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1 Introduction

It is now common in science (physics, astronomy, geology, chemistry, etc.) to study physical
systems by constructing complex computer-resident mathematical models intended to simulate
those systems, and to try to learn about the physical system or to predict its later behavior by
exploring how the computer simulation model behaves.

For now let’s consider only the simulation of non-random scalar (univariate) quantities Y (z),
that may depend on a vector z € X C R? of d observable (and perhaps even adjustable) quantities
such as location, time, pressure, temperature, etc. Typically measurements of the physical system
will entail measurement error of some kind, so we can write the field observations as:

YinY(:vi)—i-ei, ieI”
Most commonly one takes the {¢;} to be independent and normally distributed, but possibly het-
eroskedastic. No serious complications arise in allowing them to have an arbitrary but known
covariance £, or even a known correlation R¢ but uncertain precision A, so £° = A_ ' Re.

Without a mathematical model there is no way to predict what Y (z) might be at some untried
point x € X. A computer simulation model, or “Simulator”, is a computer program intended
to generate predictions Y (z) of Y (z), usually based on an underlying mathematical model (for
example, the computer code might generate numerical solutions to a partial differential equation
(PDE) whose initial conditions, boundary conditions, and perhaps other features are somehow
determined by z). Most often Simulators require the specification of additional input quantities
t € T that might include “tuning” parameters or physical constants that might be variable in the
Simulator but not in nature. Thus the model output will be Y (z, t), which is intended to be close
to Y(x).

But

e How close is it, at the input locations {z;} where we have data?
e And how close can we expect it to be, at an untried point 7

e And at what new input points {z;} should we run the Simulator to learn more about it most
efficiently?

These are some of the questions that led to the study of the Calibration and Validation of Computer
Models.



2 Gaussian Processes

Without some kind of smoothness assumptions the problem is hopeless. If the dependence of
values of the physical system {Y (z;)} on their inputs {z;} is wild or chaotic, then observations at
some locations won’t help guide predictions at others, and we can learn nothing from the successes
and failures of a Simulator at some locations about its performance at others. Often, however,
continuity is a natural feature to expect— that near-by points x1,zs € X will lead to similar values
Y (x1),Y (z2) of the system and to similar Simulator outputs YM?:zclf tq :: Iﬁ, to : for sumlar
Beginning in the 1980s and 1990s a number of authors (e.g.,

Kennedv and O’ Hagarl |20_0_d |20_0J,| [Higdon et al] |20_OA |He.]_tma,n_n_et_a,]_] |20_0_d |Ba¥arr] ef, all |20D1H
|ngd.on_&t_a.l] |20Qd |B.a.¥a.r.r.l_&t_a.l] |20Qd |2D.l.4 etc.) have pursued the theme of treating the values
of Y(z) (and even of Y (xz,t)) at untried points z € X (and of ¢t € T) as a collection of random
variables indexed by x € X and ¢t € T, whose joint distribution is partially unknown and about
which we might learn from data.

The most common approach is to construct two random field models: one “Y"(z,t)”, the Em-
ulator, intended to replicate the Simulator model however well or badly it succeeds in simulating
nature; and another “d;(z)”, the Discrepancy, intended to model the difference between the Sim-
ulator and the natural system Y (z). Gaussian Processes (GPs) are used for each of these, but
with some differences. Typically the mean functions for both the Emulator and Discrepancy are
taken to be linear functions of known basis functions, ™ (,t) = >, c g Y (2, 8) B = ¥ (2, 1)
and p°(z) = Y keks Yr(T)Br = U(x)A?, intended to pick up any systematic trends that would
otherwise conflict with the isotropy of Y and the discrepancy between Y and Y, respectively.
In the absence of concern about such trends or prior experience about discrepancies, it’s common
to take a single term K" = {0} with 9y = 1 for a constant mean p" (z,t) = [y for the emulator,
and empty K° = () for zero discrepancy mean p°(z) = 0, but more elaborate choices don’t add
much more difficulty.

3 Emulation In Three Stages

3.1 Univariate Model Without Discrepancy

First we consider the problem of making predictions and inference upon observing the real-valued
outcomes y; = Y (x;) of a computer simulation at a collection of design points D = {z; : i € I’} C
X (more succinctly, upon observing y = Y*(D)). Typically the design pomts are taken from a
space-filling maxi-min Latin Hypercube design ( LHD seem Often the objective is
to make predictions of simulation outcomes {Y"(z;): i € I°} at a set S ={z;: 1€l C X of
untried input vectors, along with estimates of the prediction precision. All input components are
usually transformed and scaled to the unit interval, making X = [0, 1]¢ a hypercube.

We model Y™ as a GP with mean of regression form p(D) = EY™ (D) = ¥ (D)pM =
Y ke Vi (wi) B! for a vector W (x) of p = #(K) specified basis functions ¢;’(z) and uncertain
regression coefficients B, and with stationary covariance of the form \,} R (z, ") with unknown
precision Aps and with stationary correlation matrix RM(z,z') = r (:v —z' | 0) from a specified
parametric family governed by an unknown parameter vector § € ©. The most common choice for
correlation function is the power exponential r*(h) = exp{—>_|h;/¢;|*} with uncertain length
scales {/;}. Because the data are seldom informative about the power « € [1,2], this smoothness
parameter is usually specified to be @ = 2 or, for numerical reasons, something just a bit smaller



like 1.9, leaving 6 = {/;}. It is possible, but seldom useful, to allow «; to vary across dimen-
sions. An appealing alternative to the power exponential is the product of Matérn covariances with
smoothness parameter fixed at 3/2 or 5/2, with covariance functions:

>

oy h; ] h; N2
rija(h [ 0) =e JWJE[HE—;} riy(h10) =e ,e”]g[1+£_5+<g_j> /3.

Although other options are possible, it is customary to accord 8™ and Aj; independent conjugate
prior distributions 5" ~ No(mg, )\ElI) and Ay ~ Ga(a",b™) (where Ga(c, ) denotes the gamma
distribution with rate §, or mean «/f), often with Ag = 0 and o = b™ = 0 for the reference
or weakly-informative prior distributions S ~ dB™ and A\y; ~ A,'dAy. Sometimes reference
distributions suffice for 6 as well. The model then is:

YM(-) ~ No(p™, A/ RM) (stationary GP)
p(x) = M (z)pM (linear regression)
RY(z,2') = rM(z — 2" | 0)
r™(h]0) = exp{ — Z |hj/€j|a} (or, alternately, Matérn— see () above)
JjeJ
pY ~ dpM (improper conjugate reference)
v~ AypdAu (improper conjugate reference)
0 ~ w(do) (arbitrary, maybe with density m(0))

Upon observing the model output y" = Y (D) at the n design points, each d-dimensional, the
conditional mean and variance at a new input point x are

B | ¥, 5, A, 0) = (@) + Bt (2, D) Ry} (D) [y — 1 (D)] (22)
7@ |y, 8" Aur, ) = A3/ |1 = Rus (. D) By/ (D) Rt (D, )| (2b)

and the predictive distribution is Y (z) | y™, 8", Ay, 0 ~ No(g,52), where p(z) = ¥ (z)BM
and pM (D) = UM (D)pM are the unconditional (or prior) means and where

1 r(z1 —z2 | 0) r(z1 — xp)
r(ze — x| 0) 1 e r(ze — xy)
Ry (D) = . 3a
u(D) : r(z; —xj) r(x;— ) (32)
T(mn _ x]_) PECERY PO 1
Ry (z,D) = Ry (D, z) = [r(m — 1), r(x—mz9), -+ r(r-— xn)] (3b)

where n := #(D) denotes the number of design points. To improve numerical stability it is common
to replace the ones on the diagonal of Rj; with 1 4 7 for some small “nugget” n > 0. The negative
log likelihood function is

LB, A, 0 | y*™) = 3{ log|Rar| — nlog Aur
+ Ay — (D) Ry (D)y™ — (D)} (4a)



and the negative log prior density is
—log (8™, A, 0) = log Ay — log 7 (0) (4b)

where |R)s| denotes the determinant of the positive-definite matrix Ry.

One way to proceed is to draw an MCMC stream of {(8, Aps, 0)} using Eqn @) and, from this,
use Eqn () to generate a stream of predictive quantiles or means. A less computationally intensive
approach is to find MLE or MAP estimates {(BM, A é)} from Eqn (@) and use this and Eqn (@) to
construct “plug-in” predictive estimates. While quicker, these will systematically under-represent
predictive uncertainty.

With their conjugate distributions specified, either or both of the parameters 5* and Ay, may be
integrated in closed form to reduce the dimensionality of the problem. The MLEs for the regression
coefficient 8™ and precision \y; from Eqn (@) are

BM _ [\I!/Rfl\:[!]fl\I!/RflyM (5&)
At = & (5b)

(v — WhM) R-L(yM — W)
and the negative log likelihood of Eqn (Hal) can be rewritten

LB A, 0 | y™) = 3{log|R| — nlog Am (6a)
+ Ay — UMY R (yM — WBM)
+ A (B = M) [WRTIE)(BM - pM)}

where we have simplified the notation by writing ¥ and R for U (D) and Ry (D). Integrating
exp(—£(-)) w.r.t. B (with an improper uniform prior distribution), using |/ R='V¥| = [V ¥'|/|R],
and writing i for (D), now leads to a marginal negative log likelihood

Am . _ .
(O, 01 y™) = =5(n = p)log A + == [y™ = ™) By (D) [y — "] (6b)
where p denotes the regression dimension, i.e., the length of 8 or the number of columns of . A
further integral of exp(—£(-)) w.r.t A\js, with conjugate reference primﬂ distribution Ay; ~ )\X/[l d\
leads to the marginal negative log likelihood for 6:

€01 y") = 3(n—p)log { 3ly* - 4] Ry} (D)ly* - ]} (60)

with the reference prior distributions for S and Ap;. From this we may locate the MLE 6 =
argmin (6 | y™) = argmax Ay or the MAP or, if necessary, use £(0 | y) in a Metropolis/Hastings
approach to draw a sequence {O(t)} C O from the posterior distribution. The predictive distribution
of Y™ (x) or of its mean p(z) at any o € X is available from this stream, by evaluating R}, (D),
Ry (z, D), (D), M and Ay each time step (all of which depend on #®), then successively

Or, as an alternative, Bayarri et all (2007, p. 152) and [Pauld (2003) recommend a™ =1 and b™ = 1/5Ax, and
argue that results are insensitive to this choice.



drawing

’@
3

2)\M

B ~ No( , P (D) Ry (D) v (D)] )

(x) = W(2) B + Rar(z, D) Ry (D) [y — ¥ (D)6]
(#) = Ayt [1 = Ras(z, D) Ry} (D) Ry (D, )|

(x) ~ No(j(z), 6%())

or, equivalently,

Y¥(@) ~ t(4(x), Ayfsm — )

from the non-central Student ¢ distribution.

3.2 Univariate Model With Discrepancy

When field observations Y* are available of the system Y that Y was intended to simulate, a
simple iid zero-mean measurement-error model for the difference Y* — Y™ is usually too simplistic
to capture the difference between modeled and measured values. It is more realistic to expect
that these “model discrepancies” will be correlated and that their means and variances will depend
on z € X. One approach in the spirit of Section (B is to model the difference between field
observations Y (z) and model predictions Y (z) as a Gaussian Process §(z) independent of Y (z),
with its own mean and covariance function.

One new feature we face is that typically the computer model Y will have more parameters
than the field observations do— technical things like the mesh size or time step used in a simulation,
or unobserved quantities like a friction coefficient or a reaction rate that can be set to arbitrary
values in a simulator but which have specific values in the field. The usual way to accommodate
this is to expand the input parameter from a single vector x to a pair (x,t) for the computer models
(both simulator and emulator) only: “x” for those parameter(s) that are observable and perhaps
even adjustable in the field (like locations in space and time, or features of initial conditions)
and 7t” (mnemonic for “tuning parameter”) for those parameter(s) that appear or vary only in
the computer models. Sometimes to shorten formulas we will write z* = (z,t), with components
:B;‘ = g; for j € J, and :B;‘ = t; for j € J; the appropriate subsets of the index set J = J, U J;.
Denote by “t,” a nominal value of the tuning parameter ¢t € T, usually described as “best” vector
in that Y (F,t,) is nearest to Y (F) in some sense, or sometimes (optimistically) described as
the “true” value and, for any z € F, denote by z* = (z,t) the element z* € X x T formed
by augmenting x with this nominal ¢,. From the equation “Y(z) = Y™ (z,t4) + 0(z)” below we
see that the choice of the nominal tuning parameter t, is completely confounded with that of the
discrepancy function §(z), i.e., neither is statistically identifiable. We convey that by denoting the
discrepancy “dy, (z)”. The intention is to make § in some sense small by selecting a suitable t,.
The dimensions of input and regression vectors are:



Field observations
Design points
Regressors, Model
Regressors, Field
Regressors, Total

{zi}
{z:}
{Be}
{Br}
{Be}



The resulting hierarchical model then is:

=Y(zi) +e
Y(xz) Y (zi, ) + 0, (w4)
Y (z,t) ~ No(u™, Ay R™)
3, (z) ~ No(u®, A\;'R°)
pM (1) = W (2, 0)8" = Y glx, )b
keKM
W) =0 (@)p = di(@)By
keKF

(] 0) = exp{ = b1}

=

r(h | 0) —exp{ 3k /e }

JE€EJz
€; ~ No(0, %)
BY, B0 ~ dp™ dp°
Ay ~ Ga(a™,b™)
A ~ Ga(a?, b%)
0 ={¢), 0} ~ (do)

The two processes can be fit simultaneously, by first concatenating the input, output, and parameter

vectors:

I=I1°UIF

J=J,UJ;

¥ = (z '”={:v;f:j€J}
B =[8",5]
\If:[\I!M,\I!]

p=[u,p’] =B

[ R

y =[y",y"] ~ No(u, X)

(indexing d components of z* =

(field observations with measurement error)
(truth = model + discrepancy)
(stationary GPs)

(often K = {0}, ¢ = 1, u™ = BY")
(often K" = (), ,u6 =0)

(stationary correlations)

(power exponentials, or Matérn ()

(usually power = 2 for §)

(take X, = o[ for iid errors)
(improper conjugate uniform)
(conjugate, e.g., a™ =1, b = 1/5Ay)
(conjugate, e.g., a® =1, b = 1/55\5)
(arbitrary, maybe with density 7(0))

(indexing design and field points D U F)

(,1))

Ay RM(D, F)
A RM(F, D) A RM(F) + A\; 'RO(F) + 2.



where
RZ{‘;-(D) r™(z} —a;;f |6),i€I”, jelI”
R;i(F,D) = Rjj(D,F) =r" (] -} |0),i€I”, jeI"

j
Rfj(]:) rf(x; — x| 0), iel”, jel.

The negative log likelihood is now that for a single (n + f)-dimensional multivariate normal model,

LB A0 |y, ") = 3{log [T+ [y — S My — ]}
and the negative log prior density is
—logm(B™, Anr,0) = (1 — a™)log Aps + 0™ Aps + (1 — ag) log A5 + bsAs — log 7(6)
= (1/5 00)Aas + (1/5X) A5 — log (),

using the suggested hyperparameter values. Bayarri_et._al! (IZ0.0_ZH) recommend what they call
“modularization”, in which the design parameters 8 and ¢* are fit as in Section (B) using only

the model output and not the field data, then with these parameters fixed the field data are used
as above to generate posterior samples and predictive distributions. In this case the Sherman-
Morrison-Woodbury formula may be used, substantially reducing the computational complexity of
inverting X if (as usual) f < n.

3.3 Multivariate Model With Discrepancy

Theoretically nothing new is needed to extend Model Emulation to the multivariate setting in
which Simulator model outputs consist of vectors in some Euclidean space RP or functions: simply
let one input variable z; be an index for which output variable or function argument is to be
generated, or (better) let (p — 1) input variables specify a location on the simplex A, to specify
what affine linear combination of output dimensions should be returned. In practice, however, the
similar approaches introduced independently by Higdon et all (IZOD.d) and by Bayarri et all (IZOD.ZA)
are far more successful: apply some dimension reduction technique to resolve a high-dimensional
(say, RP valued) Simulator output into a modest-dimensional (say, r-dimensional with r < p)
vector of (nearly) orthogonal responses, then construct r independent univariate emulators (which
may all run in parallel) to generate the needed predictive means and variances. m
used Principal Components Analysis ,2014; Mardia. et all, 1979, Chap. 8) for orthogonal

dimension reduction, while used discrete wavelet transforms with threshholding (see

Widakovid, 1999, §6.3, §8.3).
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