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1 Positive Definite Matrices

Let Y = (Y1,---,Y,)" be a p-dimensional random vector, thought of as a random (p x 1)
matrix. If they exist, the mean vector and covariance matrix for Y are

p:=EY  Y:=EY - —p)

(they will both exist whenever E(Y;)? < oo for each j). The entries y; of the p x 1 column
matrix g are the means p; = EX; of the variables, while the diagonal entries ¥;; of the p x p
matrix X are the variances of the {Y;}. These diagonal entries must be nonnegative, but the
off-diagonal entries
Yij = E(Yi — ) (Y — )

may be positive, negative, or zero as Y; and Y are positively-, negatively-, or un-correlated.
These entries aren’t entirely arbitrary, though; clearly ¥ must be symmetric, but even that
isn’t enough.

For any p real numbers {z; } the square of the linear combination 2’ (Y —pu) = > 2;(Y;— ;)
is positive— so necessarily its expectation is too:

Z%‘(Yj — i)

J

2

=E[(Y -l (Y -] =Sz =) x5z,

ij

0<E

a property called “positive semi-definiteness” which implies that > has nonnegative eigenval-
ues Ay > Ay > --- >\, > 0 with linearly-independent corresponding eigenvectors {u;} C RP.
If the distribution is nonsingular (so the {Y;} are linearly independent) then 2’3z > 0 for
0 # 2z € RP, each \; > 0 is strictly positive, and X is called “positive-definite”. The cone of
all positive-definite matrices, denoted S, is closed under addition ¥; + X, and conjugation
@'X() by nonsingular p x p matrices ), and in particular under multiplication by positive
scalars. SO, if ¥; and X, are positive-definite and a1, as > 0 then ;X + a3y € S is also
a positive-definite covariance matrix.

Given any vector 4 € RP, and any positive-definite matrix ¥ € S, there exists a Gaussian
random vector ¥ ~ No(u, ) with mean g and covariance X, and joint pdf

Fly| X)) =det(2rE) 2 exp {—2(y — p)S™ (y — w) } -
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One way to construct it is to begin with a vector Z of p independent standard normal random
variables Z; ~ No(0, 1), take the eigendecomposition ¥ = UAU’ of ¥ into the product of
a unitary matrix U (whose columns {u;} are unit eigenvectors of ), a diagonal matrix A
(whose entries are the corresponding eigenvalues {);}), and the transpose U’, then set

Y = pu+UANZ

and note Y is a linear combination of normals and hence is normal, with mean E[Y] =
and (since EZZ' = I, the p x p identity matrix) covariance

E[(Y — ) (Y — )| =E|UAYZ  ZAYU
=UAN: T AU
= UAU' = 3.

Another is to begin with the Cholesky decomposition ¥ = LL" and set Y := p + LZ, with
mean EY = p and covariance E[LZZ'L'| = LL' = ¥..

2 Positive Definite Functions

If we have infinitely-many random variables {Y;} we need to do something a bit different,
since joint pdfs won’t exist (there is no Lebesgue measure “dz” in R*). Typically each
observation Y; is associated with a (vector of) covariate(s) x;, like “time” or “location,”
which will affect the mean and covariance. Let X denote the set where these covariates lie
(often RY or some simple subset of it, for some integer ¢ € N). The {Y;} are called jointly
Gaussian, and {Y'} a “Gaussian Process” or “GP”, if for each finite set I of indices the
vector Y7 = {Y; : i € I} is multivariate normal; in that case the joint distribution of all {Y;}
is completely determined by the mean function and covariance function

u(e) =EY  Clagay) = EIY; — p(@)llY — pla)] i € X.

Thus each univariate marginal distribution is normal, so each Y; ~ No(u;, 0?) has a normal
distribution with mean y; = p(x;) and variance o? = C'(z;,;), and each vector pair [Y;, Y;]'
has a bivariate normal distribution with mean [p(z;), ()] and covariance ¥;; = C(x;, x;).

The mean function u(x) for a Gaussian Process is completely arbitrary, but the covariance
must always be positive-definite— i.e., for each p € N and {z;} C A7,

0< Z ZiC(CEi, CEj)Zj
ij

for each 0 # z € RP. Just as covariance matrices form a positive cone S7, so do covariance
functions— so, if C; and Cy are positive definite, and a1, ay > 0 constant, then a,C)(z,y) +
a2Cy(x, y) is a positive-definite function too and is the covariance function for some Gaussian
process.



The covariance function C' is called “stationary” if it is translation-independent, ¢.e.,
if C(z1,x9) depends only on the vector difference (x; — ), and “isotropic” if it depends
only on the (usually Euclidean) distance |z, — z2|. Commonly used families of isotropic
covariance functions include the Matérn family, the power-exponential, and spherical. Not
all GP covariance functions are isotropic or stationary, though, and not all data are well
represented by isotropic GPs. If data are heteroskedastic (with higher variance for some
x € X than for others), for example, or if differences [Y; —Y}| have variances that depend not
only on distances |z; —z;| but also the directions (x; —z;) or even more general dependence on
(wi,z;), then to use Gaussian Processes one must either (1) use a GP with a non-isotropic or
non-stationary covariance, or (2) find transformations of X or an z-dependent transformation
of Y to achieve homoskedacity and near-isotropy.

2.1 Example 1: Regression

Let X = [—1,1] be an interval, let a; ~ No(ul, 2) be independent normal random variables
for: = 0,1, 2, and set
Y(x) = ag + a1z + aza’.

Then {Y(z)} is a GP with mean

w(z) = E[ap + a1 + ay?]
= o + T + poa”

and covariance function

Cla,y) = E{ [(a0 — o) + (a1 — ) + (a2 — 12)2?] %

[(a0 = o) + (o = )y + (a2 — p2)y?] }
= 0p + wyo; + 2?y’o; (1)
for =1 < z,y < 1. Figure 1 shows a plot of ten realizations with each py; = 0 and 0; = 1.
Note that C(xz,y) can be negative for some x,y if 07 > o + o3; for example, if og = 0y = 1
while 0y = 2, then C(—1,4+1) = —2 so Y (—1) and Y (+1) have covariance —2.
Generalizing the covariance of Eqn (1), for any number d of regression functions {t,,}

we can take ay, No(fim, 07,) and construct a GP Y (x) = 5., Gmtm(x) with mean
w(x) = > pmm(z) and covariance C(z,y) = > 02 (2)n(y). The illustration above
took d = 3 and ,,,(x) = 1,2, 2%, but any number d of basis functions {1,,} can work.

2.2 Example 2: Power-Exponential

For some applications we expect Y to vary continuously with varying x, suggesting we should
want Y (z;) and Y (z;) to be nearly equal when |r; — ;| is small and nearly independent
when |z; — x| is large. Here’s a model to accomplish that.
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Figure 1: Sample paths for quadratic regression model

For a covariate space X C R? of ¢ dimensions, fix 2¢ + 1 parameters:

Variance o2 >0 Marginal variance for each Y (x)
Shapes @ € [1,2]? Determines smoothness in each coordinate
Scales (e R% Length scale (could be different in each dimension)
These determine the stationary (but not isotropic, unless the a’s and ¢’s are constant)

covariance function
d T — Yi |“k
C(z,y) =o’e — ‘ , 2
(z,y) = 0 exp /;_1 0 (2)

a positive-definite function with maximum value 02 when x = y € R? that falls off exponen-
tially in (z4/0;)* in the kth direction. Sample-paths are always continuous but range from
very rough with a = 1 to very smooth with a, = 2. Figure 2 shows ten sample-paths for
a GP with mean p(z) = sin(3x), o0 = 1/4, smoothness ov = 2, and scale ¢ = 1/4 (the mean
is shown as a dashed black curve). This is the most commonly-used covariance in model-
ing computer model output, usually with a;, = 2 (or slightly smaller to improve numerical
stability), often with an added nugget term (again for stability).

Some readers (and reviewers), mesmerized by the similarity of Eqn(2) to the normal
probability density function, confuse the role of “Gaussian” in a GP, thinking it describes
the form of the covariance function C(z,y) instead of the distribution of the {Y'(x;)}. The
covariance function can be any positive-definite function— which does not require that
C(z,y) > 0 for all z,y, as we have seen already with Eqn (1).
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Figure 2: Sample paths for power-exponential model

2.3 Example 3: Hybrid of Regression + Power-Exponential

Sample paths for the model of Section 2.1 (shown in Figure 1) are all perfect parabolas,
with no “noise”, and with strong (positive or negative) correlation for Y (z) at points at
z = +1 and x = —1 for some values of {o;}. Sample paths for the model of 2.2 (shown in
Figure 2) are smooth but feature negligible correlation for distant points. Some applications
might feature both broad features (like the slope and curvature of the quadratic models of
Figure 1) that persist across all observations, along with local wiggling (like that of Figure 2).
These can all be accommodated in a GP with positive-definite covariance of the form
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If there is additional measurement-error or replication variation associated with individual
observations and not just locations (in computer experiments this typically arises only when
stochastic methods are used in model evaluation, but it always happens for observations
of field data), a so-called “nugget” ¢24;; proportional to the Kronecker delta can be added
to C(z;,2;) above. Without this nugget the posterior distribution for all these curves will
exactly duplicate the computer model output at the design points where the model was
run; with a nugget, the curves will only come close to the computer outputs (about +o,,
typically). By increasing the diagonal elements of the covariance matrix, adding such a
nugget will improve its conditioning and improve numerical stability.

q

Tik — Xy

Clwiai) = Y opthm(w:)¥m(x;) + 0f exp {_ 2 ‘%
k=1

0<m<d



3 Connections with PCA

Computing unconditional samples from the models of Section 2.2 (as in Figure 2) or condi-
tional ones (given observed values of a computer model actually evaluating Y; at a few values
of ;) at some number p of points entails the inversion of a p X p matrix, requiring O(p*)
operations and O(p?) storage locations, making this impractical for large p. One solution is
to reduce the dimension to a smaller number r» < p by some means.

Consider now the case where X C R? is compact and C(x,y) is continuous and hence
bounded on X2, Then the Fredholm integral operator on Ly(X,dx) given by

ef)(x) = /X O, y)f () dy

is positive and trace-class, since

(el = [ 1) Oy o) drdy > 0

by the positive-definiteness of C. It follows that € has orthonormal eigenfunctions {¢,} C
Ly(X,dz) with summable nonnegative eigenvalues 2 > 0, and that we have the representa-
tions

Y(z) = Z Ondn(x) 2, C(x,y) = Z O n (@) bu(y)

n<oo n<oo

for iid {Z,} s No(0, 1) (this goes by the name of “Karhunen-Loéve expansion”). For any

r € N we can consider the “reduced” process Y, with covariance C,. given by
V(1) =) 0utn(2)Zn Crl,y) =Y 0mdn(2)dn(y).
n<r n<r

The processes Y and Y, will differ in squared L, norm by >° . o2, afraction ), o2/ o2
of the entire variance (note Y o2 = [, C(x, ) dz < 00).

Thus every GP on a compact X C R? is either a finite or an infinite version of the
regression model of Section (2.1).

3.1 Practical Matters

In practice we don’t know C'(z, y) exactly, hence can’t find {¢, } or {02}, and we only observe
Y (z) at a few locations z;. Still, those values determine a positive-definite covariance matrix

Eij = C(l‘l, l‘j)

whose (largest few, if necessary) eigenvalues o2 and eigenvectors u, could be discerned or

approximated if we only knew ¥;;. We don’t, of course, but we can approximate it and
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p; = pu(x;) by sample estimates

fl; = %;Yn(%) Yij = N zn: (Yn(xl) - ﬂz’) (Yn(xj) - ﬂj)

~

based on N replicates, leading through eigendecomposition > = UAU" with A = diag({62})
to representations

n<r n<r

4 Posterior Distributions

In our applications Y; represents the output of a computer model at input vector z;; the
input vector may include both components whose value we observe or even specify (called
“environmental” and “control” variables in the literature: Sacks et al., 1989, §2.1), as well as
uncertain features that we would like to discover (“model” variables). The computer model
is too slow or expensive to evaluate it at an exhaustive collection of inputs, so we instead
evaluate it at a set of carefully chosen “design” points xp = {z;};ep C X (often chosen from
a space-filling LHC design), often with the goal of predicting the values Yp = {Y;}icp at
other sites zp = {x;};,cp where the computer model has not been run.

If we use a GP for modeling the prior distribution, describing how uncertain Y; is at each
x; before introducing as data the output of the computer model, then the conditional distri-
bution of Yp given the observed values Yp at the design points (the posterior distribution)
is also a GP, but now the mean u(z) and covariance functions become

H’P‘D = /LLP —+ E’PDE’BID |:Y’D — ,LLD] E'P'P|'D - EPP - EPDZ'BIDEDP

where, for example, Ypp has entries E[(Y; — 11;) (Y; — ;)] for i € D, j € P. Figure 3 shows 50
sample paths from this conditional distribution, given observed values at four design points
xp = {—0.75,-0.5,+0.25,40.5}. All paths pass through the design points exactly, and
variability is small near those points and large away from them:.

4.1 Parameter Space “Reduction”

The fifty posterior curves in Figure (3) are more tightly arrayed and fill a smaller area than
the ten prior curves in Figure (2); in some sense the posterior is more concentrated than the
prior. In this section we will quantify how the volume of plausible values for the parameters
shrinks with the observation of data.

4.1.1 Conjugate Prior Regression
The standard Gaussian linear regression model is

Y | X ~ No(X3,%)



Figure 3: Posterior sample paths for power-exponential model, given Yp at four design points
Ip.

for some n x p design (or covariate) matrix X, n x n error covariance matrix X (often, but not
necessarily, diagonal or even of the form o[ for iid “errors”), and uncertain regression vector
B € RP. For full-rank X the maximum likelihood estimator B for (8 is a linear combination
of the {Y;}, hence once again normally distributed:

f=[XT X' X's Y
~ No(B,[X'S71X]1).

In the Bayesian approach, / (like all uncertain quantities) is viewed as a random variable with
some prior probability distribution. The most convenient choice is to take 5 ~ No(b, V') to
be normal too, with some “prior mean” vector b € R? and “prior covariance” matrix V € S¥.
The Bayes estimate is mean of the posterior (i.e., conditional on Y') distribution of 3; with
a Gaussian prior distribution, this posterior distribution is once again Gaussian (that’s what
makes this choice so convenient) with posterior mean:

b =El3 Y] = [XETX + VI XS + V)
and posterior covariance
Vy = E[(ﬂ - bY)(ﬁ - by)l | Y] = [X’EilX + V*l]fl.

In the “noninformative” limit as V' — 0, by — 3 and Vy converges to the covariance
matrix for 3, so the frequentist and Bayesian estimates and error bounds coincide in the
limit as prior information becomes more and more diffuse or the data more copious.



Both prior and posterior distributions for 3 are p-variate normal, but with different mean
and covariance parameters:

Prior: 8 ~ No(b,V) Posterior: Y ~ No(by, Vy).

For the prior distribution, the smallest volume sets in RP with a specified probability of
containing 3 are ellipsoids of the form

E)={p: (B-bYV(B-b) <c}

for some ¢ > 0. Since (8 —b)'V (8 — b) has the x> distribution, such a set will contain /3
with probability v (say, 90%) if we take ¢ = Xf,(’y), the 100v% quantile of the x? distribution
with p degrees of freedom. The volume in RP of such an ellipsoid is

vol(€(c)) = w, v/det(cV)

where w, = 7?/2/T (1 +p/2) is the volume of the unit ball in RP. Thus for any 0 < v < 1 the
posterior 100v% HPD set is smaller in volume than the prior 100v% HPD by a factor of

wp y/det(x2(7)V) det (V)12
wp \/det(x2()Vy)  det (X'S71X + o) e

= {det(V)det (X'S'X +V 1)}
= {det (T +V2x'S XV P

1/2

For isotropic prior covariance V = v?I and eigenvalues \; > ... > Ap > 0 for X'S71X this
is

p

1/2 .
Volume shrinkage ratio = {H(l + v2)\z~)} > H VA, (3)
i=1

=1

bounded below for any r € {1,--- ,p} by v" times the square root of the product of the first
r principal values.
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