
Introdu
tion to Computer ExperimentsRobert L. WolpertDepartment of Statisti
al S
ien
eDuke University, Durham, NC, USAVersion: April 2, 2014, 11:361 Introdu
tionIt is now 
ommon in s
ien
e (physi
s, astronomy, geology, 
hemistry, et
.) to study physi
alsystems by 
onstru
ting 
omplex 
omputer-resident mathemati
al models intended to simulatethose systems, and to try to learn about the physi
al system or to predi
t its later behavior byexploring how the 
omputer simulation model behaves.For now let's 
onsider only the simulation of non-random s
alar (univariate) quantities Y (x),that may depend on a ve
tor x 2 X � R
d of d observable (and perhaps even adjustable) quantitiessu
h as lo
ation, time, pressure, temperature, et
. Typi
ally measurements of the physi
al systemwill entail measurement error of some kind, so we 
an write the �eld observations as:Y Fi = Y (xi) + �i; i 2 IFMost 
ommonly one takes the f�ig to be independent and normally distributed, but possibly het-eroskedasti
. No serious 
ompli
ations arise in allowing them to have an arbitrary but known
ovarian
e ��, or even a known 
orrelation R� but un
ertain pre
ision ��, so �� = ��1� R�.Without a mathemati
al model there is no way to predi
t what Y (x) might be at some untriedpoint x 2 X . A 
omputer simulation model, or \Simulator", is a 
omputer program intendedto generate predi
tions Y M(x) of Y (x), usually based on an underlying mathemati
al model (forexample, the 
omputer 
ode might generate numeri
al solutions to a partial di�erential equation(PDE) whose initial 
onditions, boundary 
onditions, and perhaps other features are somehowdetermined by x). Most often Simulators require the spe
i�
ation of additional input quantitiest 2 T that might in
lude \tuning" parameters or physi
al 
onstants that might be variable in theSimulator but not in nature. Thus the model output will be Y M(x; t), whi
h is intended to be 
loseto Y (x).But� How 
lose is it, at the input lo
ations fxig where we have data?� And how 
lose 
an we expe
t it to be, at an untried point x?� And at what new input points fxjg should we run the Simulator to learn more about it mosteÆ
iently?These are some of the questions that led to the study of the Calibration and Validation of ComputerModels. 1



2 Gaussian Pro
essesWithout some kind of smoothness assumptions the problem is hopeless. If the dependen
e ofvalues of the physi
al system fY (xi)g on their inputs fxig is wild or 
haoti
, then observations atsome lo
ations won't help guide predi
tions at others, and we 
an learn nothing from the su

essesand failures of a Simulator at some lo
ations about its performan
e at others. Often, however,
ontinuity is a natural feature to expe
t| that near-by points x1; x2 2 X will lead to similar valuesY (x1); Y (x2) of the system and to similar Simulator outputs Y M(x1; t1); Y M(x2; t2) for similar t1; t2.Beginning in the 1980s and 1990s a number of authors (e.g., Sa
ks et al., 1989; Currin et al., 1991;Kennedy and O'Hagan, 2000, 2001; Higdon et al., 2004; Heitmann et al., 2006; Bayarri et al., 2007b;Higdon et al., 2008; Bayarri et al., 2009, 2014, et
.) have pursued the theme of treating the valuesof Y (x) (and even of Y M(x; t)) at untried points x 2 X (and of t 2 T ) as a 
olle
tion of randomvariables indexed by x 2 X and t 2 T , whose joint distribution is partially unknown and aboutwhi
h we might learn from data.The most 
ommon approa
h is to 
onstru
t two random �eld models: one \Y M(x; t)", the Em-ulator, intended to repli
ate the Simulator model however well or badly it su

eeds in simulatingnature; and another \Æt(x)", the Dis
repan
y, intended to model the di�eren
e between the Sim-ulator and the natural system Y (x). Gaussian Pro
esses (GPs) are used for ea
h of these, butwith some di�eren
es. Typi
ally the mean fun
tions for both the Emulator and Dis
repan
y aretaken to be linear fun
tions of known basis fun
tions, �M(x; t) =Pk2KM  k(x; t)�k = 	M(x; t)�Mand �Æ(x) = Pk2KÆ  k(x)�k = 	Æ(x)�Æ , intended to pi
k up any systemati
 trends that wouldotherwise 
on
i
t with the isotropy of Y M and the dis
repan
y between Y M and Y , respe
tively.In the absen
e of 
on
ern about su
h trends or prior experien
e about dis
repan
ies, it's 
ommonto take a single term KM = f0g with  0 � 1 for a 
onstant mean �M(x; t) � �0 for the emulator,and empty KÆ = ; for zero dis
repan
y mean �Æ(x) � 0, but more elaborate 
hoi
es don't addmu
h more diÆ
ulty.3 Emulation In Three Stages3.1 Univariate Model Without Dis
repan
yFirst we 
onsider the problem of making predi
tions and inferen
e upon observing the real-valuedout
omes yi = Y M(xi) of a 
omputer simulation at a 
olle
tion of design points D = fxi : i 2 IDg �X (more su

in
tly, upon observing y = Y M(D)). Typi
ally the design points are taken from aspa
e-�lling maxi-min Latin Hyper
ube design (LHD) (see Tang, 1993). Often the obje
tive isto make predi
tions of simulation out
omes fY M(xi) : i 2 ISg at a set S = fxi : i 2 ISg � X ofuntried input ve
tors, along with estimates of the predi
tion pre
ision. All input 
omponents areusually transformed and s
aled to the unit interval, making X = [0; 1℄d a hyper
ube.We model Y M as a GP with mean of regression form �M(D) = EY M(D) = 	M(D)�M =Pk2K  Mk (xi)�Mk for a ve
tor 	M(x) of p = #(K) spe
i�ed basis fun
tions  Mk (x) and un
ertainregression 
oeÆ
ients �Mk , and with stationary 
ovarian
e of the form ��1M RM(x; x0) with unknownpre
ision �M and with stationary 
orrelation matrix RM(x; x0) = rM(x � x0 j �) from a spe
i�edparametri
 family governed by an unknown parameter ve
tor � 2 �. The most 
ommon 
hoi
e for
orrelation fun
tion is the power exponential rM(h) = exp f�P jhj=`j j�g with un
ertain lengths
ales f`jg. Be
ause the data are seldom informative about the power � 2 [1; 2℄, this smoothnessparameter is usually spe
i�ed to be � = 2 or, for numeri
al reasons, something just a bit smaller2



like 1:9, leaving � = f`jg. It is possible, but seldom useful, to allow �j to vary a
ross dimen-sions. An appealing alternative to the power exponential is the produ
t of Mat�ern 
ovarian
es withsmoothness parameter �xed at 3=2 or 5=2, with 
ovarian
e fun
tions:rM3=2(h j �) = e�Pj2J hj`j Yj2J h1 + hj`j i rM5=2(h j �) = e�Pj2J hj`j Yj2J h1 + hj`j + �hj`j �2=3i: (1)Although other options are possible, it is 
ustomary to a

ord �M and �M independent 
onjugateprior distributions �M � No(m�; ��1� I) and �M � Ga(aM ; bM) (where Ga(�; �) denotes the gammadistribution with rate �, or mean �=�), often with �� = 0 and aM = bM = 0 for the referen
eor weakly-informative prior distributions �M � d�M and �M � ��1m d�M . Sometimes referen
edistributions suÆ
e for � as well. The model then is:Y M(�) � No��M ; ��1M RM� (stationary GP)�M(x) = 	M(x)�M (linear regression)RM(x; x0) = rM(x� x0 j �)rM(h j �) = expn�Xj2J jhj=`j j�o (or, alternately, Mat�ern| see (1) above)�M � d�M (improper 
onjugate referen
e)�M � ��1M d�M (improper 
onjugate referen
e)� � �(d�) (arbitrary, maybe with density �(�))Upon observing the model output yM = Y M(D) at the n design points, ea
h d-dimensional, the
onditional mean and varian
e at a new input point x areŷ(x j yM ; �M ; �M ; �) = �M(x) +RM (x;D)R�1M (D)�yM � �M(D)� (2a)�̂2(x j yM ; �M ; �M ; �) = ��1M h1�RM (x;D)R�1M (D)RM (D; x)i (2b)and the predi
tive distribution is Y M(x) j yM ; �M ; �M ; � � No(ŷ; �̂2), where �M(x) = 	M(x)�Mand �M(D) = 	M(D)�M are the un
onditional (or prior) means and whereRM (D) = 26664 1 r(x1 � x2 j �) � � � r(x1 � xn)r(x2 � x1 j �) 1 � � � r(x2 � xn)... � � � r(xi � xj) r(xi � xn)r(xn � x1) � � � � � � 1 37775 (3a)RM (x;D) = RM (D; x)0 = �r(x� x1); r(x� x2); � � � r(x� xn)� (3b)where n := #(D) denotes the number of design points. To improve numeri
al stability it is 
ommonto repla
e the ones on the diagonal of RM with 1+ � for some small \nugget" � > 0. The negativelog likelihood fun
tion is`(�M ; �M ; � j yM) = 12� log jRM j � n log �M+ �M [yM � �M(D)℄0R�1M (D)[yM � �M(D)℄	 (4a)3



and the negative log prior density is� log �(�M ; �M ; �) = log �M � log �(�) (4b)where jRM j denotes the determinant of the positive-de�nite matrix RM .One way to pro
eed is to draw an MCMC stream of f(�M ; �M ; �)g using Eqn (4) and, from this,use Eqn (2) to generate a stream of predi
tive quantiles or means. A less 
omputationally intensiveapproa
h is to �nd MLE or MAP estimates f(�̂M ; �̂M ; �̂)g from Eqn (4) and use this and Eqn (2) to
onstru
t \plug-in" predi
tive estimates. While qui
ker, these will systemati
ally under-representpredi
tive un
ertainty.With their 
onjugate distributions spe
i�ed, either or both of the parameters �M and �M may beintegrated in 
losed form to redu
e the dimensionality of the problem. The MLEs for the regression
oeÆ
ient �M and pre
ision �M from Eqn (4) are�̂M = [	0R�1	℄�1	0R�1yM (5a)�̂M = n(yM �	�̂M)0R�1(yM �	�̂M) (5b)and the negative log likelihood of Eqn (4a) 
an be rewritten`(�M ; �M ; � j yM) = 12� log jRj � n log �M (6a)+ �M (yM �	�̂M)0R�1(yM �	�̂M)+ �M (�M � �̂M)0[	0R�1	℄(�M � �̂M)	where we have simpli�ed the notation by writing 	 and R for 	M(D) and RM (D). Integratingexp(�`(�)) w.r.t. �M (with an improper uniform prior distribution), using j	0R�1	j = j		0j=jRj,and writing �̂M for 	M(D)�̂, now leads to a marginal negative log likelihood`(�M ; � j yM) = �12(n� p) log �M + �M2 [yM � �̂M ℄0R�1M (D)[yM � �̂M ℄ (6b)where p denotes the regression dimension, i.e., the length of �M or the number of 
olumns of 	M . Afurther integral of exp(�`(�)) w.r.t �M , with 
onjugate referen
e prior1 distribution �M � ��1M d�M ,leads to the marginal negative log likelihood for �:`(� j yM) = 12 (n� p) logn12 [yM � �̂M ℄0R�1M (D)[yM � �̂M ℄o (6
)with the referen
e prior distributions for �M and �M . From this we may lo
ate the MLE �̂ =argmin `(� j yM) = argmax �̂M or the MAP or, if ne
essary, use `(� j yM) in a Metropolis/Hastingsapproa
h to draw a sequen
e f�(t)g � � from the posterior distribution. The predi
tive distributionof Y M(x) or of its mean �M(x) at any x 2 X is available from this stream, by evaluating R�1M (D),RM (x;D), �̂M(D), �̂M , and �̂M ea
h time step (all of whi
h depend on �(t)), then su

essively1Or, as an alternative, Bayarri et al. (2007b, p. 152) and Paulo (2005) re
ommend aM = 1 and bM = 1=5�̂M , andargue that results are insensitive to this 
hoi
e. 4



drawing �M � Ga�n� p2 ; n2�̂M ��M � No��̂M ; [�M	M(D)0R�1M (D)	M(D)℄�1�ŷ(x) = 	M(x)0�M +RM (x;D)R�1M (D)�yM �	M(D)���̂2(x) = ��1M h1�RM (x;D)R�1M (D)RM (D; x)iY M(x) � No�ŷ(x); �̂2(x)�or, equivalently, Y M(x) � t�ŷ(x); �̂�1M ;n� p�from the non-
entral Student t distribution.3.2 Univariate Model With Dis
repan
yWhen �eld observations Y F are available of the system Y that Y M was intended to simulate, asimple iid zero-mean measurement-error model for the di�eren
e Y F �Y M is usually too simplisti
to 
apture the di�eren
e between modeled and measured values. It is more realisti
 to expe
tthat these \model dis
repan
ies" will be 
orrelated and that their means and varian
es will dependon x 2 X . One approa
h in the spirit of Se
tion (3.1) is to model the di�eren
e between �eldobservations Y F (x) and model predi
tions Y M(x) as a Gaussian Pro
ess Æ(x) independent of Y M(x),with its own mean and 
ovarian
e fun
tion.One new feature we fa
e is that typi
ally the 
omputer model Y M will have more parametersthan the �eld observations do| te
hni
al things like the mesh size or time step used in a simulation,or unobserved quantities like a fri
tion 
oeÆ
ient or a rea
tion rate that 
an be set to arbitraryvalues in a simulator but whi
h have spe
i�
 values in the �eld. The usual way to a

ommodatethis is to expand the input parameter from a single ve
tor x to a pair (x; t) for the 
omputer models(both simulator and emulator) only: \x" for those parameter(s) that are observable and perhapseven adjustable in the �eld (like lo
ations in spa
e and time, or features of initial 
onditions)and "t" (mnemoni
 for \tuning parameter") for those parameter(s) that appear or vary only inthe 
omputer models. Sometimes to shorten formulas we will write x� � (x; t), with 
omponentsx�j = xj for j 2 Jx and x�j = tj for j 2 Jt the appropriate subsets of the index set J = Jx [ Jt.Denote by \t?" a nominal value of the tuning parameter t 2 T , usually des
ribed as \best" ve
torin that Y M(F ; t?) is nearest to Y F (F) in some sense, or sometimes (optimisti
ally) des
ribed asthe \true" value and, for any x 2 F , denote by x? = (x; t?) the element x� 2 X � T formedby augmenting x with this nominal t?. From the equation \Y (x) = Y M(x; t?) + Æ(x)" below wesee that the 
hoi
e of the nominal tuning parameter t? is 
ompletely 
onfounded with that of thedis
repan
y fun
tion Æ(x), i.e., neither is statisti
ally identi�able. We 
onvey that by denoting thedis
repan
y \Æt?(x)". The intention is to make Æ in some sense small by sele
ting a suitable t?.The dimensions of input and regression ve
tors are:
5



Field observations fxig f =#(IF ) = #(F)Design points fxig n =#(ID) = #(D)Regressors, Model f�kg pM=#(KM)Regressors, Field f�kg pF =#(KF )Regressors, Total f�kg p =#(K � KM [KF )
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The resulting hierar
hi
al model then is:yFi = Y (xi) + �i (�eld observations with measurement error)Y (xi) = Y M(xi; t?) + Æt?(xi) (truth = model + dis
repan
y)Y M(x; t) � No��M ; ��1M RM� (stationary GPs)Æt?(x) � No��Æ; ��1Æ RÆ��M(x; t) = 	M(x; t)�M = Xk2KM  k(x; t)�k (often KM = f0g,  0 � 1, �M � �M0 )�Æ(x) = 	Æ(x)�Æ = Xk2KF  k(x)�k (often KF = ;, �Æ � 0)RM(x; t;x0; t0) = rM(x� x0; t� t0 j �) (stationary 
orrelations)RÆ(x; x0) = rÆ(x� x0 j �)rM(h j �) = expn�Xj2J jhj=`Mj j�o (power exponentials, or Mat�ern (1))rÆ(h j �) = expn� Xj2Jx jhj=`Æj j2o (usually power = 2 for Æ)�i � No(0;��) (take �� = �2� I for iid errors)�M ; �Æ � d�M d�Æ (improper 
onjugate uniform)�M � Ga(aM ; bM) (
onjugate, e.g., aM = 1, bM = 1=5�̂M )�Æ � Ga(aÆ ; bÆ) (
onjugate, e.g., aÆ = 1, bÆ = 1=5�̂Æ)� = �`Mj ; `Æj	 � �(d�) (arbitrary, maybe with density �(�))The two pro
esses 
an be �t simultaneously, by �rst 
on
atenating the input, output, and parameterve
tors: I = ID [ IF (indexing design and �eld points D [ F)J = Jx [ Jt (indexing d 
omponents of x� = (x; t))x� = (x0; t0)0 = �x�j : j 2 J	� = [�M ; �Æ℄	 = [	M ;	Æ℄� = [�M ; �Æ℄ = 	�� = � ��1M RM(D) ��1M RM(D;F)��1M RM(F ;D) ��1M RM(F) + ��1Æ RÆ(F) + ���y = [yM ;yF ℄ � No(�;�)
7



where RMij (D) = rM(x�i � x�j j �); i 2 ID; j 2 IDRMji (F ;D) = RMij (D;F) = rM(x�i � x?j j �); i 2 ID; j 2 IFRÆij(F) = rF (xi � xj j �); i 2 IF ; j 2 IF :The negative log likelihood is now that for a single (n+f)-dimensional multivariate normal model,`(�; �; � j yM ; yF ) = 12� log j�j+ [y � �℄0��1[y � �℄	and the negative log prior density is� log �(�M ; �M ; �) = (1� aM) log �M + bM�M + (1� aÆ) log �Æ + bÆ�Æ � log �(�)= (1=5�̂M )�M + (1=5�̂Æ)�Æ � log �(�);using the suggested hyperparameter values. Bayarri et al. (2007b) re
ommend what they 
all\modularization", in whi
h the design parameters �M and `M are �t as in Se
tion (3.1) using onlythe model output and not the �eld data, then with these parameters �xed the �eld data are usedas above to generate posterior samples and predi
tive distributions. In this 
ase the Sherman-Morrison-Woodbury formula may be used, substantially redu
ing the 
omputational 
omplexity ofinverting � if (as usual) f � n.3.3 Multivariate Model With Dis
repan
yTheoreti
ally nothing new is needed to extend Model Emulation to the multivariate setting inwhi
h Simulator model outputs 
onsist of ve
tors in some Eu
lidean spa
e R
p or fun
tions: simplylet one input variable xi be an index for whi
h output variable or fun
tion argument is to begenerated, or (better) let (p � 1) input variables spe
ify a lo
ation on the simplex �p to spe
ifywhat aÆne linear 
ombination of output dimensions should be returned. In pra
ti
e, however, thesimilar approa
hes introdu
ed independently by Higdon et al. (2008) and by Bayarri et al. (2007a)are far more su

essful: apply some dimension redu
tion te
hnique to resolve a high-dimensional(say, R

p valued) Simulator output into a modest-dimensional (say, r-dimensional with r � p)ve
tor of (nearly) orthogonal responses, then 
onstru
t r independent univariate emulators (whi
hmay all run in parallel) to generate the needed predi
tive means and varian
es. Higdon et al.used Prin
ipal Components Analysis (Wolpert, 2014; Mardia et al., 1979, Chap. 8) for orthogonaldimension redu
tion, while Bayarri et al. used dis
rete wavelet transforms with threshholding (seeVidakovi
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