
Some Notes on Gaussian Pro
esses & RegressionRLW, Draft 2.1Mar
h 20, 20141 Positive De�nite Matri
esLet Y = (Y1; � � � ; Yp)0 be a p-dimensional random ve
tor, thought of as a random (p � 1)matrix. If they exist, the mean ve
tor and 
ovarian
e matrix for Y are� := EY � := E(Y � �)(Y � �)0(they will both exist whenever E(Yj)2 < 1 for ea
h j). The entries �i of the p � 1 
olumnmatrix � are the means �i = EXi of the variables, while the diagonal entries �ii of the p� pmatrix � are the varian
es of the fYig. These diagonal entries must be nonnegative, but theo�-diagonal entries �ij = E(Yi � �i)(Yj � �j)may be positive, negative, or zero as Yi and Yj are positively-, negatively-, or un-
orrelated.These entries aren't entirely arbitrary, though; 
learly � must be symmetri
, but even thatisn't enough.For any p real numbers fzjg the square of the linear 
ombination z0(Y��) =P zj(Yj��j)is positive| so ne
essarily its expe
tation is too:0 � E �����Xj zj(Yj � �j)�����2 = E[z0(Y � �)℄[z0(Y � �)℄0 = z0�z =Xij zi�ijzj;a property 
alled \positive semi-de�niteness" whi
h implies that � has nonnegative eigenval-ues �1 � �2 � � � � � �p � 0 with linearly-independent 
orresponding eigenve
tors fujg � R
p.If the distribution is nonsingular (so the fYig are linearly independent) then z0�z > 0 for0 6= z 2 R

p, ea
h �j > 0 is stri
tly positive, and � is 
alled \positive-de�nite". The 
one ofall positive-de�nite matri
es, denoted Sp+, is 
losed under addition �1 +�2 and 
onjugationQ0�Q by nonsingular p � p matri
es Q, and in parti
ular under multipli
ation by positives
alars. SO, if �1 and �2 are positive-de�nite and a1; a2 > 0 then a1�1 + a2�2 2 Sp+ is alsoa positive-de�nite 
ovarian
e matrix.Given any ve
tor � 2 R
p, and any positive-de�nite matrix � 2 Sp+, there exists a Gaussianrandom ve
tor Y � No(�;�) with mean � and 
ovarian
e �, and joint pdff(y j �;�) = det(2��)� 12 exp��12(y � �)0��1(y � �)	 :1



One way to 
onstru
t it is to begin with a ve
tor Z of p independent standard normal randomvariables Zj � No(0; 1), take the eigende
omposition � = U�U 0 of � into the produ
t ofa unitary matrix U (whose 
olumns fujg are unit eigenve
tors of �), a diagonal matrix �(whose entries are the 
orresponding eigenvalues f�jg), and the transpose U 0, then setY := �+ U� 12Zand note Y is a linear 
ombination of normals and hen
e is normal, with mean E[Y ℄ = �and (sin
e EZZ 0 = I, the p� p identity matrix) 
ovarian
eE[(Y � �)(Y � �)0℄ = EhU� 12Z Z 0� 12 0U 0i= U� 12 I � 12U 0= U�U 0 = �:Another is to begin with the Cholesky de
omposition � = LL0 and set Y := � + LZ, withmean EY = � and 
ovarian
e E[LZZ 0L0℄ = LL0 = �.2 Positive De�nite Fun
tionsIf we have in�nitely-many random variables fYig we need to do something a bit di�erent,sin
e joint pdfs won't exist (there is no Lebesgue measure \dx" in R
1). Typi
ally ea
hobservation Yi is asso
iated with a (ve
tor of) 
ovariate(s) xi, like \time" or \lo
ation,"whi
h will a�e
t the mean and 
ovarian
e. Let X denote the set where these 
ovariates lie(often R

q or some simple subset of it, for some integer q 2 N). The fYig are 
alled jointlyGaussian, and fY g a \Gaussian Pro
ess" or \GP", if for ea
h �nite set I of indi
es theve
tor YI = fYi : i 2 Ig is multivariate normal; in that 
ase the joint distribution of all fYigis 
ompletely determined by the mean fun
tion and 
ovarian
e fun
tion�(xi) = EYi C(xi; xj) = E[Yi � �(xi)℄[Yj � �(xj)℄0 xi; xj 2 X :Thus ea
h univariate marginal distribution is normal, so ea
h Yi � No(�i; �2i ) has a normaldistribution with mean �i = �(xi) and varian
e �2i = C(xi; xi), and ea
h ve
tor pair [Yi; Yj℄0has a bivariate normal distribution with mean [�(xi); �(xj)℄0 and 
ovarian
e �ij = C(xi; xj).The mean fun
tion �(x) for a Gaussian Pro
ess is 
ompletely arbitrary, but the 
ovarian
emust always be positive-de�nite| i.e., for ea
h p 2 N and fxjg � X p,0 <Xij ziC(xi; xj)zjfor ea
h 0 6= z 2 R
p. Just as 
ovarian
e matri
es form a positive 
one Sp+, so do 
ovarian
efun
tions| so, if C1 and C2 are positive de�nite, and a1; a2 > 0 
onstant, then a1C1(x; y)+a2C2(x; y) is a positive-de�nite fun
tion too and is the 
ovarian
e fun
tion for some Gaussianpro
ess. 2



The 
ovarian
e fun
tion C is 
alled \stationary" if it is translation-independent, i.e.,if C(x1; x2) depends only on the ve
tor di�eren
e (x1 � x2), and \isotropi
" if it dependsonly on the (usually Eu
lidean) distan
e jx1 � x2j. Commonly used families of isotropi

ovarian
e fun
tions in
lude the Mat�ern family, the power-exponential, and spheri
al. Notall GP 
ovarian
e fun
tions are isotropi
 or stationary, though, and not all data are wellrepresented by isotropi
 GPs. If data are heteroskedasti
 (with higher varian
e for somex 2 X than for others), for example, or if di�eren
es [Yi�Yj℄ have varian
es that depend notonly on distan
es jxi�xj j but also the dire
tions (xi�xj) or even more general dependen
e on(xi; xj), then to use Gaussian Pro
esses one must either (1) use a GP with a non-isotropi
 ornon-stationary 
ovarian
e, or (2) �nd transformations of X or an x-dependent transformationof Y to a
hieve homoskeda
ity and near-isotropy.2.1 Example 1: RegressionLet X = [�1; 1℄ be an interval, let ai ind� No(�i; �2i ) be independent normal random variablesfor i = 0; 1; 2, and set Y (x) = a0 + a1x + a2x2:Then fY (x)g is a GP with mean�(x) = E[a0 + a1x + a2x2℄= �0 + �1x + �2x2and 
ovarian
e fun
tionC(x; y) = En�(a0 � �0) + (a1 � �1)x+ (a2 � �2)x2���(a0 � �0) + (a1 � �1)y + (a2 � �2)y2�o= �20 + xy�21 + x2y2�22 (1)for �1 � x; y � 1. Figure 1 shows a plot of ten realizations with ea
h �j = 0 and �j = 1.Note that C(x; y) 
an be negative for some x; y if �21 > �20 + �22; for example, if �0 = �2 = 1while �1 = 2, then C(�1;+1) = �2 so Y (�1) and Y (+1) have 
ovarian
e �2.Generalizing the 
ovarian
e of Eqn (1), for any number d of regression fun
tions f mgwe 
an take am ind� No(�m; �2m) and 
onstru
t a GP Y (x) = P0�m<d am m(x) with mean�(x) = P�m m(x) and 
ovarian
e C(x; y) = P �2m m(x) m(y). The illustration abovetook d = 3 and  m(x) = 1; x; x2, but any number d of basis fun
tions f mg 
an work.2.2 Example 2: Power-ExponentialFor some appli
ations we expe
t Y to vary 
ontinuously with varying x, suggesting we shouldwant Y (xi) and Y (xj) to be nearly equal when jxi � xjj is small and nearly independentwhen jxi � xjj is large. Here's a model to a

omplish that.3



−1.0 −0.5 0.0 0.5 1.0

−
2

0
1

2
3

4

x

y

Figure 1: Sample paths for quadrati
 regression modelFor a 
ovariate spa
e X � R
q of q dimensions, �x 2q + 1 parameters:Varian
e �2 > 0 Marginal varian
e for ea
h Y (x)Shapes ~� 2 [1; 2℄q Determines smoothness in ea
h 
oordinateS
ales ~̀ 2 R

q+ Length s
ale (
ould be di�erent in ea
h dimension)These determine the stationary (but not isotropi
, unless the �'s and `'s are 
onstant)
ovarian
e fun
tion C(x; y) = �2 exp(� qXk=1 ���xk � yk`k ����k) ; (2)a positive-de�nite fun
tion with maximum value �2 when x = y 2 R
q that falls o� exponen-tially in (xk=`k)�k in the kth dire
tion. Sample-paths are always 
ontinuous but range fromvery rough with �k = 1 to very smooth with �k = 2. Figure 2 shows ten sample-paths fora GP with mean �(x) = sin(3x), � = 1=4, smoothness � = 2, and s
ale ` = 1=4 (the meanis shown as a dashed bla
k 
urve). This is the most 
ommonly-used 
ovarian
e in model-ing 
omputer model output, usually with �k = 2 (or slightly smaller to improve numeri
alstability), often with an added nugget term (again for stability).Some readers (and reviewers), mesmerized by the similarity of Eqn (2) to the normalprobability density fun
tion, 
onfuse the role of \Gaussian" in a GP, thinking it des
ribesthe form of the 
ovarian
e fun
tion C(x; y) instead of the distribution of the fY (xi)g. The
ovarian
e fun
tion 
an be any positive-de�nite fun
tion| whi
h does not require thatC(x; y) � 0 for all x; y, as we have seen already with Eqn (1).4
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Figure 2: Sample paths for power-exponential model2.3 Example 3: Hybrid of Regression + Power-ExponentialSample paths for the model of Se
tion 2.1 (shown in Figure 1) are all perfe
t parabolas,with no \noise", and with strong (positive or negative) 
orrelation for Y (x) at points atx = +1 and x = �1 for some values of f�ig. Sample paths for the model of 2.2 (shown inFigure 2) are smooth but feature negligible 
orrelation for distant points. Some appli
ationsmight feature both broad features (like the slope and 
urvature of the quadrati
 models ofFigure 1) that persist a
ross all observations, along with lo
al wiggling (like that of Figure 2).These 
an all be a

ommodated in a GP with positive-de�nite 
ovarian
e of the formC(xi; xj) = X0�m<d �2m m(xi) m(xj) + �2d exp(� qXk=1 ���xik � xjk`k ����k) :If there is additional measurement-error or repli
ation variation asso
iated with individualobservations and not just lo
ations (in 
omputer experiments this typi
ally arises only whensto
hasti
 methods are used in model evaluation, but it always happens for observationsof �eld data), a so-
alled \nugget" �2nÆij proportional to the Krone
ker delta 
an be addedto C(xi; xj) above. Without this nugget the posterior distribution for all these 
urves willexa
tly dupli
ate the 
omputer model output at the design points where the model wasrun; with a nugget, the 
urves will only 
ome 
lose to the 
omputer outputs (about ��n,typi
ally). By in
reasing the diagonal elements of the 
ovarian
e matrix, adding su
h anugget will improve its 
onditioning and improve numeri
al stability.
5



3 Conne
tions with PCAComputing un
onditional samples from the models of Se
tion 2.2 (as in Figure 2) or 
ondi-tional ones (given observed values of a 
omputer model a
tually evaluating Yi at a few valuesof xi) at some number p of points entails the inversion of a p � p matrix, requiring O(p3)operations and O(p3) storage lo
ations, making this impra
ti
al for large p. One solution isto redu
e the dimension to a smaller number r � p by some means.Consider now the 
ase where X � R
q is 
ompa
t and C(x; y) is 
ontinuous and hen
ebounded on X 2. Then the Fredholm integral operator on L2(X ; dx) given by

C[f ℄(x) = ZX C(x; y)f(y) dyis positive and tra
e-
lass, sin
ehf;C[f ℄i = ZX 2 f(x)C(x; y)f(y) dx dy � 0by the positive-de�niteness of C. It follows that C has orthonormal eigenfun
tions f�ng �L2(X ; dx) with summable nonnegative eigenvalues �2n > 0, and that we have the representa-tions Y (x) = Xn<1�n�n(x)Zn C(x; y) = Xn<1�2n�n(x)�n(y)for iid fZng iid� No(0; 1) (this goes by the name of \Karhunen-Lo�eve expansion"). For anyr 2 N we 
an 
onsider the \redu
ed" pro
ess Yr with 
ovarian
e Cr given byYr(x) =Xn�r �n�n(x)Zn Cr(x; y) =Xn�r �2n�n(x)�n(y):The pro
esses Y and Yr will di�er in squared L2 norm byPn>r �2n, a fra
tionPn>r �2n=Pn �2nof the entire varian
e (note Pn �2n = RX C(x; x) dx <1).Thus every GP on a 
ompa
t X � R
q is either a �nite or an in�nite version of theregression model of Se
tion (2.1).3.1 Pra
ti
al MattersIn pra
ti
e we don't know C(x; y) exa
tly, hen
e 
an't �nd f�ng or f�2ng, and we only observeY (x) at a few lo
ations xi. Still, those values determine a positive-de�nite 
ovarian
e matrix�ij = C(xi; xj)whose (largest few, if ne
essary) eigenvalues �2n and eigenve
tors un 
ould be dis
erned orapproximated if we only knew �ij. We don't, of 
ourse, but we 
an approximate it and6



�i = �(xi) by sample estimates�̂i = 1N Xn Yn(xi) �̂ij = 1N Xn �Yn(xi)� �̂i��Yn(xj)� �̂j�based on N repli
ates, leading through eigende
omposition �̂ = Û �̂Û 0 with � = diag(f�̂2ng)to representationsYr(xi) =Xn�r Ûin�̂nZn Cr(xi; xj) =Xn�r Ûin�̂2nÛjn:4 Posterior DistributionsIn our appli
ations Yi represents the output of a 
omputer model at input ve
tor xi; theinput ve
tor may in
lude both 
omponents whose value we observe or even spe
ify (
alled\environmental" and \
ontrol" variables in the literature: Sa
ks et al., 1989, x2.1), as well asun
ertain features that we would like to dis
over (\model" variables). The 
omputer modelis too slow or expensive to evaluate it at an exhaustive 
olle
tion of inputs, so we insteadevaluate it at a set of 
arefully 
hosen \design" points xD = fxigi2D � X (often 
hosen froma spa
e-�lling LHC design), often with the goal of predi
ting the values YP = fYigi2P atother sites xP = fxigi2P where the 
omputer model has not been run.If we use a GP for modeling the prior distribution, des
ribing how un
ertain Yi is at ea
hxi before introdu
ing as data the output of the 
omputer model, then the 
onditional distri-bution of YP given the observed values YD at the design points (the posterior distribution)is also a GP, but now the mean �(x) and 
ovarian
e fun
tions be
ome�PjD = �P + �PD��1DD�YD � �D� �PPjD = �PP � �PD��1DD�DPwhere, for example, �DP has entries E[(Yi��i)(Yj��j)℄ for i 2 D, j 2 P. Figure 3 shows 50sample paths from this 
onditional distribution, given observed values at four design pointsxD = f�0:75;�0:5;+0:25;+0:5g. All paths pass through the design points exa
tly, andvariability is small near those points and large away from them.4.1 Parameter Spa
e \Redu
tion"The �fty posterior 
urves in Figure (3) are more tightly arrayed and �ll a smaller area thanthe ten prior 
urves in Figure (2); in some sense the posterior is more 
on
entrated than theprior. In this se
tion we will quantify how the volume of plausible values for the parametersshrinks with the observation of data.4.1.1 Conjugate Prior RegressionThe standard Gaussian linear regression model isY j X � No(X�;�)7
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Figure 3: Posterior sample paths for power-exponential model, given YD at four design pointsxD.for some n�p design (or 
ovariate) matrixX, n�n error 
ovarian
e matrix � (often, but notne
essarily, diagonal or even of the form �2I for iid \errors"), and un
ertain regression ve
tor� 2 R
p. For full-rank X the maximum likelihood estimator �̂ for � is a linear 
ombinationof the fYig, hen
e on
e again normally distributed:�̂ = [X 0��1X℄�1X 0��1Y� No��; [X 0��1X℄�1�:In the Bayesian approa
h, � (like all un
ertain quantities) is viewed as a random variable withsome prior probability distribution. The most 
onvenient 
hoi
e is to take � � No(b; V ) tobe normal too, with some \prior mean" ve
tor b 2 R

q and \prior 
ovarian
e" matrix V 2 Sp+.The Bayes estimate is mean of the posterior (i.e., 
onditional on Y ) distribution of �; witha Gaussian prior distribution, this posterior distribution is on
e again Gaussian (that's whatmakes this 
hoi
e so 
onvenient) with posterior mean:bY = E[� j Y ℄ = [X 0��1X + V �1℄�1[X 0��1Y + V �1b℄and posterior 
ovarian
eVY = E[(� � bY )(� � bY )0 j Y ℄ = [X 0��1X + V �1℄�1:In the \noninformative" limit as V �1 ! 0, bY ! �̂ and VY 
onverges to the 
ovarian
ematrix for �̂, so the frequentist and Bayesian estimates and error bounds 
oin
ide in thelimit as prior information be
omes more and more di�use or the data more 
opious.8



Both prior and posterior distributions for � are p-variate normal, but with di�erent meanand 
ovarian
e parameters:Prior: � � No(b; V ) Posterior: � j Y � No(bY ; VY ):For the prior distribution, the smallest volume sets in R
p with a spe
i�ed probability of
ontaining � are ellipsoids of the formE(
) � �� : (� � b)0V �1(� � b) � 
	for some 
 > 0. Sin
e (� � b)0V �1(� � b) has the �2p distribution, su
h a set will 
ontain �with probability 
 (say, 90%) if we take 
 = �2p(
), the 100
% quantile of the �2 distributionwith p degrees of freedom. The volume in R

p of su
h an ellipsoid isvol�E(
)� = !p pdet(
V )where !p � �p=2=�(1+ p=2) is the volume of the unit ball in R
p. Thus for any 0 < 
 < 1 theposterior 100
% HPD set is smaller in volume than the prior 100
% HPD by a fa
tor of!p qdet(�2p(
)V )!p qdet(�2p(
)VY ) = det(V )1=2det �X 0��1X + V �1��1=2= �det(V ) det �X 0��1X + V �1�	1=2= �det �I + V 1=2X 0��1XV 1=2�	1=2 :For isotropi
 prior 
ovarian
e V = v2I and eigenvalues �1 � ::: � �p � 0 for X 0��1X, thisis Volume shrinkage ratio = ( pYi=1(1 + v2�i))1=2 � vr rYi=1p�i; (3)bounded below for any r 2 f1; � � � ; pg by vr times the square root of the produ
t of the �rstr prin
ipal values.Referen
esNovak, J., Novak, K., Pratt, S., Vredevoogd, J., Coleman-Smith, C. E., and Wolpert,R. L. (2012), \Determining Fundamental Properties of Matter Created in Ultrarelativisti
Heavy-Ion Collisions," Preprint, Department of Physi
s and Astronomy, Mi
higan StateUniversity, Draft 2012-11-26.Sa
ks, J., Wel
h, W. J., Mit
hell, T. J., and Wynn, H. P. (1989), \Design and Analysis ofComputer Experiments," Statisti
al S
ien
e, 4, 409{435. Last edited: Mar
h 20, 20149


