
Some Notes on Gaussian Proesses & RegressionRLW, Draft 2.1Marh 20, 20141 Positive De�nite MatriesLet Y = (Y1; � � � ; Yp)0 be a p-dimensional random vetor, thought of as a random (p � 1)matrix. If they exist, the mean vetor and ovariane matrix for Y are� := EY � := E(Y � �)(Y � �)0(they will both exist whenever E(Yj)2 < 1 for eah j). The entries �i of the p � 1 olumnmatrix � are the means �i = EXi of the variables, while the diagonal entries �ii of the p� pmatrix � are the varianes of the fYig. These diagonal entries must be nonnegative, but theo�-diagonal entries �ij = E(Yi � �i)(Yj � �j)may be positive, negative, or zero as Yi and Yj are positively-, negatively-, or un-orrelated.These entries aren't entirely arbitrary, though; learly � must be symmetri, but even thatisn't enough.For any p real numbers fzjg the square of the linear ombination z0(Y��) =P zj(Yj��j)is positive| so neessarily its expetation is too:0 � E �����Xj zj(Yj � �j)�����2 = E[z0(Y � �)℄[z0(Y � �)℄0 = z0�z =Xij zi�ijzj;a property alled \positive semi-de�niteness" whih implies that � has nonnegative eigenval-ues �1 � �2 � � � � � �p � 0 with linearly-independent orresponding eigenvetors fujg � R
p.If the distribution is nonsingular (so the fYig are linearly independent) then z0�z > 0 for0 6= z 2 R

p, eah �j > 0 is stritly positive, and � is alled \positive-de�nite". The one ofall positive-de�nite matries, denoted Sp+, is losed under addition �1 +�2 and onjugationQ0�Q by nonsingular p � p matries Q, and in partiular under multipliation by positivesalars. SO, if �1 and �2 are positive-de�nite and a1; a2 > 0 then a1�1 + a2�2 2 Sp+ is alsoa positive-de�nite ovariane matrix.Given any vetor � 2 R
p, and any positive-de�nite matrix � 2 Sp+, there exists a Gaussianrandom vetor Y � No(�;�) with mean � and ovariane �, and joint pdff(y j �;�) = det(2��)� 12 exp��12(y � �)0��1(y � �)	 :1



One way to onstrut it is to begin with a vetor Z of p independent standard normal randomvariables Zj � No(0; 1), take the eigendeomposition � = U�U 0 of � into the produt ofa unitary matrix U (whose olumns fujg are unit eigenvetors of �), a diagonal matrix �(whose entries are the orresponding eigenvalues f�jg), and the transpose U 0, then setY := �+ U� 12Zand note Y is a linear ombination of normals and hene is normal, with mean E[Y ℄ = �and (sine EZZ 0 = I, the p� p identity matrix) ovarianeE[(Y � �)(Y � �)0℄ = EhU� 12Z Z 0� 12 0U 0i= U� 12 I � 12U 0= U�U 0 = �:Another is to begin with the Cholesky deomposition � = LL0 and set Y := � + LZ, withmean EY = � and ovariane E[LZZ 0L0℄ = LL0 = �.2 Positive De�nite FuntionsIf we have in�nitely-many random variables fYig we need to do something a bit di�erent,sine joint pdfs won't exist (there is no Lebesgue measure \dx" in R
1). Typially eahobservation Yi is assoiated with a (vetor of) ovariate(s) xi, like \time" or \loation,"whih will a�et the mean and ovariane. Let X denote the set where these ovariates lie(often R

q or some simple subset of it, for some integer q 2 N). The fYig are alled jointlyGaussian, and fY g a \Gaussian Proess" or \GP", if for eah �nite set I of indies thevetor YI = fYi : i 2 Ig is multivariate normal; in that ase the joint distribution of all fYigis ompletely determined by the mean funtion and ovariane funtion�(xi) = EYi C(xi; xj) = E[Yi � �(xi)℄[Yj � �(xj)℄0 xi; xj 2 X :Thus eah univariate marginal distribution is normal, so eah Yi � No(�i; �2i ) has a normaldistribution with mean �i = �(xi) and variane �2i = C(xi; xi), and eah vetor pair [Yi; Yj℄0has a bivariate normal distribution with mean [�(xi); �(xj)℄0 and ovariane �ij = C(xi; xj).The mean funtion �(x) for a Gaussian Proess is ompletely arbitrary, but the ovarianemust always be positive-de�nite| i.e., for eah p 2 N and fxjg � X p,0 <Xij ziC(xi; xj)zjfor eah 0 6= z 2 R
p. Just as ovariane matries form a positive one Sp+, so do ovarianefuntions| so, if C1 and C2 are positive de�nite, and a1; a2 > 0 onstant, then a1C1(x; y)+a2C2(x; y) is a positive-de�nite funtion too and is the ovariane funtion for some Gaussianproess. 2



The ovariane funtion C is alled \stationary" if it is translation-independent, i.e.,if C(x1; x2) depends only on the vetor di�erene (x1 � x2), and \isotropi" if it dependsonly on the (usually Eulidean) distane jx1 � x2j. Commonly used families of isotropiovariane funtions inlude the Mat�ern family, the power-exponential, and spherial. Notall GP ovariane funtions are isotropi or stationary, though, and not all data are wellrepresented by isotropi GPs. If data are heteroskedasti (with higher variane for somex 2 X than for others), for example, or if di�erenes [Yi�Yj℄ have varianes that depend notonly on distanes jxi�xj j but also the diretions (xi�xj) or even more general dependene on(xi; xj), then to use Gaussian Proesses one must either (1) use a GP with a non-isotropi ornon-stationary ovariane, or (2) �nd transformations of X or an x-dependent transformationof Y to ahieve homoskedaity and near-isotropy.2.1 Example 1: RegressionLet X = [�1; 1℄ be an interval, let ai ind� No(�i; �2i ) be independent normal random variablesfor i = 0; 1; 2, and set Y (x) = a0 + a1x + a2x2:Then fY (x)g is a GP with mean�(x) = E[a0 + a1x + a2x2℄= �0 + �1x + �2x2and ovariane funtionC(x; y) = En�(a0 � �0) + (a1 � �1)x+ (a2 � �2)x2���(a0 � �0) + (a1 � �1)y + (a2 � �2)y2�o= �20 + xy�21 + x2y2�22 (1)for �1 � x; y � 1. Figure 1 shows a plot of ten realizations with eah �j = 0 and �j = 1.Note that C(x; y) an be negative for some x; y if �21 > �20 + �22; for example, if �0 = �2 = 1while �1 = 2, then C(�1;+1) = �2 so Y (�1) and Y (+1) have ovariane �2.Generalizing the ovariane of Eqn (1), for any number d of regression funtions f mgwe an take am ind� No(�m; �2m) and onstrut a GP Y (x) = P0�m<d am m(x) with mean�(x) = P�m m(x) and ovariane C(x; y) = P �2m m(x) m(y). The illustration abovetook d = 3 and  m(x) = 1; x; x2, but any number d of basis funtions f mg an work.2.2 Example 2: Power-ExponentialFor some appliations we expet Y to vary ontinuously with varying x, suggesting we shouldwant Y (xi) and Y (xj) to be nearly equal when jxi � xjj is small and nearly independentwhen jxi � xjj is large. Here's a model to aomplish that.3
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Figure 1: Sample paths for quadrati regression modelFor a ovariate spae X � R
q of q dimensions, �x 2q + 1 parameters:Variane �2 > 0 Marginal variane for eah Y (x)Shapes ~� 2 [1; 2℄q Determines smoothness in eah oordinateSales ~̀ 2 R

q+ Length sale (ould be di�erent in eah dimension)These determine the stationary (but not isotropi, unless the �'s and `'s are onstant)ovariane funtion C(x; y) = �2 exp(� qXk=1 ���xk � yk`k ����k) ; (2)a positive-de�nite funtion with maximum value �2 when x = y 2 R
q that falls o� exponen-tially in (xk=`k)�k in the kth diretion. Sample-paths are always ontinuous but range fromvery rough with �k = 1 to very smooth with �k = 2. Figure 2 shows ten sample-paths fora GP with mean �(x) = sin(3x), � = 1=4, smoothness � = 2, and sale ` = 1=4 (the meanis shown as a dashed blak urve). This is the most ommonly-used ovariane in model-ing omputer model output, usually with �k = 2 (or slightly smaller to improve numerialstability), often with an added nugget term (again for stability).Some readers (and reviewers), mesmerized by the similarity of Eqn (2) to the normalprobability density funtion, onfuse the role of \Gaussian" in a GP, thinking it desribesthe form of the ovariane funtion C(x; y) instead of the distribution of the fY (xi)g. Theovariane funtion an be any positive-de�nite funtion| whih does not require thatC(x; y) � 0 for all x; y, as we have seen already with Eqn (1).4
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Figure 2: Sample paths for power-exponential model2.3 Example 3: Hybrid of Regression + Power-ExponentialSample paths for the model of Setion 2.1 (shown in Figure 1) are all perfet parabolas,with no \noise", and with strong (positive or negative) orrelation for Y (x) at points atx = +1 and x = �1 for some values of f�ig. Sample paths for the model of 2.2 (shown inFigure 2) are smooth but feature negligible orrelation for distant points. Some appliationsmight feature both broad features (like the slope and urvature of the quadrati models ofFigure 1) that persist aross all observations, along with loal wiggling (like that of Figure 2).These an all be aommodated in a GP with positive-de�nite ovariane of the formC(xi; xj) = X0�m<d �2m m(xi) m(xj) + �2d exp(� qXk=1 ���xik � xjk`k ����k) :If there is additional measurement-error or repliation variation assoiated with individualobservations and not just loations (in omputer experiments this typially arises only whenstohasti methods are used in model evaluation, but it always happens for observationsof �eld data), a so-alled \nugget" �2nÆij proportional to the Kroneker delta an be addedto C(xi; xj) above. Without this nugget the posterior distribution for all these urves willexatly dupliate the omputer model output at the design points where the model wasrun; with a nugget, the urves will only ome lose to the omputer outputs (about ��n,typially). By inreasing the diagonal elements of the ovariane matrix, adding suh anugget will improve its onditioning and improve numerial stability.
5



3 Connetions with PCAComputing unonditional samples from the models of Setion 2.2 (as in Figure 2) or ondi-tional ones (given observed values of a omputer model atually evaluating Yi at a few valuesof xi) at some number p of points entails the inversion of a p � p matrix, requiring O(p3)operations and O(p3) storage loations, making this impratial for large p. One solution isto redue the dimension to a smaller number r � p by some means.Consider now the ase where X � R
q is ompat and C(x; y) is ontinuous and henebounded on X 2. Then the Fredholm integral operator on L2(X ; dx) given by

C[f ℄(x) = ZX C(x; y)f(y) dyis positive and trae-lass, sinehf;C[f ℄i = ZX 2 f(x)C(x; y)f(y) dx dy � 0by the positive-de�niteness of C. It follows that C has orthonormal eigenfuntions f�ng �L2(X ; dx) with summable nonnegative eigenvalues �2n > 0, and that we have the representa-tions Y (x) = Xn<1�n�n(x)Zn C(x; y) = Xn<1�2n�n(x)�n(y)for iid fZng iid� No(0; 1) (this goes by the name of \Karhunen-Lo�eve expansion"). For anyr 2 N we an onsider the \redued" proess Yr with ovariane Cr given byYr(x) =Xn�r �n�n(x)Zn Cr(x; y) =Xn�r �2n�n(x)�n(y):The proesses Y and Yr will di�er in squared L2 norm byPn>r �2n, a frationPn>r �2n=Pn �2nof the entire variane (note Pn �2n = RX C(x; x) dx <1).Thus every GP on a ompat X � R
q is either a �nite or an in�nite version of theregression model of Setion (2.1).3.1 Pratial MattersIn pratie we don't know C(x; y) exatly, hene an't �nd f�ng or f�2ng, and we only observeY (x) at a few loations xi. Still, those values determine a positive-de�nite ovariane matrix�ij = C(xi; xj)whose (largest few, if neessary) eigenvalues �2n and eigenvetors un ould be diserned orapproximated if we only knew �ij. We don't, of ourse, but we an approximate it and6



�i = �(xi) by sample estimates�̂i = 1N Xn Yn(xi) �̂ij = 1N Xn �Yn(xi)� �̂i��Yn(xj)� �̂j�based on N repliates, leading through eigendeomposition �̂ = Û �̂Û 0 with � = diag(f�̂2ng)to representationsYr(xi) =Xn�r Ûin�̂nZn Cr(xi; xj) =Xn�r Ûin�̂2nÛjn:4 Posterior DistributionsIn our appliations Yi represents the output of a omputer model at input vetor xi; theinput vetor may inlude both omponents whose value we observe or even speify (alled\environmental" and \ontrol" variables in the literature: Saks et al., 1989, x2.1), as well asunertain features that we would like to disover (\model" variables). The omputer modelis too slow or expensive to evaluate it at an exhaustive olletion of inputs, so we insteadevaluate it at a set of arefully hosen \design" points xD = fxigi2D � X (often hosen froma spae-�lling LHC design), often with the goal of prediting the values YP = fYigi2P atother sites xP = fxigi2P where the omputer model has not been run.If we use a GP for modeling the prior distribution, desribing how unertain Yi is at eahxi before introduing as data the output of the omputer model, then the onditional distri-bution of YP given the observed values YD at the design points (the posterior distribution)is also a GP, but now the mean �(x) and ovariane funtions beome�PjD = �P + �PD��1DD�YD � �D� �PPjD = �PP � �PD��1DD�DPwhere, for example, �DP has entries E[(Yi��i)(Yj��j)℄ for i 2 D, j 2 P. Figure 3 shows 50sample paths from this onditional distribution, given observed values at four design pointsxD = f�0:75;�0:5;+0:25;+0:5g. All paths pass through the design points exatly, andvariability is small near those points and large away from them.4.1 Parameter Spae \Redution"The �fty posterior urves in Figure (3) are more tightly arrayed and �ll a smaller area thanthe ten prior urves in Figure (2); in some sense the posterior is more onentrated than theprior. In this setion we will quantify how the volume of plausible values for the parametersshrinks with the observation of data.4.1.1 Conjugate Prior RegressionThe standard Gaussian linear regression model isY j X � No(X�;�)7
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Figure 3: Posterior sample paths for power-exponential model, given YD at four design pointsxD.for some n�p design (or ovariate) matrixX, n�n error ovariane matrix � (often, but notneessarily, diagonal or even of the form �2I for iid \errors"), and unertain regression vetor� 2 R
p. For full-rank X the maximum likelihood estimator �̂ for � is a linear ombinationof the fYig, hene one again normally distributed:�̂ = [X 0��1X℄�1X 0��1Y� No��; [X 0��1X℄�1�:In the Bayesian approah, � (like all unertain quantities) is viewed as a random variable withsome prior probability distribution. The most onvenient hoie is to take � � No(b; V ) tobe normal too, with some \prior mean" vetor b 2 R

q and \prior ovariane" matrix V 2 Sp+.The Bayes estimate is mean of the posterior (i.e., onditional on Y ) distribution of �; witha Gaussian prior distribution, this posterior distribution is one again Gaussian (that's whatmakes this hoie so onvenient) with posterior mean:bY = E[� j Y ℄ = [X 0��1X + V �1℄�1[X 0��1Y + V �1b℄and posterior ovarianeVY = E[(� � bY )(� � bY )0 j Y ℄ = [X 0��1X + V �1℄�1:In the \noninformative" limit as V �1 ! 0, bY ! �̂ and VY onverges to the ovarianematrix for �̂, so the frequentist and Bayesian estimates and error bounds oinide in thelimit as prior information beomes more and more di�use or the data more opious.8



Both prior and posterior distributions for � are p-variate normal, but with di�erent meanand ovariane parameters:Prior: � � No(b; V ) Posterior: � j Y � No(bY ; VY ):For the prior distribution, the smallest volume sets in R
p with a spei�ed probability ofontaining � are ellipsoids of the formE() � �� : (� � b)0V �1(� � b) � 	for some  > 0. Sine (� � b)0V �1(� � b) has the �2p distribution, suh a set will ontain �with probability  (say, 90%) if we take  = �2p(), the 100% quantile of the �2 distributionwith p degrees of freedom. The volume in R

p of suh an ellipsoid isvol�E()� = !p pdet(V )where !p � �p=2=�(1+ p=2) is the volume of the unit ball in R
p. Thus for any 0 <  < 1 theposterior 100% HPD set is smaller in volume than the prior 100% HPD by a fator of!p qdet(�2p()V )!p qdet(�2p()VY ) = det(V )1=2det �X 0��1X + V �1��1=2= �det(V ) det �X 0��1X + V �1�	1=2= �det �I + V 1=2X 0��1XV 1=2�	1=2 :For isotropi prior ovariane V = v2I and eigenvalues �1 � ::: � �p � 0 for X 0��1X, thisis Volume shrinkage ratio = ( pYi=1(1 + v2�i))1=2 � vr rYi=1p�i; (3)bounded below for any r 2 f1; � � � ; pg by vr times the square root of the produt of the �rstr prinipal values.ReferenesNovak, J., Novak, K., Pratt, S., Vredevoogd, J., Coleman-Smith, C. E., and Wolpert,R. L. (2012), \Determining Fundamental Properties of Matter Created in UltrarelativistiHeavy-Ion Collisions," Preprint, Department of Physis and Astronomy, Mihigan StateUniversity, Draft 2012-11-26.Saks, J., Welh, W. J., Mithell, T. J., and Wynn, H. P. (1989), \Design and Analysis ofComputer Experiments," Statistial Siene, 4, 409{435. Last edited: Marh 20, 20149


