5b)and the negative log likelihood of Eqn (4a) an be rewritten`(�M ; �M ; � j yM) = 12� log jRj � n log �M (6a)+ �M (yM �	�̂M)0R�1(yM �	�̂M)+ �M (�M � �̂M)0[	0R�1	℄(�M � �̂M)	where we have simpli�ed the notation by writing 	 and R for 	M(D) and RM (D). Integratingexp(�`(�)) w.r.t. �M (with an improper uniform prior distribution), using j	0R�1	j = j		0j=jRj,and writing �̂M for 	M(D)�̂, now leads to a marginal negative log likelihood`(�M ; � j yM) = �12(n� p) log �M + �M2 [yM � �̂M ℄0R�1M (D)[yM � �̂M ℄ (6b)where p denotes the regression dimension, i.e., the length of �M or the number of olumns of 	M . Afurther integral of exp(�`(�)) w.r.t �M , with onjugate referene prior1 distribution �M � ��1M d�M ,leads to the marginal negative log likelihood for �:`(� j yM) = 12 (n� p) logn12 [yM � �̂M ℄0R�1M (D)[yM � �̂M ℄o (6)with the referene prior distributions for �M and �M . From this we may loate the MLE �̂ =argmin `(� j yM) = argmax �̂M or the MAP or, if neessary, use `(� j yM) in a Metropolis/Hastingsapproah to draw a sequene f�(t)g � � from the posterior distribution. The preditive distributionof Y M(x) or of its mean �M(x) at any x 2 X is available from this stream, by evaluating R�1M (D),RM (x;D), �̂M(D), �̂M , and �̂M eah time step (all of whih depend on �(t)), then suessively1Or, as an alternative, Bayarri et al. (2007b, p. 152) and Paulo (2005) reommend aM = 1 and bM = 1=5�̂M , andargue that results are insensitive to this hoie. 4



drawing �M � Ga�n� p2 ; n2�̂M ��M � No��̂M ; [�M	M(D)0R�1M (D)	M(D)℄�1�ŷ(x) = 	M(x)0�M +RM (x;D)R�1M (D)�yM �	M(D)���̂2(x) = ��1M h1�RM (x;D)R�1M (D)RM (D; x)iY M(x) � No�ŷ(x); �̂2(x)�or, equivalently, Y M(x) � t�ŷ(x); �̂�1M ;n� p�from the non-entral Student t distribution.3.2 Univariate Model With DisrepanyWhen �eld observations Y F are available of the system Y that Y M was intended to simulate, asimple iid zero-mean measurement-error model for the di�erene Y F �Y M is usually too simplistito apture the di�erene between modeled and measured values. It is more realisti to expetthat these \model disrepanies" will be orrelated and that their means and varianes will dependon x 2 X . One approah in the spirit of Setion (3.1) is to model the di�erene between �eldobservations Y F (x) and model preditions Y M(x) as a Gaussian Proess Æ(x) independent of Y M(x),with its own mean and ovariane funtion.One new feature we fae is that typially the omputer model Y M will have more parametersthan the �eld observations do| tehnial things like the mesh size or time step used in a simulation,or unobserved quantities like a frition oeÆient or a reation rate that an be set to arbitraryvalues in a simulator but whih have spei� values in the �eld. The usual way to aommodatethis is to expand the input parameter from a single vetor x to a pair (x; t) for the omputer models(both simulator and emulator) only: \x" for those parameter(s) that are observable and perhapseven adjustable in the �eld (like loations in spae and time, or features of initial onditions)and "t" (mnemoni for \tuning parameter") for those parameter(s) that appear or vary only inthe omputer models. Sometimes to shorten formulas we will write x� � (x; t), with omponentsx�j = xj for j 2 Jx and x�j = tj for j 2 Jt the appropriate subsets of the index set J = Jx [ Jt.Denote by \t?" a nominal value of the tuning parameter t 2 T , usually desribed as \best" vetorin that Y M(F ; t?) is nearest to Y F (F) in some sense, or sometimes (optimistially) desribed asthe \true" value and, for any x 2 F , denote by x? = (x; t?) the element x� 2 X � T formedby augmenting x with this nominal t?. From the equation \Y (x) = Y M(x; t?) + Æ(x)" below wesee that the hoie of the nominal tuning parameter t? is ompletely onfounded with that of thedisrepany funtion Æ(x), i.e., neither is statistially identi�able. We onvey that by denoting thedisrepany \Æt?(x)". The intention is to make Æ in some sense small by seleting a suitable t?.The dimensions of input and regression vetors are:
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Field observations fxig f =#(IF ) = #(F)Design points fxig n =#(ID) = #(D)Regressors, Model f�kg pM=#(KM)Regressors, Field f�kg pF =#(KF )Regressors, Total f�kg p =#(K � KM [KF )
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The resulting hierarhial model then is:yFi = Y (xi) + �i (�eld observations with measurement error)Y (xi) = Y M(xi; t?) + Æt?(xi) (truth = model + disrepany)Y M(x; t) � No��M ; ��1M RM� (stationary GPs)Æt?(x) � No��Æ; ��1Æ RÆ��M(x; t) = 	M(x; t)�M = Xk2KM  k(x; t)�k (often KM = f0g,  0 � 1, �M � �M0 )�Æ(x) = 	Æ(x)�Æ = Xk2KF  k(x)�k (often KF = ;, �Æ � 0)RM(x; t;x0; t0) = rM(x� x0; t� t0 j �) (stationary orrelations)RÆ(x; x0) = rÆ(x� x0 j �)rM(h j �) = expn�Xj2J jhj=`Mj j�o (power exponentials, or Mat�ern (1))rÆ(h j �) = expn� Xj2Jx jhj=`Æj j2o (usually power = 2 for Æ)�i � No(0;��) (take �� = �2� I for iid errors)�M ; �Æ � d�M d�Æ (improper onjugate uniform)�M � Ga(aM ; bM) (onjugate, e.g., aM = 1, bM = 1=5�̂M )�Æ � Ga(aÆ ; bÆ) (onjugate, e.g., aÆ = 1, bÆ = 1=5�̂Æ)� = �`Mj ; `Æj	 � �(d�) (arbitrary, maybe with density �(�))The two proesses an be �t simultaneously, by �rst onatenating the input, output, and parametervetors: I = ID [ IF (indexing design and �eld points D [ F)J = Jx [ Jt (indexing d omponents of x� = (x; t))x� = (x0; t0)0 = �x�j : j 2 J	� = [�M ; �Æ℄	 = [	M ;	Æ℄� = [�M ; �Æ℄ = 	�� = � ��1M RM(D) ��1M RM(D;F)��1M RM(F ;D) ��1M RM(F) + ��1Æ RÆ(F) + ���y = [yM ;yF ℄ � No(�;�)
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where RMij (D) = rM(x�i � x�j j �); i 2 ID; j 2 IDRMji (F ;D) = RMij (D;F) = rM(x�i � x?j j �); i 2 ID; j 2 IFRÆij(F) = rF (xi � xj j �); i 2 IF ; j 2 IF :The negative log likelihood is now that for a single (n+f)-dimensional multivariate normal model,`(�; �; � j yM ; yF ) = 12� log j�j+ [y � �℄0��1[y � �℄	and the negative log prior density is� log �(�M ; �M ; �) = (1� aM) log �M + bM�M + (1� aÆ) log �Æ + bÆ�Æ � log �(�)= (1=5�̂M )�M + (1=5�̂Æ)�Æ � log �(�);using the suggested hyperparameter values. Bayarri et al. (2007b) reommend what they all\modularization", in whih the design parameters �M and `M are �t as in Setion (3.1) using onlythe model output and not the �eld data, then with these parameters �xed the �eld data are usedas above to generate posterior samples and preditive distributions. In this ase the Sherman-Morrison-Woodbury formula may be used, substantially reduing the omputational omplexity ofinverting � if (as usual) f � n.3.3 Multivariate Model With DisrepanyTheoretially nothing new is needed to extend Model Emulation to the multivariate setting inwhih Simulator model outputs onsist of vetors in some Eulidean spae R
p or funtions: simplylet one input variable xi be an index for whih output variable or funtion argument is to begenerated, or (better) let (p � 1) input variables speify a loation on the simplex �p to speifywhat aÆne linear ombination of output dimensions should be returned. In pratie, however, thesimilar approahes introdued independently by Higdon et al. (2008) and by Bayarri et al. (2007a)are far more suessful: apply some dimension redution tehnique to resolve a high-dimensional(say, R

p valued) Simulator output into a modest-dimensional (say, r-dimensional with r � p)vetor of (nearly) orthogonal responses, then onstrut r independent univariate emulators (whihmay all run in parallel) to generate the needed preditive means and varianes. Higdon et al.used Prinipal Components Analysis (Wolpert, 2014; Mardia et al., 1979, Chap. 8) for orthogonaldimension redution, while Bayarri et al. used disrete wavelet transforms with threshholding (seeVidakovi, 1999, x6.3, x8.3).ReferenesBayarri, M. J., Berger, J. O., Cafeo, J. A., Garia-Donato, G., Liu, F., Palomo, J., Parthasarathy,R., Paulo, R., Saks, J., and Walsh, D. (2007a), \Computer Model Validation with FuntionalOutput," Annals of Statistis, 35, doi:10.1214/009053607000000163.Bayarri, M. J., Berger, J. O., Calder, E. S., Dalbey, K., Lunagomez, S., Patra, A. K., Pitman, E. B.,Spiller, E., and Wolpert, R. L. (2009), \Using Statistial and Computer Models to QuantifyVolani Hazards," Tehnometris, 51, 402{413, doi:10.1198/TECH.2009.08018.8



Bayarri, M. J., Berger, J. O., Calder, E. S., Patra, A. K., Pitman, E. B., Spiller, E. T., andWolpert, R. L. (2014), \A Methodology for Quantifying Volani Hazards," Tehnial report,Duke University, Durham, NC 27208.Bayarri, M. J., Berger, J. O., Paulo, R., Saks, J., Cafeo, J. A., Cavendish, J. C., Lin, C.-H., andTu, J. (2007b), \A Framework for Validation of Computer Models," Tehnometris, 49, 138{154,doi:10.1198/004017007000000092.Currin, C., Mithell, T., Morris, M., and Ylvisaker, D. (1991), \Bayesian predition of deterministifuntions, with appliations to the design and analysis of omputer experiments," Journal of theAmerian Statistial Assoiation, 86, 953{963.Heitmann, K., Higdon, D., Nakhleh, C., and Habib, S. (2006), \Cosmi Calibration," AstrophysialJournal Letters, 646, L1{L4.Higdon, D., Gattiker, J., Williams, B., and Rightley, M. (2008), \Computer Model Calibrationusing High-Dimensional Output," Journal of the Amerian Statistial Assoiation, 103, 570{583,doi:10.1198/016214507000000888.Higdon, D., Kennedy, M. C., Cavendish, J. C., Cafeo, J. A., and Ryne, R. D. (2004), \Combining�eld observations and simulations for alibration and predition," SIAM Journal on Sienti�Computing, 26, 448{466, doi:10.1137/S1064827503426693.Kennedy, M. C. and O'Hagan, A. (2000), \Prediting the output from a omplex omputer odewhen fast approximations are available," Biometrika, 87, 1{13, doi:10.1093/biomet/87.1.1.Kennedy, M. C. and O'Hagan, A. (2001), \Bayesian alibration of omputer models (with dis-ussion)," Journal of the Royal Statistial Soiety, Ser. B: Statistial Methodology, 63, 425{464,doi:10.1111/1467-9868.00294.Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979), Multivariate Analysis, New York, NY: Aa-demi Press.Paulo, R. (2005), \Default priors for Gaussian proesses," Annals of Statistis, 33, 556{582, doi:DOI10.1214/009053604000001264.Saks, J., Welh, W. J., Mithell, T. J., and Wynn, H. P. (1989), \Design and Analysis of ComputerExperiments," Statistial Siene, 4, 409{435.Tang, B. (1993), \Orthogonal Array-Based Latin Hyperubes," Journal of the Amerian StatistialAssoiation, 88, 1392{1397.Vidakovi, B. (1999), Statistial Modeling by Wavelets, Computational & Graphial Statistis, NewYork, NY: John Wiley & Sons.Wolpert, R. L. (2014), Prinipal Components Analysis, ourse leture notes on PCA.Last edited: April 2, 20149


	Introduction
	Gaussian Processes
	Emulation In Three Stages
	Univariate Model Without Discrepancy
	Univariate Model With Discrepancy
	Multivariate Model With Discrepancy


