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Mathematical models, usually implemented in computer programs known as simulators, are widely used
in all areas of science and technology to represent complex real-world phenomena. Simulators are often
so complex that they take appreciable amounts of computer time or other resources to run. In this context,
a methodology has been developed based on building a statistical representation of the simulator, known
as an emulator. The principal approach to building emulators uses Gaussian processes. This work presents
some diagnostics to validate and assess the adequacy of a Gaussian process emulator as surrogate for the
simulator. These diagnostics are based on comparisons between simulator outputs and Gaussian process
emulator outputs for some test data, known as validation data, defined by a sample of simulator runs not
used to build the emulator. Our diagnostics take care to account for correlation between the validation
data. To illustrate a validation procedure, we apply these diagnostics to two different data sets.
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1. INTRODUCTION

Simulators, also known as computer models, are mathemat-
ical representations of a physical system implemented in a
computer. Simulators have been used to investigate real-world
systems in almost all fields of science and technology (Sacks
et al. 1989), usually because physical experimentation is either
highly expensive or too time-consuming. In a computer experi-
ment, observations are made by running the computer model at
various choices of input factors.

Simulators are usually deterministic input-output models, in
which running the simulator again at the same input values will
always give the same outputs. The output value is unknown
before running the simulator for a particular input set. From
a Bayesian perspective, uncertainty about the output of the sim-
ulator, also called code uncertainty, can be expressed by a sto-
chastic process. The result is a statistical representation of the
simulator, known as a statistical emulator. Statistical emulators
have been developed in the 1980s by computer experimenters
(e.g., Currin et al. 1988, 1991 and Sacks et al. 1989). O’Hagan
(1978) described how to use a Gaussian process to represent
an unknown function, and Gaussian processes are the principal
tool for building an emulator to represent our judgments about
the simulator. The Gaussian process emulator can be built using
a set of runs of the simulator, known as training data.

Once the emulator has been built, various analyses can be
made without making more simulation runs. The simplest such
analysis is to predict the output at inputs not previously run on
the simulator. Welch et al. (1992) presented an application of
Gaussian processes to screening (input selection) and predic-
tion in computer models. When there is uncertainty on the in-
puts, Monte Carlo methods applied on the simulator can be very
expensive, Oakley and O’Hagan (2002) used the emulator to
quantify uncertainty in model outputs induced by uncertainty
in inputs.

To explore how changes in the inputs affect the output,
Saltelli, Chan, and Scott (2000) described some different mea-
sures for quantifying sensitivity using the simulator. Oakley and

O’Hagan (2004) presented a sensitivity analysis using the emu-
lator in which they provided Bayesian inference about sensitiv-
ity measures based on variance and regression fitting. Kennedy
et al. (2006) reviewed some recent applications in which an em-
ulator of a computer code is created using a Gaussian process
model, and presented three case studies from the Centre for Ter-
restrial Carbon Dynamics where sensitivity analysis and uncer-
tainty analysis are illustrated.

Emulators have been used as stochastic approximations of
expensive simulators in several areas of science, but building an
emulator requires some assumptions and approximations. Un-
less the emulator correctly represents the simulator, inferences
made using that emulator will be invalid. Thus emulators need
to be subjected to validation testing. There is a large literature
on using emulators to represent expensive simulators, but there
has been little research on validating emulators before using
them. In this article we propose some numerical and graphical
diagnostics for Gaussian process emulators that take into ac-
count computer model uncertainty.

In Section 2 we review the principal ideas of Gaussian
process emulation. In Section 3 we briefly describe some meth-
ods that have been proposed for validating computer models,
and then present some numerical and graphical diagnostics for
Gaussian process emulators. In Section 4 we demonstrate the
diagnostic tools in synthetic and real examples. When the emu-
lator fails to represent the simulator adequately, the diagnostics
provide a warning that allows the source of the validation prob-
lems to be identified.

2. EMULATION

An emulator is a stochastic process that represents the simu-
lator, where the simulator is viewed as an unknown mathemat-
ical function. Although the computer code is known in princi-
ple, its complexity allows the simulator output to be considered
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an unknown function of its inputs. From a Bayesian standpoint
Kimeldorf and Wahba (1970) and O’Hagan (1978), Gaussian
processes are used to describe the behavior of an unknown
mathematical function. In the 1980s, the fundamental idea of
building a statistical emulator using Gaussian processes was in-
troduced in a non-Bayesian framework by Sacks et al. (1989),
and in a Bayesian framework by Currin et al. (1988, 1991).

2.1 Gaussian Process Emulators

Here we briefly review the principal ideas of the Gaussian
process emulator; further discussion and details have been
given by Kennedy and O’Hagan (2001) and O’Hagan (2006).
(For a frequentist point of view, see also Santner, Williams, and
Notz 2003, section 3.3.)

The simulator, represented by η(·), is assumed to be a func-
tion of a set of inputs denoted by x = (x1, . . . , xp) ∈ χ1 × · · · ×
χp = χ ⊂ �p, with output represented by y ∈ �. To build a
Gaussian process emulator, the uncertainty about the simula-
tor output is described as a Gaussian process with a particu-
lar mean function m(·), and a covariance function V(·, ·). For-
mally, if η(·) has a Gaussian process distribution, then for every
n = 1,2, . . . , the joint distribution of η(x1), . . . , η(xn) is mul-
tivariate normal for all x1, . . . ,xn ∈ χ . The mean function m(·)
can be any function of x ∈ χ , but V(·, ·) must satisfy the prop-
erty that every covariance matrix with elements {V(xi,xj)} must
be nonnegative definite.

First, prior information about η(·) is represented by a
Gaussian process with mean m0(·) and covariance function
V0(·, ·). Using an hierarchical formulation,

η(·)|β,σ 2,ψ ∼ GP(m0(·),V0(·, ·)), (1)

where the mean function m0(·) is given by

m0(x) = h(x)Tβ, (2)

h(·) :χ ⊂ �p �−→ �q is a known function of the inputs, where
q can be different from the input space dimension p, and β is
an unknown vector of coefficients. The function h(·) should be
chosen to incorporate any expert belief about the form of η(·).
The covariance function V0(·, ·) is given by

V0(x, x′) = σ 2C(x, x′;ψ), (3)

σ 2 is an unknown scale parameter, C(·, ·;ψ) is a known corre-
lation function with an unknown vector of correlation parame-
ters. The chosen correlation function, C(·, ·;ψ), should ensure
that the covariance matrix of any set of inputs is nonnegative
definite. In this work, we use the Gaussian correlation func-

tion C(x,x′;ψ) = exp{−∑p
k=1(

xk−x′
k

ψk
)2}, and the parameters

(ψ1,ψ2, . . . ,ψp) are called correlation length parameters.
Suppose that y = [y1 = η(x1), . . . , yn = η(xn)] contains n re-

alizations of the simulator at design points x1, . . . ,xn in the in-
put space χ ; these data compose the training data set. Accord-
ing to (1) the distribution of the outputs is multivariate normal,

y|β,σ 2,ψ ∼ Nn(Hβ,σ 2A), (4)

where

H = [h(x1), . . . ,h(xn)]T (5)

and A is the matrix with elements

Ai,j = C(xi,xj;ψ). (6)

Using standard techniques for conditioning in multivariate
normal distributions, it can be shown that

η(·)|β,σ 2,ψ,y ∼ GP(m∗
0(·),V∗

0 (·, ·)), (7)

where

m∗
0(x) = h(x)Tβ + t(x)TA−1(y − Hβ)

and

V∗
0 (x, x′) = σ 2[C(x, x′;ψ) − t(x)TA−1t(x′)],

where t(x) = (C(x,x1;ψ), . . . ,C(x,xn;ψ))T .
Using a weak prior for (β,σ 2), p(β,σ 2) ∝ σ−2, combining

with (4) using Bayes’ Theorem, the posterior for (β,σ 2) is a
normal inverse-gamma distribution, characterized by

β|y, σ 2,ψ ∼ N(β̂, σ 2(HTA−1H)−1), (8)

where β̂ = (HTA−1H)−1HTA−1y, and

σ 2|y,ψ ∼ InvGam

(
n − q

2
,
(n − q − 2)̂σ 2

2

)
, (9)

where σ̂ 2 = yT (A−1−A−1H(HT A−1H)−1HT A−1)y
n−q−2 .

Integrating β out from the product of (7) and (8), it can be
shown that

η(·)|y, σ 2,ψ ∼ GP(m1(·),V∗
1 (·, ·)), (10)

where

m1(x) = h(x)T β̂ + t(x)TA−1(y − Hβ̂), (11)

V∗
1 (x, x′) = σ 2[C(x, x′;ψ) − t(x)TA−1t(x′)

+ (h(x) − t(x)T A−1H)(HTA−1H)−1

× (h(x′) − t(x′)TA−1H)T]
. (12)

The Gaussian process emulator, obtained by integrating σ 2

out from the product of (9) and (10), is given by

η(·)|y,ψ ∼ Student Process(n − q,m1(·),V1(·, ·)), (13)

where

V1(x, x′) = σ̂ 2

σ 2
V∗

1 (x, x′). (14)

The hyperparameter vector, ψ , is unknown. Setting a prior
for it as p(ψ), it can be shown that

p(ψ |y) ∝ p(ψ)

∫ ∫
p(y|β,σ 2,ψ)p(β,σ 2)dβ dσ 2

∝ p(ψ)|A|−1/2|HTA−1H|−1/2(σ̂ 2)−(n−q)/2, (15)

where A and σ̂ 2 are functions of ψ .
A fully Bayesian analysis would now integrate out the hyper-

parameter ψ from the product of the densities in (13) and (15),
but the posterior distribution (15) is a highly intractable func-
tion of ψ . Kennedy and O’Hagan (2001) proposed deriving a
plausible estimate of the hyperparameter vector ψ and then us-
ing the estimate as if it were the true value of ψ . The new emu-
lator is the same as (13) with the estimated values for A, β̂ , and
σ̂ 2 calculated using the estimated value of ψ . We assume here
that this approach is used.
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2.2 Possible Problems With Gaussian
Process Emulators

Although the Gaussian process is a very flexible class of
distributions for representing prior knowledge about the com-
puter model, the Gaussian process emulator (13) can give poor
predictions of simulator outputs. There are at least two basic
reasons for this. First, the assumption of a stationary Gaussian
process with particular mean and covariance structures may be
inappropriate. Second, even if these assumptions are reason-
able, there are various parameters to be estimated, and a bad
or unfortunate choice of training data set may suggest inappro-
priate values for these parameters. In the case of the correlation
length parameters, where we condition on fixed estimates rather
than integrating over the full posterior distribution, we also may
make a poor choice of estimate on which to condition.

The simulator is represented by a Gaussian process, so joint
normality of the simulator outputs must be a reasonable as-
sumption. In particular, the emulator asserts that it is very un-
likely for the true simulator output to be more than two or three
predictive standard deviations from the predictive mean, and
that it is no more likely to be above the predictive mean than
below it. In this context, transformations may be useful.

In addition to the assumption of normality, specific forms are
assumed for the mean and the covariance functions. If the as-
sumed form of the mean in (2) is wrong because inappropriate
regressors have been used in h(·), or if the coefficients β have
been poorly estimated, then the emulator predictions may be
systematically too low or too high in some regions of the input
space.

In (3), stationarity of the covariance function is assumed, im-
plying that we expect the simulator output to respond with sim-
ilar degrees of smoothness at all points in the input space. We
assume that there is a common variance, σ 2, and that the cor-
relation function depends only on (x − x′). Thus either the un-
equal variance problem or a correlation structure that depends
on spatial position (x,x′) instead of the difference (x − x′) only
are failures of the stationarity assumption. In practice, simula-
tors may respond much more rapidly to changes in the inputs
at some parts of the space than others. In case of such nonsta-
tionarity, credible intervals of emulator predictions can be too
wide in regions of low responsiveness or too narrow in regions
where the response is more dynamic.

Finally, although the form of the covariance function may be
appropriate, we may estimate the parameters σ 2 and ψ poorly.
When we have incorrect estimation of the variance (σ 2), the
credible intervals of the emulator predictions are systematically
too wide or too narrow. Poor estimation of the correlation pa-
rameters (ψ ) leads to credible intervals that are too wide or too
narrow in the neighborhood of the training data points.

In the next section we present some diagnostics that can be
useful for identifying problems in emulator predictions. These
diagnostics are based on statistical comparisons between new
(validation) runs of the simulator and their respective predic-
tions.

3. DIAGNOSTICS FOR VALIDATING GAUSSIAN
PROCESS EMULATORS

Emulators have been used as stochastic approximations of
expensive simulators in several areas of science, but building

emulators requires some assumptions and approximations. Un-
less the emulator correctly represents the simulator, inferences
made using that emulator will be invalid. Thus the emulator
needs to be subjected to validation testing.

In computer science and engineering, the process of check-
ing whether the computer model represents the real process
that it was intended to simulate is generally divided into two
steps, a verification step and a validation step, V&V. Verifica-
tion is the process of determining that a model implementa-
tion accurately represents the developer’s conceptual descrip-
tion of the model and the solution to the model. Validation is the
process of determining the degree to which a model is an accu-
rate representation of the real world from the perspective of the
model’s intended uses (Oberkampf and Trucano 2000). There
are several different perspectives and approaches for V&V, in-
cluding philosophical theories about validation, statistical tech-
niques, software practices, and so on; reviews of the litera-
ture on V&V have been provided by Balci and Sargent (1984),
Kleijnen (1995), and Roache (1998).

Where Gaussian process emulators have been used, some
authors have addressed the validation of computer models by
comparing model predictions with observed data. Bayarri et al.
(2007) presented a six-step process for computer model valida-
tion based on Bayesian and likelihood methodology. Rougier
et al. (2009) presented a “leave-one-out” diagnostic in which
they removed one element from the training data and tried to
predict it. They repeated this procedure for all elements and
plotted credible intervals for each element. They also presented
a diagnostic in which they leave out more than one element.
Kennedy and O’Hagan (2001) used quantile-quantile plots of
the standardized residuals of their calibration model, and used
the root mean squared errors of the predictions to compare dif-
ferent models. Goldstein and Rougier (2006) presented a di-
agnostic based on the deviation between real observations and
Bayes linear predictions of the simulator for the same inputs.

V&V methods are concerned with comparing computer
models with reality and assume independent errors in the obser-
vations, whereas in the present work we focus on validating em-
ulators as surrogates for expensive computer models. Thus our
validation process is based on comparing the Gaussian process
emulator with the simulator. Emulator predictions are not inde-
pendent, and it is important for diagnostics to take the correla-
tions into account. Santner, Williams, and Notz (2003, p. 109)
used the empirical root mean squared prediction error or the
integrated mean squared prediction error, but without reference
to whether this matches the uncertainty, including correlations,
expressed in the emulator itself.

3.1 Diagnostics for Linear Models With
Correlated Residuals

Validating an emulator can be compared with criticizing lin-
ear models with dependent errors, because the Gaussian process
is a limit case of the general linear model. But because the
Gaussian process emulator is modeling a deterministic func-
tion, the predictions for observed values used to build the
model are perfect; thus residuals can only be obtained using
cross-validation methods or, more appropriately, a new data set.
Therefore, the diagnostics used in general linear models need to
be adapted to be applicable for the computer model framework.
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In the context of general linear models, Haslett and Hayes
(1998) presented a general theory for residuals, describing
the marginal and conditional residuals. The marginal residuals
are the errors between the observed values and the fitted val-
ues, whereas the conditional residuals are the errors between
the predictive values for observed values not used to build
the model. Fraccaro, Hyndman, and Veevers (2000) presented
graphical diagnostics for marginal and conditional residuals in a
time series regression context. They decomposed the estimated
variance matrix of the residuals using a Cholesky decomposi-
tion, and rotated them to have uncorrelated residuals with unit
variance. Houseman, Ryan, and Coull (2004) used the Cholesky
decomposition of the inverted covariance matrix to rotate the
residuals of linear mixed models and time series. They pro-
vided a quantile–quantile plot (Q–Q plot) of these uncorrelated
errors providing asymptotic properties of the empirical cumu-
lative distribution and pointwise standard errors.

The Gaussian process emulators model deterministic func-
tions, indicating that there are no marginal errors as defined by
Haslett and Hayes (1998). Specifically, emulator predictions for
outputs used to build the emulator will exactly equal the respec-
tive outputs, with zero variances. We can obtain prediction er-
rors only for simulator runs not used to build the emulator, the
conditional errors of Haslett and Hayes (1998). Another im-
portant feature that should be considered in the diagnostics for
validating emulators is the error correlation due to a spatial cor-
relation structure.

In this work we use graphical diagnostics presented by
Fraccaro, Hyndman, and Veevers (2000), who plotted un-
correlated conditional errors against the data order, and by
Houseman, Ryan, and Coull (2004), who used a QQ-plot for
the uncorrelated conditional errors. The Cholesky decomposi-
tion depends on the data order, however. Fraccaro, Hyndman,
and Veevers (2000) indexed the data by time, but in computer
modeling the data order is typically arbitrary. Therefore, we
need to present some decomposition methods that are invariant
to the data order. In this work we propose to use the eigen and
the pivoted Cholesky decompositions to build the uncorrelated
errors, as we discuss in Section 3.4.

To validate an emulator, our diagnostics are based on com-
parisons between emulator predictions and simulator runs for a
new data set. Let X∗ = (x∗

1,x∗
2, . . . ,x∗

m) denote a nonobserved
set of inputs, called validation input data. The simulator outputs
for the validation input data are given by y∗ = η(X∗) where
y∗ = (y∗

1, . . . , y∗
m), and η(X∗) = (η(x∗

1), . . . , η(x∗
m)). The vali-

dation input data should be selected to cover all of that part of
the input space over which we wish to use the emulator. Oth-
erwise, we might validate an emulator that does not represent
the simulator for a particular nonobserved subset of the input
space.

A general diagnostic, D(·), is a function of the validation data
output, and we propose to compare the observed D(y∗) with the
reference distribution of D(η(X∗)) conditioned on the training
data. D(y∗) lying in an appropriately chosen region with a small
probability suggests a conflict between the emulator and the
simulator. The test region(s) for D(·) should be chosen so that
D(y∗) falling in the region is associated with a particular failure
in the construction of the emulator. If there are no indications of
conflict across a range of such diagnostics, then we can suppose
that the emulator is representing the simulator accurately.

3.2 Individual Prediction Errors

Individual prediction errors for the validation data are given
by the differences between the observed simulator outputs and
the predictive mean output at the same inputs, that is, (y∗

i −
E[η(x∗

i )|y]), for i = 1,2, . . . ,m. We can consider each stan-
dardised prediction error,

DI
i (y

∗) = y∗
i − E[η(x∗

i )|y]√
V[η(x∗

i )|y] , (16)

as a diagnostic. If the emulator can properly represent the sim-
ulator, then the standardized prediction errors have standard
Student-t distributions, conditional on the training data and the
estimated correlation parameters, ψ . In practice, the number of
training data is generally large enough so that the degrees of
freedom is large, and we can consider these to be standard nor-
mally distributed. Thus individual large errors, with absolute
values larger than 2, say, indicate a conflict between the simu-
lator and the emulator. An isolated outlier of this kind might be
ignored, or might indicate a local problem just around the inputs
for that validation data point. This can be further investigated by
obtaining a few more validation data runs in that vicinity.

A larger number of large standardized errors indicates a more
systematic problem. Large errors of the same sign arising in
some part of the input space suggests an inappropriate choice of
mean function or poor estimation of β . It also may be indicative
of a failure of the stationarity assumption.

Large errors arising primarily in validation points that are
close to training data points indicates that one of more of the
correlation parameters have been overestimated, so that the em-
ulator predictions are too strongly influenced by nearby training
data points. If there are no such obvious patterns to the occur-
rence of large errors, then the problem may lie in poor estima-
tion of the σ 2 parameter.

It should be noted that patterns of unexpectedly small stan-
dardized errors may indicate conflicts complementary to those
discussed earlier. For instance, validation points close to train-
ing data points giving unexpectedly small standardised errors
suggest underestimation of correlation parameters. Graphical
displays can provide a powerful tool for spotting patterns of
large or small errors, as discussed in Section 3.5.

3.3 Mahalanobis Distance

Although the collection of individual standardized errors,
DI(y∗), provides a range of useful diagnostics, the ability to
summarize them in a single diagnostic is important. Hills and
Trucano (1999, 2001) used a χ2-test to compare the simula-
tor output with the real process in a V&V approach. The same
idea can be used as a diagnostic to compare emulator predic-
tions with the simulator outputs under the same inputs. Their
diagnostic is given by

Dχ2(y∗) =
m∑

i=1

DI
i (y

∗)2. (17)

For a large training data set (i.e., when n → ∞), with indepen-
dence among the output values, the distribution of Dχ2(η(X∗))
converges to a chi-squared distribution with m degrees of free-
dom. But here the independence assumption is too strong. For
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example, if the simulator is a smooth function, then similar out-
puts are expected when the elements are close to one another in
the input space. This correlation is captured by the emulator in
the covariance function (11).

A natural extension of (17) allowing correlation among the
outputs is the Mahalanobis distance between the emulator and
the simulator outputs at the validation inputs set, given by

DMD(y∗) = (
y∗ − E[η(X∗)|y])T

× (
V[η(X∗)|y])−1(y∗ − E[η(X∗)|y]), (18)

where the elements of the predictive mean vector, E[η(X∗)|y],
and the predictive covariance matrix, V[η(X∗)|y], for the
Gaussian process emulator are given by (11) and (14). Extreme
values (large or small) for the observed Mahalanobis distance
[DMD(y∗)] indicate a conflict between the emulator and simu-
lator.

Under Gaussian process emulator assumptions, the distrib-
ution of DMD(η(X∗)) conditional on the training data and an
estimate of the correlation parameter ψ is a scaled F-Snedecor
distribution with m and n − q degrees of freedom,

(n − q)

m(n − q − 2)
DMD(η(X∗))

∣∣∣y,ψ ∼ Fm,n−q. (19)

Proof. Using (11) and (14), (18) can be rewritten as

DMD(y∗) = Z

W
,

where Z = (y∗ − m1(X∗))T(V∗
1 (X∗))−1(y∗ − m1(X∗)) and W =

σ̂ 2/σ 2. By (10), Z conditional on the training data, σ 2 and ψ

follow a chi-squared distribution with m degrees of freedom.
By (9), (n − q − 2)W conditional on the training data and an
estimate for ψ follows a chi-squared distribution with (n − q)

degrees of freedom. It is straightforward to show that Z and
W are independent random variables. Thus Z/m

(n−q−2)W/(n−q)
fol-

lows a F-Snedecor distribution with degrees of freedom m and
n − q.

As mentioned earlier, an unexpectedly large or small value
of DMD(y∗) indicates a conflict between the emulator and the
simulator. If such a problem arises, it is important to explore
individual errors to look for patterns of large or small values,
in order to identify the most likely cause of the problem. We
now consider alternative ways to decompose the Mahalanobis
distance into individual diagnostics for this purpose.

3.4 Variance Decompositions

Individual prediction errors (16) are correlated, which intro-
duces some risks in interpreting them. In addition, simply look-
ing at individual errors may not effectively identify some con-
flicts between the emulator and simulator. For instance, two er-
rors may not individually be large, but if they have opposite
signs when they are strongly positively correlated, this sug-
gests a conflict. Let G be a standard deviation matrix such that
V[η(X∗)|y] = GGT . Then the vector of transformed errors,

DG(y∗) = G−1(y∗ − E[η(X∗)|y]), (20)

has uncorrelated elements with unit variances. If the normality
assumption made for the outputs is reasonable, then the distrib-
ution of each of these errors is a standard Student-t with (n−q)

degrees of freedom. We can consider these an alternative set of
diagnostics. As with the errors DI(y∗), we look for individual
large transformed errors and patterns of large and small values.
The structure of G will give different interpretations to such pat-
terns, however. This approach is similar to that of Houseman,
Ryan, and Coull (2004), who used rotated residuals for linear
models with correlated errors.

Another property of this diagnostic is that DMD(y∗) =
DG(y∗)TDG(y∗); that is, the sum of squares of the elements
of DG(y∗) is the Mahalanobis distance. Thus we can interpret
these diagnostics as decomposing DMD(y∗).

There are many ways to decompose a positive definite ma-
trix into the product of a square root matrix and its transpose.
The natural choices are the Cholesky decomposition and the
eigen decomposition Golub and van Loan (1996). The eigen de-
composition is very popular, but the Cholesky decomposition is
computationally cheaper, and, as we show later, it is more intu-
itive to interpret than the eigen decomposition.

Eigen Decomposition. When G is the eigen decomposition
matrix, we denote the elements of the vector DG(y∗) by DE

i (y∗)
and call them eigen errors. When a large DE

i (y∗) is identified,
further information may be gained by studying which individ-
ual errors are given the largest weights in the linear combina-
tion. If the weights single out a particular individual error as
being important, then this error should be studied as suggested
in Section 3.2. If the weights emphasize a subset of the individ-
ual prediction errors, this might indicate a problem in the region
of the input space around the inputs of the associated validation
data points, indicating a possible nonstationarity problem.

Cholesky Decomposition. The Cholesky decomposition is
the special case where GT is the unique upper triangular ma-
trix R such that V[η(X∗)|y] = RTR. We denote the elements
of the vector DG(y∗) by DC

i (y∗), and call them Cholesky er-
rors. Then G−1 is also a triangular matrix, and DC

i (y∗) is the
unique linear combination of the first i validation errors such
that its predictive variance is the conditional variance of the ith
validation error given the preceding i − 1 errors. Although this
has the benefit of producing a set of uncorrelated transformed
errors that are still linked to the individual validation points (in
contrast to the eigen decomposition), the decomposition is not
invariant to the way in which we order the validation points, and
patterns of high or low values have no obvious interpretation.

Pivoted Cholesky Decomposition. By permuting the vali-
dation data set, we obtain different Cholesky decompositions.
Any such permutation may detect different anomalies, but to
have the benefits of both the eigen and Cholesky decomposi-
tions, the most effective diagnostics are achieved by permut-
ing the data so that the first element is the one with the largest
variance, the second element is the one with the largest predic-
tive variance conditioned on the first element, and so on. We
then denote the elements of the vector DG(y∗) by DPC

i (y∗) and
call them pivoted Cholesky errors. This permutation can be ob-
tained by applying the pivoted Cholesky decomposition, which
returns a permutation matrix P and the unique upper triangu-
lar matrix R such that PTV[η(X∗)|y]P = RTR. Thus G = PRT .
More details on the numerical analysis of the pivoted Cholesky
decomposition have been provided by Higham (2002).

A group of unusually large or small pivoted Cholesky er-
rors in the first part of the sequence suggests poor estimation

TECHNOMETRICS, NOVEMBER 2009, VOL. 51, NO. 4



430 LEONARDO S. BASTOS AND ANTHONY O’HAGAN

of σ 2 or nonhomogeneity, whereas a group of unusually large
or small errors in the latter part of the sequence indicates poor
estimation of ψ or an inappropriate correlation structure. In ad-
dition, we have the benefit that each of the DPC

i (y∗)s is associ-
ated with a particular validation data point, which makes it easy
to investigate individual large errors. The pivoted Cholesky de-
composition is our therefore choice in the examples of Sec-
tion 4.

3.5 Graphical Methods

Graphical displays provide an efficient way to investigate the
adequacy of the emulator predictions and to check some as-
sumptions made when building the emulator (13). Here we pro-
pose some graphical methods using both the individual stan-
dardized errors (16) and the uncorrelated standardized errors
(20).

Plot of the Individual Errors Against the Emulator’s Pre-
dictions. In this graphical diagnostic, we search for patterns
suggesting a problem in the mean function. For example, if for
some particular ranges of the output the errors are systemati-
cally positive (or negative), this indicates a misspecification of
the mean function or poor estimation of the coefficients. Het-
eroscedasticity of the individual errors suggests that the simula-
tor should be studied as a nonstationary process. Large absolute
individual errors might suggest that the predictive variance is
too small, and individual errors very close to 0 might suggest
an excessively large variance.

Besides plotting individual errors DI(y∗) in this way, we also
can plot the uncorrelated standardized errors obtained by the
Cholesky or pivoted Cholesky decomposition, because each er-
ror can be mapped to one emulator prediction. But then we
are less likely to see groups of systematic deviations indicat-
ing problems with the mean function. Consider, for instance,
a group of positive individual errors in some part of the plot,
which may arise from validation points that are relatively close
together in the input space. The first of these points to be plot-
ted in the Cholesky or pivoted Cholesky sequences DC

i (y∗) or
DPC

i (y∗) may appear in the plot as a large error, but the subse-
quent ones are conditioned on the first and may appear normal.

We cannot plot the uncorrelated standardized errors obtained
by eigen decomposition in this way.

Plot of the Errors Against the Index. The meaning of the
index depends on which error we are plotting. For individual
errors DI(y∗) and Cholesky errors DC

i (y∗), the index i is the
validation data order. For eigen errors, the index gives the order
of the DE

i (y∗)s with the largest predictive variance. For pivoted
Cholesky errors, the index is the pivoting order, which gives
the order of the DPC

i (y∗)s with the largest conditional predic-
tive variance. For all of these graphics, the errors are expected
to fluctuate around 0 with a constant variance and no special
patterns. Too many large errors indicates an underestimation of
the variance, and too many small errors indicates an overes-
timation of the variance. Both cases also can suggest that the
simulator is a nonstationary process.

The pivoted Cholesky and the eigen decomposition provide
an extra interpretation that we can associate with the correlation
structure. In both cases, either large or very small errors at the

beginning of the plot (i.e., on the left side) indicates poor esti-
mation of predictive variance or nonstationarity. However, large
(or very small) errors at the end of the plot (i.e., on the right
side) indicates overestimation (or underestimation) of the corre-
lation length parameters, or that the chosen correlation structure
is unsuitable.

Quantile-Quantile Plots. Under the normality assumption,
the uncorrelated standardized errors, DG(y∗), have standard
Student-t distributions with (n − q) degrees of freedom. Thus
the QQ-plot using this distribution becomes a natural graphical
diagnostic. In a QQ-plot, if the points lie close to the 45-degree
line through the origin, then the normality assumption for the
simulator outputs is a reasonable assumption. If the points clus-
ter around a line with slope less (or greater) than 1, then the
implication is that the predictive variability was overestimated
(or underestimated). Curvature in the plot indicates nonnormal-
ity, while outliers at either end of the plot suggest local fitting
problems or nonstationarity.

The interpretation of the QQ-plot using uncorrelated stan-
dardized errors is independent of the decomposition method
and is generally informative for both eigen and pivoted Chole-
sky decompositions. Although the distribution of each indi-
vidual standardized error, DI

i (y
∗), is also a standard Student-

t distribution, the fact that the errors are correlated makes the
QQ-plot more difficult to interpret.

Plots of Errors Against Inputs. Plotting the standardized er-
rors against the corresponding values of each input is also help-
ful. Again, we would expect to see a horizontal band containing
the errors. These plots are used to identify different behaviour
of the errors in some parts of the input space, indicating possi-
ble failure of the stationarity assumption. This graphic can also
indicate that the relationship between the input and the predic-
tion is not fully represented in the mean function. For example,
it can identify a pattern that was not included in the mean func-
tion.

Note that we cannot plot the eigen errors in this way. Al-
though it is possible to plot the Cholesky or pivoted Cholesky
errors against input values, because of the linking of each er-
ror to a validation data point, interpretation is complicated by
the conditioning in the same way as when plotting against the
emulator mean.

3.6 Other Diagnostics

Credible Interval Diagnostic. Another diagnostic is the
proportion of validation outputs that lie in their marginal credi-
ble intervals. For each validation element using (13), a 100α%
credible interval for the simulator output can be built, denoted
by CIi(α) for i = 1, . . . ,m. This diagnostic is given by

DCI(y∗) = 1

m

m∑
i=1

1(y∗
i ∈ CIi(α)), (21)

where 1(·) is an indicator function. We would expect the ob-
served value for DCI(y∗) to be close to α; however, because
the outputs are not independent, the reference distribution of
DCI(·) is not binomial. The only practical way to compute the
reference distribution is by simulation.

The distribution of DCI(·) can be obtained by the following
Monte Carlo simulation. Sample a large number of samples
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from multivariate Student-t (n − q,E[η(X∗)|y],V[η(X∗)|y]),
then for each sample, calculate DCI(·). Therefore, the empiri-
cal distribution of the calculated DCI(·)s is a good estimate of
the distribution of DCI(η(X∗)). In particular, the mean and the
square of standard deviation are estimates of the expectation
and the variance of DCI(η(X∗)).

This diagnostic is a supplement to the Mahalanobis distance.
For example, we can have many unusually large and unusually
small errors and yet still have an acceptable value for DMD(y∗).
The DCI(y∗) diagnostic provides a way to identify this kind of
heterogeneity.

Predictive Density Diagnostic. Another interpretation of
the Mahalanobis distance merits mention. Because the distri-
bution of validation outputs is a multivariate Student-t distrib-
ution with mean m1(X∗), covariance matrix V1(X∗), and n − q
degrees of freedom, the density function itself can be a diag-
nostic:

DPD(y∗) = K

[
1 + 1

n − q
DMD(y∗)

]−(m+n−q)/2

, (22)

where K = �((m+n−q)/2)
�((n−q)/2)

(n−q)−mπ−m/2|V1(X∗)|−1/2. A small
value for this diagnostic would indicate a conflict between the
emulator and simulator. Note, however, that DPD(y∗) is just a
decreasing function of the Mahalanobis distance DMD(y∗), and
so small values of the predictive density correspond directly to
large values of the Mahalanobis distance.

4. EXAMPLES

In this section we use two data sets to illustrate the proposed
diagnostics for Gaussian process emulators. The first example
is an artificial model with two inputs, and the second example
is a real model of reflectance for a homogeneous plant canopy.
In both examples, the prior relationship between the output and
the inputs is represented by the mean function (2) with h(x)T =
(1,xT). This envisages a linear trend in response to each input,
which is widely used in Gaussian process emulation. Although
computer models are almost certainly nonlinear in practice, we
often have little prior knowledge of what form the nonlinearity
will take.

4.1 Two-Input Toy Model

We begin with an artificial model with only two inputs but
nevertheless of a challenging form for emulation. We suppose
that the simulator encodes the following mathematical function:

y = η(x1, x2)

= (
1 − e−1/(2x2)

)
×

(
2300x3

1 + 1900x2
1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20

)
,

xi ∈ (0,1), i = 1,2. (23)

The training data comprise 20 points selected by a Latin
hypercube sampling McKay, Beckman, and Conover (1979).
The validation data comprise 25 points independently selected
by another Latin hypercube sampling. Using the training data,
the estimated correlation length parameters (15) are (ψ̂1, ψ̂2) =

Table 1. The observed Mahalanobis distance and credible interval
diagnostics, with summaries of their predictive

distributions, for the toy example

Obs. Expected Std. dev. 1stQ Median 3rdQ

DMD(·) 70.360 25.000 12.404 16.016 21.778 29.438
DCI(·) 0.920 0.951 0.072 0.920 1.000 1.000

(0.2421,0.4240), indicating that the simulator is smoother with
respect to the second input than to the first input. The estimated
variance is σ̂ 2 = 3.3316.

The observed chi-squared diagnostic, Dχ2(y∗) = 24.411, is
very close to its expected value E[Dχ2(η(X∗))] = 25, suggest-
ing that the emulator is a good approximation of the simulator.
But this diagnostic ignores the fact that the outputs are corre-
lated. Table 1 presents the observed Mahalanobis distance and
credible interval diagnostics, along with some statistics of their
predictive distributions.

The observed Mahalanobis distance, DMD(y∗) = 70.36, is an
extreme value of its theoretical distribution, a scaled F distribu-
tion with parameters (25, 18). This indicates a conflict between
the emulator and the simulator. The observed credible interval
diagnostic is less dramatic. We see that 92% (23 of 25) of the
simulator outputs lie in their respective 95% marginal credible
intervals built by the emulator. The lower quartile of the dis-
tribution of DCI(η(X∗)), obtained via simulation, is 0.92, and
indeed it is not surprising to have 2 values out of 25 lying out-
side their 95% intervals.

The chi-squared and credible interval diagnostics suggest
that emulator predictions are marginally satisfactory, but the
Mahalanobis distance makes it clear that jointly they are far
from valid. This may be related to poor estimation of the cor-
relation length parameters or to nonhomogeneity in the input
space.

Figure 1 presents some graphical diagnostics using the indi-
vidual standardized errors. Figure 1(a) presents the individual
standardized errors against the emulator predictions given by
the expected value. No obvious pattern can be seen, although
the two largest individual errors are associated with small val-
ues of the predictions, which might indicate a problem in the
mean function or an stationarity problem. Figure 1(b), a QQ-
plot of the individual errors, supports the finding of the chi-
squared and credible interval diagnostics that the predictions
appear to be valid marginally.

To check for a possible stationarity problem, we plotted the
individual standardized errors against each input [Figures 1(c)
and (d)]. The two large errors are associated with small val-
ues of the input 1 and with large values of the input 2. This
might be connected to a subregion of the input space not repre-
sented in the training data. If possible, new runs of the simulator
in this subregion might improve the emulator. Figure 1(c) also
shows that the larger the value of input 1, the smaller the vari-
ability of the individual errors. This can indicate nonstationarity
or perhaps overestimation of the correlation length ψ1. For the
second input, Figure 1(d) shows no particular pattern to the er-
rors.

The diagnostics presented in Figure 1 ignore the correlation
structure of the errors and so do not address the problem found
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(a) (b)

(c) (d)

Figure 1. Graphical diagnostics for the toy example using the individual standardized errors: (a) DI(y∗) against the emulator predictions; (b)
QQ-plot; (c) Di(y∗) against input 1; and (d) Di(y∗) against input 2.

with the Mahalanobis distance. Figure 2 presents graphical di-
agnostics using the uncorrelated standardized errors. The eigen
errors are presented in Figure 2(a), which shows large errors
at the end of the plot. This clearly indicates a problem with the
correlation structure, either a misspecification of the correlation
function or an overestimation of the correlation length parame-
ters. Examining the weights given by the eigen vector for the
large errors, we cannot identify a pattern for the components of
the 16th, 17th, and 23rd eigen errors; however, the components
of the 21st eigen value indicate that the 5th validation point is
a very important point for the size of this eigen error. All vali-
dation points related to the largest weights of the 24th and 25th
eigen errors have values of <0.5 for input 1.

The pivoted Cholesky errors are presented in Figure 2(b).
Again, large errors are seen at the end of the plot in this diag-
nostic, suggesting a problem with the correlation structure. But
in this plot it is easier to explore the nature of the problem, be-
cause there are only two large values, and we can link each one
to a single validation data point. Their input vectors are (0.14,
0.58) and (0.18, 0.10). These two points differ from the two
large individual standardized errors, but they also are charac-
terized by small values of input 1, suggesting that the emulator
predictions are not valid over this part of the input space.

Figure 2(c) presents the QQ-plot of the pivoted Cholesky er-
rors. The points cluster around a line with slope slightly greater
than 1, indicating a possible slight underestimation of the pre-
dictive variability. The two outliers, which are the two large
values in Figure 2(b), are the most striking feature of this plot,
however.

In summary, our numerical and graphical diagnostics indi-
cate some conflicts between the emulator and the simulator.
These conflicts seem to be related to poor estimation of the cor-
relation parameters, and perhaps to nonstationarity and the fact
that the training data do not adequately cover a subregion of
input space where X1 takes values < 0.2.

Because the simulator (23) is a simple function, we can run it
quickly. We therefore combined the training data with the vali-
dation data, plus another five observations selected at random in
a subregion of the input space where both inputs are <0.5. Us-
ing the updated training data, the estimated correlation length
parameters are (ψ̂1, ψ̂2) = (0.1764,0.4116), smaller than the
previous estimates, confirming our suspicion of overestimation,
especially of ψ1. In addition, the estimated variance is greater
than the previous estimate, σ̂ 2 = 4.9389, supporting our suspi-
cion of underestimation of the variability of the process.
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(a) (b) (c)

Figure 2. Graphical diagnostics for the toy example using the uncorrelated standardized errors. (a) The eigen errors DE(y∗), against the
eigenvalue number. (b) The pivoted Cholesky errors DPC(y∗), against the pivoting order. (c) QQ-plot of the pivoted Cholesky errors.

We investigated a new validation data set using Latin hyper-
cube sampling; the Mahalanobis distance and credible interval
diagnostics are presented in Table 2. The Mahalanobis distance
is still higher than expected, but now suggests much less con-
flict with the simulator. The credible interval diagnostic again
indicates that the emulator predictions for the validation data
are individually reasonable.

Figure 3(a) presents the individual standardized errors. No
obvious pattern can be seen, and although there are some er-
rors outside the credibility bounds, these are not large enough
to suggest a serious conflict. Figure 3(b) suggests that the emu-
lator underestimates the highest output values and thus may not
adequately capture the peak of the output surface.

The pivoted Cholesky errors are presented in Figure 3(c). Al-
though there are no very large errors, there are too many outside
the bounds. The QQ-plot of the pivoted Cholesky errors in Fig-
ure 3(d) confirms that the emulator’s predicted variability is a
bit smaller than the observed variability.

Although the diagnostics indicate that there may still be some
validation problems, the emulator built with the updated train-
ing data does improve the predictions. At this point, we may
build a final emulator using all of the simulator runs (i.e., the
original training data, the original validation data, the extra five
points, and the final validation data). We would expect the final
emulator to validate well, in view of the very limited problems
found in the second round of validation testing, and would not
retest it.

Figure 4 shows the steady improvement of the emulator.
Figure 4(a) shows the emulator mean plotted against the two
inputs, based only on the original training data. Figures 4(b)

Table 2. The observed Mahalanobis distance and credible interval
diagnostics, with summaries of their predictive distributions,

for the toy example after new training data

Obs. Expected Std. dev. 1stQ Median 3rdQ

DMD(·) 51.129 30.000 10.230 23.172 28.958 36.324
DCI(·) 0.933 0.950 0.058 0.933 0.967 1.000

and (c) show how the emulator evolves as we add the origi-
nal validation data and the extra five points, and then add the
additional validation data. The training data for each emulator
as well as the validation data used to build the diagnostics are
shown in each plot. Figure 4(d) shows the true value of the sim-
ulator; this plot generally would not be available with a real
simulator. Figure 4(d) shows that this is a difficult function to
emulate, which is very sensitive to input 1 when its value is
small. The original emulator does not capture this behavior, but
after the original validation data and five more points are added,
the correct shape emerges. The final emulator shown in Figure
4(c) does a very good job representing the simulator.

4.2 Nilson–Kuusk Model

In this section, we use a real data set as an example for
the proposed diagnostics. The simulator was built based on the
Nilson–Kuusk model, which is a reflectance model for a homo-
geneous plant canopy. The simulator has five inputs: the solar
zenith angle, the leaf area index, relative leaf size, the Markov
clumping parameter, and one parameter called λ. (For more de-
tails of this model, and for the real meanings of these inputs and
the outputs, see Nilson and Kuusk 1989 and Kuusk 1996.) For
our analysis, the inputs were rescaled to make all the input val-
ues lie between 0 and 1, and the inputs are referenced as inputs
1–5.

The training data and the validation data contain 150 and
100 points, respectively, and are supplied as example data with
the GEM-SA software (http://ctcd.group.shef.ac.uk/gem.html).
The training and the validation data were selected using in-
dependent Latin hypercube designs. The estimated correlation
length parameters are ψ̂ = (0.4607,1.1183,2.7996,2.2590,

0.1470). We see that the correlation dies out fastest for in-
put 5, indicating that the model output responds most strongly
(and most nonlinearly) to this input. Input 3, in contrast, has
a high correlation length, suggesting that the output responds
very smoothly to changes in this input. The estimated variance
is σ̂ 2 = 0.0068.

The Mahalanobis distance and credible interval diagnostics
are presented in Table 3. Both diagnostics point to a major dis-
crepancy between the emulator and the simulator. They also
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(a) (b)

(c) (d)

Figure 3. Graphical diagnostics for the toy example after new training data. (a) and (b) Individual standardized errors DI(y∗) against the
validation data order (a) and the emulator predictions (b). (c) Pivoted Cholesky errors DPC(y∗) against the pivoting order. (d) QQ-plot of
pivoted Cholesky errors.

suggest that the variability of the process is greater than esti-
mated, or that the stationarity assumption is too strong.

Figure 5(a) presents the individual standardized errors against
the order of the validation data. Many large errors can be ob-
served, but there is no particular pattern. The sole very large
error suggests a local fitting problem around that validation
point, while the remaining large errors indicate either an un-
derestimation of the variability or a nonstationarity problem.
Figure 5(b) plots the individual standardized errors against the
emulator predictions given by the expected value. The variabil-
ity of the errors for small values of the predictions is smaller
than the error variability for the large values of the predictions,
indicating heteroscedasticity.

To determine whether there is a particular subspace in the
input space where the behaviour is different, we plot the indi-
vidual errors against each input in Figure 6. There is no clear
systematic pattern for inputs 1–4; however, the variability of the
errors seems to depend on whether the input 5 is >0.5, or 700
on the original scale. The last panel in Figure 6 plots the model
output against input 5 for the combined training and validation
data, showing clear nonlinearity and a change in behavior in the
model for values of input 5 greater than 700.

The pivoted Cholesky errors are presented in Figure 7(a). The
large errors at the end of the plot indicate possible overesti-
mation of the correlation length parameters, although the sug-
gested nonstationarity of the model may be causing these large
conditional errors. The QQ-plot of the pivoted errors shown in
Figure 7(b) indicates that the observed variability is larger than
the estimated variability, with the presence of many large values
supporting the suggested nonstationarity problem.

According to the diagnostics, the emulator built with the
training data is not a good and valid representation of the simu-
lator. The diagnostics consistently point to the presence of non-
stationarity and/or heteroscedasticity, with the model output for
values of input 5 greater than 700 shifted and more variable than
when this input is <700. Actions to improve the emulator might
include adapting the mean function to the apparent shape of the
response to input 5, allowing for a different variance when input
5 is >700, or transforming the output variable to induce more
homoscedasticity. Such changes, along with rebuilding the em-
ulator using all 250 data points, should improve the fit substan-
tially, but this should be checked against new validation data.
We have no access to the simulator code, however, making such
an analysis infeasible. Instead, 50 randomly chosen validation
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(a) (b)

(c) (d)

Figure 4. Predictive mean of the Gaussian process emulator built with (a) the original training data, (b) the updated training data, (c) all
observations as the training data, and (d) the two-dimensional toy model evaluated over the input space. Training data (•) and validation data
(�).

data points were added to the training data. These points were
chosen randomly because if we ran the emulator adding extra
points in the area where the input space is between 650 and 800,
very few data points would be available in that region for val-
idation. The other 50 validation data points were used for the
diagnostics. In attempt to improve the emulator, we changed
the mean function to allow a fourth-order polynomial for the
input 5, that is, h(x)T = (1,xT , x2

5, x3
5, x4

5). To stabilize the vari-
ability over the input space, we used a log-transformation of
the output. Alternatively, more complex analyses could be used,
because the diagnostics point to the presence of nonstationarity
in the input space. For instance, for the nonstationary model,
the treed Gaussian process could be used (Gramancy and Lee
2008). Another approach could be to use a linear spline with
knots at 700 and 775 or 800 for input 5 as the mean function
instead of a fourth-order polynomial; however, for this example
we have opted for the polynomial mean function because of its
simplicity.

The Mahalanobis distance and credible interval diagnostics
are presented in Table 4. Both diagnostics suggest no conflict
between the rebuilt emulator and the Nilson–Kuusk model.

Figure 8 shows as expected that the rebuilt emulator can be a
surrogate for the Nilson–Kuusk model. Figure 8(a) presents the

individual standardized errors against the emulator predictions,
and Figure 8(b) presents the pivoted Cholesky errors against the
pivoting order. Both figures indicate no obvious pattern. Fig-
ure 8(c) presents the QQ-plot of the pivoted Cholesky errors.
Because the points lie close to the 45-degree line, the normality
assumption for the log-transformed simulator outputs appears
to be reasonable.

This example demonstrates that the natural response to the
diagnostics in the original emulator fit would have been to in-
clude all of the validation data in the training sample, add extra
validation points with values of input 5 in the neighborhood
of 700, and then validate the new emulator with extra valida-
tion points. This was not practical, however, because we did
not have access to the simulator to make more runs. Instead, we

Table 3. The observed Mahalanobis distance and credible interval
diagnostics and summaries of their predictive

distributions, Nilson–Kuusk model

Obs. Expected Std. dev. 1stQ Median 3rdQ

DMD(·) 750.237 100.000 18.593 87.288 98.813 111.964
DCI(·) 0.80 0.95 0.0275 0.93 0.95 0.97
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(a) (b)

Figure 5. Graphical diagnostics for the Nilson–Kuusk model using the individual standardized errors (a) DI(y∗) against the validation data
order and (b) DI(y∗) against the emulator predictions.

were able to produce a valid emulator with only 50 extra train-
ing data, selected a random from the original validation sample.
This result is encouraging, because additional simulator runs
are often costly.

5. CONCLUDING REMARKS

In this article we have presented a set of diagnostics aimed at
validating Gaussian process emulators. We believe that this is a

Figure 6. Individual standardized errors for the Nilson–Kuusk model, DI(y∗), against the five input variables, along with the combined
training and validation model outputs against input 5.
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(a) (b)

Figure 7. Graphical diagnostics for the Nilson–Kuusk model using the the pivoted Cholesky errors. (a) DPC(y∗) against the pivoting order.
(b) QQ- plot.

very important step before using such an emulator as a surro-
gate for the computer model, because a nonvalid emulator can
induce wrong conclusions. Our diagnostics focus on comparing
emulator outputs with new runs of the computer model (referred
to here as validation data) in a way that takes the uncertainties
and correlations in the Gaussian process emulator predictions
into account.

We have proposed two kinds of diagnostics, numerical and
graphical. The numerical diagnostics are functions of the val-
idation data outputs, where we compare the observed value of
each diagnostic with its induced distribution by the predictive
distribution of the emulator outputs. The graphical diagnostics
are basically visualizations of the prediction errors, where we
consider the individual standardized errors and the uncorre-
lated standardized errors. The diagnostics are able to indicate
whether the emulator and its uncertainty can represent the sim-
ulator. Where the emulator fails, the diagnostics can provide
information about where the problem might lie.

The interpretations that we have suggested for the various
diagnostics should be used with care, however, because in a
complex system like a Gaussian process emulator, all of the
elements will interact in determining the diagnostic values. A
better understanding of how to read different combinations of
diagnostics will come with more experience with their use.

The diagnostics are equally effective when the training data
set is large. In this case, the mean function (11) will typically
reproduce the simulator almost perfectly even for a nonstation-
ary simulator, and the predictive variances will be very small
throughout the region of input space covered by the training
data. Even though the validation data may appear to follow the
emulator mean function very closely, the diagnostics may nev-

Table 4. The observed Mahalanobis distance and credible interval
diagnostics and summaries of their predictive distributions

of the updated emulator for the Nilson–Kuusk model

Obs. Expected Std. dev. 1stQ Median 3rdQ

DMD(·) 63.873 50.000 11.305 43.007 49.968 58.320
DCI(·) 0.94 0.951 0.032 0.92 0.96 0.98

ertheless be insufficiently close relative to the small predictive
variances, making the standardized errors not acceptable.

In the case of a large training data set, computational prob-
lems are often encountered due to the near-singularity of the
predictive variance matrix. In this cases, the pivoted Cholesky
decomposition will be particularly valuable, because the ill-
conditioned nature of the matrix will emerge, with pivoting
variances eventually becoming negative due to rounding errors.
Such components should be ignored, and the diagnostics should
be based only on the uncorrelated errors produced up to that
point.

In practice, “all models are wrong,” and no emulator will rep-
resent its simulator with perfect validity. The emulator will still
be useful, and “good enough,” if any remaining conflicts are
small. In particular, an emulator built on a large training data
set (and hence with uniformly small predictive variances) may
be deemed adequate even if substantive validation failures ex-
ist. Some measures of whether the emulator is “good enough”
would be useful, but these will likely depend on the uses to
which the emulator will be put.

Here we have focused on the case in which the simulator
gives a single output. It would be relevant to extend the diag-
nostic tools for multiple-output emulators and for dynamic em-
ulators.

We also have focused on validating the emulator as a rep-
resentation of the simulator, whereas conventional verification
and validation methods are concerned with whether the simula-
tor is an adequate representation of reality. Further relevant ex-
tensions to these methods should address comparisons between
the simulator and observational data and between the emulator
predictions and the observations. Furthermore, in the calibra-
tion approach of (Kennedy and O’Hagan 2001), the emulator
is “corrected” to allow for discrepancy between the simulator
and reality, which introduces yet more relevant comparisons for
validation testing. It also makes it clear that the assumption in
traditional V&V methods that discrepancies between simulator
and reality are due simply to independent observation errors is
naive. Note that in all of these cases, we generally need to work
with relatively few real world observations, and thus with small
validation samples.
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(a) (b) (c)

Figure 8. Graphical diagnostics of the updated emulator for the Nilson–Kuusk model. (a) Individual standardized errors, DI(y∗), against the
emulator predictions. (b) Pivoted Cholesky errors, DPC(y∗), against the pivoting order. (c) QQ-plot of DPC(y∗).
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