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Risk assessment of rare natural hazards, such as large volcanic block and ash or pyroclastic flows, is
addressed. Assessment is approached through a combination of computer modeling, statistical modeling,
and extreme-event probability computation. A computer model of the natural hazard is used to provide
the needed extrapolation to unseen parts of the hazard space. Statistical modeling of the available data is
needed to determine the initializing distribution for exercising the computer model. In dealing with rare
events, direct simulations involving the computer model are prohibitively expensive. The solution instead
requires a combination of adaptive design of computer model approximations (emulators) and rare event
simulation. The techniques that are developed for risk assessment are illustrated on a test-bed example
involving volcanic flow.

KEY WORDS: Bayesian analysis; Catastrophic events; Emulators; Extreme events; Inverse problems.

1. INTRODUCTION

The focus of this article is on assessing the risk of extreme
natural hazards, such as volcanic pyroclastic flows large enough
to devastate a nearby city. The scenario we focus upon is that in
which the potentially catastrophic events {Ei} occur with some
frequency, for example, hurricanes, tsunamis, floods, earth-
quakes, forest fires, volcanic eruptions, and so on, but in which
truly catastrophic consequences at any specific time and place
are rare. We then wish to determine the probability that at least

one catastrophic event C will occur in the next T years—for in-
stance, the probability of a pyroclastic flow event in the next T
years that results in a significant amount of debris reaching a
designated location (e.g., the center of a town, the location of
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a hospital or airport, etc.) and hence causing catastrophic dam-
age.

This focus on rare events typically precludes the use of purely
data-based approaches to the problem; there will not be enough
data concerning the rare events to provide a sound statistical
answer. It is common to employ expert opinion to help assess
the risk of extreme events, but these phenomena are so complex
that expert opinion can be quite uncertain.

An increasingly popular, more formal approach to the prob-
lem is to construct a deterministic computer implementation
of a mathematical model for the phenomena that produce the
catastrophic events. This computer model can be run under a
range of natural conditions that are possible, but have not yet
been observed, in order to aid in risk assessment. As one exam-
ple of the use of such computer models in evaluating hurricane
risk, see Iman, Johnson, and Watson (2005).

In this article we focus on the particular problem of assessing
the risk from volcanic activity, employing a computer model—
TITAN2D—developed for modeling the process of volcanic
flow. Given a digital elevation map specifying the topography
of a volcano and the surrounding area, and the values of in-
put parameters including the initial volume of erupted material
and the direction at which the discharged mass begins to move,
TITAN2D can predict the thickness of a volcano’s pyroclastic
flow at any location (such as the center of a given town) at any
time during the flow (Patra et al. 2005). If the flow thickness is
large enough (say, 1 m deep) at any time during the simulation,
we will call that flow a catastrophic event. See Section 2 for
a brief introduction to this computer model and its capabilities
for predicting volcanic flow.

While the development of a mathematical model of a rare
phenomenon is one fundamental step in formal risk assessment,
there are two other key advances that are needed. The first is to
determine the input distributions needed to exercise the com-
puter model; e.g., what are the volumes of volcanic flow that
can be expected from a given volcano? In determining such in-
put distributions, availability of data concerning the geophys-
ical process being modeled is crucial, as is the development
of suitable statistical models of the data. In Section 4 we pro-
pose a method for determining such input distributions, based
on scarce and challenging data of the type that is typical for
volcanic flows.

The final challenge is that of computing the probability of a
catastrophic event, since such events are typically very rare. Di-
rect simulation of catastrophic events—utilizing the input dis-
tribution and the computer model—is generally hopeless be-
cause of the expense (time needed) to run the computer model.
To surmount this final challenge we utilize adaptively designed
emulators (approximations) for the computer model, to iden-
tify the threshold inputs that define a catastrophic event. This
process is described in Section 3. It is then possible to compute
the probability of the catastrophic event using more standard
computational techniques, as demonstrated in Section 5.

The test site used in the article and the computations is the
Soufrière Hills Volcano (SHV) on the island of Montserrat.
While we focus on this volcanic application, the methodology
we propose is immediately applicable to other dome-forming
volcanoes (Mount St. Helens, Merapi, and others); indeed, there
is considerable interest in understanding such lava dome erup-
tions (Voight et al. 1999). Moreover, the general approach taken

is, in principle, applicable to any hazard situation for which
there is an available computer model of the natural process
and there exists a reasonable amount of data (but not necessar-
ily of extreme events). The recent development and emerging
accessibility of new remote sensing techniques are leading to
rapidly growing classes of problems suitable for analysis using
the methods described here.

2. THE COMPUTER MODEL

2.1 The Geophysical/Mathematical/Computer Model

Geophysical mass flows include pyroclastic flows, rockfalls,
and granular avalanches. These flows often arise consequent to
volcanic activity, and they pose serious challenges to mathe-
matical modeling and risk assessment. In particular, they ac-
tivate physics across 6 orders of magnitude, from centimeter-
sized particles to kilometer-sized runouts, and depend on the
terrain and geography over which they run. These mass flows
may contain 104–109 m3 or more of solid materials, and travel
at tens of meters per second, leaving deposits that may be tens
of meters deep and several kilometers long. Needless to say,
these flows can have potentially devastating effects.

The enormous span of scales presents significant challenges
to those developing models of the flow process. Although mod-
els of rolling and sliding grains traversing a pile of otherwise
stationary grains have gained popularity, these models have not
been able to provide quantifiable predictions in systems of en-
gineering interest. Instead, research characterizes geophysical
mass flows via “thin layer” modeling—that is, by recognizing
the long runout of these flows compared to their thickness, and
scaling accordingly. The resulting mathematical system, akin to
the shallow water equations for fluids, consists of a system of
partial differential equations for the flow depth and the depth-
averaged momenta (Savage and Hutter 1989; Iverson 1997; Pa-
tra et al. 2005). These models provide reasonable comparisons
with experimental findings, using terrain data and only a few
input modeling parameters.

We use a depth-averaged model for dry geophysical mass
flows. Depth averaging circumvents the difficult problem of
computing the free surface of the flowing mass, allowing the
computation of flows that otherwise would be prohibitively ex-
pensive. However, averaging also blurs any internal structure,
such as stratification, that might develop within a flow. As al-
ways, the physical assumptions under which a mathematical
model is derived must be respected as one applies the model
equations.

TITAN2D is a simulation tool developed at the University of
Buffalo for computing solutions to this mathematical model.
Validation of the computer code and verification of the re-
sults were performed and reported in the literature. For exam-
ple, simulation results from TITAN2D were tested against field
measurements of historical mass flows and gave a good descrip-
tion of important flow features (Sheridan et al. 2005).

A principal feature of TITAN2D is the incorporation of
topographical data from geographic information system (GIS)
sources into the simulation and grid structure. Two other key
inputs are x = (x1, x2), where x1 is the size of the initial flow
and x2 the direction in which material first begins to flow (an
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404 M. J. BAYARRI ET AL.

angle measured from a reference direction). The output—the
flow height and a depth-averaged velocity at every grid point
at every timestep—is a complete description of the mass flow
over realistic terrain.

TITAN2D is still evolving, particularly as concerns the two
constitutive inputs—internal friction angle and basal friction
angle—that describe the frictional dissipation of the flowing
material. The values of these inputs that were used in the analy-
sis in this article are 35◦ and 21◦, respectively, values deter-
mined from laboratory experiments of flowing material. It is
well known, however, that large mass flows exhibit an effective
friction angle that is much smaller than laboratory measured
values (Dade and Huppert 1998; Collins and Melosh 2003).
Hence, there is an ongoing effort to obtain geophysical data
that can be used to better calibrate the friction angles used in
TITAN2D. For example, the uncertainty of friction angles was
examined in the context of hazard maps in Dalbey et al. (2008).
Acknowledgment of uncertainty in these two inputs also re-
quires a new and considerably more complex analysis, involv-
ing new design, emulators, computer experiment, physical data,
and probability modeling. These improvements are still ongo-
ing work and will be reported elsewhere. Of course, allowing
friction angles to depend on flow volumes will likely have a
significant effect on the final risk assessments, but the model-
emulator methodology developed in this article is not altered by
this future change in the computer model itself. Indeed, com-
puter models are continually undergoing such improvements,
and it is important to have risk assessment methodology com-
patible with a sequence of improving computer models.

2.2 The Test Bed: Soufrière Hills Volcano

Montserrat is a small island, about 10 km wide and 16 km
long, in the British West Indies. The Soufrière Hills Volcano on
Montserrat has been erupting since July 1995 and continues to
date. There had been seismic activity for about 3 years prior to
the 1995 eruption and other spells of activity during the twen-
tieth century, but the last volcanic eruption is estimated to be
about 300–350 years ago. The recent eruption consists of the
extrusion of a sequence of lava domes, piles of viscous magma
that, in essence, form steep bulbous plugs on top of volcanic
vents. They grow slowly (about 2–8 m3/s) and can host internal
pressures as great as 10 MPa. Lava dome eruptions are notori-
ous for suddenly transforming from a benignly effusive state
to a violently explosive one. Sudden removal of these “plugs,”
either by vertically driven explosions, or by sudden collapse
and spontaneous disintegration as the piles grow and become
unstable, can have devastating consequences. These dome col-
lapse events spawn one of the major hazards in volcanology—
devastating pyroclastic density currents that move down the
flanks of the volcano at speeds of 60 m/s or more (Calder et al.
1999).

Now in its 14th year, the Soufrière Hills eruption is one of
the longest-lived dome forming eruptions known. Importantly
for us, the Soufrière Hills Volcano is one of only a very small
number of eruptions that have been intensely monitored. The
scientific insights gained during the course of this eruption are
providing much of the basis for recent progress in volcanology
(e.g., Voight et al. 1999).

Figure 1. The island of Montserrat. Adapted with permission from
Calder et al. (2002).

Sequential and frequent collapses of the Soufrière Hills lava
dome occur as a natural consequence of growth by extrusion
of lava, and range from conventional rockfalls, through small
pyroclastic flows, to major dome-collapse events involving (to
date) up to 2.1 × 108 m3 of material (Herd, Edmonds, and
Bass 2005; Figure 1). Since 1995, the eruption has generated
tens of thousands of individual rockfalls and of the order of
300 pyroclastic flows with runouts exceeding 2 km. On 47 oc-
casions, these pyroclastic flows were associated with large col-
lapse events removing in excess of 106 m3 of the dome. More
detail about these data can be found in Section 4.

Despite efforts toward understanding the physical mecha-
nisms behind dome collapse at Montserrat, the propensity for
lava domes to collapse with little or no apparent warning re-
mains a serious issue.

3. RISK ASSESSMENT AND EMULATING
THE COMPUTER MODEL

3.1 Introduction

We consider problems in which there is a scalar quan-
tity that determines whether or not a particular flow event is
“catastrophic.” In this article, for example, we consider a speci-
fied location (e.g., the center of town or a hospital), and monitor
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USING STATISTICAL AND COMPUTER MODELS TO QUANTIFY VOLCANIC HAZARDS 405

the maximum flow depth at that location throughout the entire
flow event as the quantity of interest to see whether this maxi-
mum flow depth exceeds some specified benchmark value. The
multivariate situation and the extension to hazard maps of entire
areas will be treated elsewhere.

For inputs x ∈ X to the computer model, denote the com-
puter model prediction of the characteristic of interest by yM(x),
and denote by YC the critical set of values of that characteristic
regarded as catastrophic; thus input x results in a catastrophic
event if yM(x) ∈ YC . Since we are focusing on univariate crit-
ical outputs, the critical set YC would typically be an interval
[ymin, ymax] or (most often) [ymin,∞). For the SHV in Montser-
rat, x = (x1, x2) = (volume, initialization angle) of the volcanic
eruption, and yM(x) = the maximum height at the center of the
target area of a pyroclastic flow from an eruption with charac-
teristics x. A catastrophic event occurs (by definition for this
article) if x is such that yM(x) ≥ 1 m.

Note that, although the computer models considered here are
deterministic, the model input x (e.g., flow volume and initial
flow angle) will be random, with a distribution that will be de-
termined in Section 4; this will determine the probability of a
catastrophic event in some specified interval of time.

The naïve approach to determination of a risk probability is
simply to generate x from its input distribution and observe the
fraction of time that the resulting yM(x) ∈ YC . This is not fea-
sible for typical scenarios involving catastrophic events, both
because the events are typically very rare and because the com-
puter models are extremely expensive to run. For instance, each
run of TITAN2D takes approximately 1 hr on a single proces-
sor.

The obvious alternative is to identify the critical set of inputs
XC = {x ∈ X : yM(x) ∈ YC}, and then attempt to compute the
probability of XC under the input distribution. Alas, even the
precise determination of XC in problems such as this is typi-
cally infeasible, as it would require numerically solving for a
surface (the boundary of XC) using the computer model, which
is prohibitively expensive.

A way forward is to develop an emulator approximation to
the computer model, and use the emulator to find an approxi-
mation to XC . An emulator is a statistical predictor of the model
output (which we call the “simulator”) at untried values of the
inputs. Typically, emulator predictions pass through all points
at which the simulator has been exercised and interpolate in be-
tween while providing an estimate of the error incurred. Here
we use a Gaussian process (GaSP) response-surface approxi-
mation to the computer model, following on work by Sacks
et al. (1989), Currin et al. (1991), and others. For complex
yM(x) and/or XC , developing an emulator near the boundary of
XC, while simultaneously trying to determine XC , will require
an iterative or adaptive process.

For the test-bed problem, it is convenient to switch to a more
mnemonic notation: we denote the flow volume x1 by V and the
initial flow angle x2 by ϕ. Thus (V, ϕ) ∈ X = (0,∞)×[0,2π),
and we desire to find the critical contour in this space that
separates catastrophic events from benign events. This con-
tour, which we will call � , is most conveniently represented
by finding, for each angle ϕ ∈ [0,2π), the minimum volume
V that causes catastrophic damage (all larger volumes will
cause even worse damage). Thus we will write � = �(ϕ) =
inf{V : yM(V, ϕ) ≥ 1 m}. Also for the test bed, we focus on risk
at two locations: Plymouth city and Bramble Airport.

3.2 Design Points

To begin the search for � we ran 256 flow simulations at de-
sign points in a large region X = [105 m3, 109.5 m3] × [0,2π)

of the input space. These 256 design points were chosen ac-
cording to a Latin hypercube design and are plotted in Figure 2.
Latin hypercubes are space-filling designs that have proven
very successful for all-purpose designs of computer experiment
runs since they require relatively few design points per input
to “fill” the design space (see, for example, Sacks et al. 1989;
Tang 1993; Koehler and Owen 1996; Santner, Williams, and
Notz 2003, chapter 5).

Initially the emulator is based on a subset of these design
points, which is then augmented in an adaptive way (described
in Section 3.5) to improve the estimated frontier � . First we
separate the design points corresponding to zero height at the
location of interest from those corresponding to yM(V, ϕ) > 0,
i.e., some flow activity. We further reduce this set by elim-
inating very large volume cases, which could lead to diffi-
culty in fitting the emulator. (We made this choice location-
specific: for Plymouth, V > 108.6 m3 and for Bramble Airport,
V > 108.8 m3). Next, to ensure that the emulated max-height
surface goes to zero near the actual curve that separates X into
flow and no-flow events, we also include some of the largest
volumes giving zero height at the specific location. Specifically,
we divide the initiation angle domain into M equal-width sub-
domains, and within each, pick the largest volume design point
such that yM(V, ϕ) = 0. Furthermore, to ensure that the emu-
lated height surface is (approximately) a periodic function of
initiation angle, we periodically extend design points so the
resulting initiation angle domain for the emulated surface is
[−π/2,5π/2].

In this way, we are left with N design points (35 and 42,
respectively, for Plymouth and Bramble Airport), many fewer

Figure 2. A representation of the design points covering the
space X . Dots represent all of the (V, ϕ) pairs used as initial condi-
tions in the full simulation runs. Large dots identify points used to fit
GaSP emulator: filled large dots are those that achieved yM(V, ϕ) > 0
at Plymouth, open large dots are those for which yM(V, ϕ) = 0 at Ply-
mouth.
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406 M. J. BAYARRI ET AL.

than the initial 256, that we use to fit the emulator of the max-
height flow at a specific location over a reduced region XR of
the input space around the critical frontier. We denote this ini-
tial set of points by D. It should be emphasized that the goal
of this reduction to N design points was to obtain a more ac-
curate emulator in the region where the critical contour appears
to be. That emulators often perform better when localized was
demonstrated in Gramacy, Lee, and MacReady (2004).

3.3 GaSP Emulator

Let y denote the N-dimensional vector of simulator runs
yM(x) for x = (V, ϕ) ∈ D. We can fit an emulator (GaSP re-
sponse surface) to y. Indeed, Figure 3 shows the mean surfaces
of the emulated max-height GaSP’s (developed below) for the
two sites under consideration as a function of the volume and
angle inputs, along with dots indicating the actual heights at the
design points in D that were obtained from the computer model
runs.

Gaussian emulators may be developed not only for y =
yM(x), but also for g(y) (which we denote by yg) for any strictly
monotone function g, with the emulated values then trans-
formed back to the original units. A judicious choice of trans-
formation function g may lead to a problem where Gaussian
interpolation does a better job of interpolating model out-
puts, leading to more efficient and more accurate emulation. In
our ongoing example, we consider two functions: the identity
g(y) = y (no transformations needed) and g(y) = log(y + 1).
This latter transformation was chosen because it “spreads out”
small positive values of y, deemphasizes extremely large values
of y, and is well defined at y = 0.

We must specify a GaSP prior distribution for the (unknown)
function g(yM(V, ϕ)) over the region of interest (V, ϕ) ∈ XR.
Specifically, we take

g(yM(V, ϕ)) = β + mV + z(V, ϕ), (1)

where β + mV constitutes a linear trend (mean) function and
where z(V, ϕ) is a zero-mean spatial Gaussian process, with
covariance specified below. Note, it is reasonable to assume that

yM , and hence g ◦ yM , increase monotonically in the volume V ,
but not in the angle ϕ; thus, there is no reason to include ϕ

in the trend. The Gaussian process z(V, ϕ) has E[z(V, ϕ)] = 0
and Var[z(V, ϕ)] = σ 2. A periodic extension of the standard
product exponential correlation structure, when evaluated at the
design points xi = (Vi, ϕi) ∈ D, would result in the correlation
matrix R = [Rij] (an N×N matrix) given for 1 ≤ i, j ≤ N by

Rij = R[(Vi, ϕi), (Vj, ϕj)]

= exp(−θV |Vi − Vj|αV )
1

c(θϕ,αϕ)

×
∞∑

k=−∞
exp(−θϕ |ϕi − ϕj + 2πk|αϕ ) (2)

for range parameters θ and smoothness parameters α for
each “direction” in parameter space X , where c(θ,α) = 1 +
2
∑∞

k=1 e−θ |2πk|α is the appropriate normalizing constant. For
computational reasons we employ a one-term approximation to
this infinite sum

≈ exp(−θV |Vi − Vj|αV ) exp(−θϕ |ϕi − ϕj|αϕ ), (3)

and extend the data periodically to the interval [−π/2,5π/2] to
minimize edge effects. This approximation will be excellent for
sufficiently large values of θϕ ; we are exploring alternatives in
ongoing work. The likelihood for this model is given by

p(yg | θV , θϕ,αV , αϕ, σ 2, β,m)

= 1

2πσ 2|R|1/2
exp

[
− 1

2σ 2
(yg − β1 − mV)T

× R−1(yg − β1 − mV)

]
, (4)

where 1 is the vector of ones in R
N and V = (V1, . . . ,VN) with

(Vi, ϕi) ∈ D.
A popular, easy emulator is the GaSP resulting from plug-

ging in maximum likelihood estimates (MLE) into the condi-
tional posterior distribution of the function given the data yg

(and the parameters). The mean and variance are then given

Figure 3. Left: Plymouth; right: Bramble Airport. Max-height surfaces are the mean of the GaSP emulators. Dark points represent the
max-height simulation output at design points.
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USING STATISTICAL AND COMPUTER MODELS TO QUANTIFY VOLCANIC HAZARDS 407

by the usual kriging expressions. This strategy, while conve-
nient, typically results in underestimation of the variance for
the predicted simulator at untried inputs. In practice this un-
derestimation is usually negligible (see Bayarri et al. 2007 for
discussion), but the number N of design points we are consid-
ering is modest, and so we incorporate the most crucial uncer-
tainty (namely, that of β,m, and σ ) via a fully Bayesian analy-
sis, while retaining the MLE’s for the parameters determining
the correlation structure (θV , θϕ,αV , αϕ) (a full Bayesian analy-
sis would be prohibitively expensive computationally). We use
the GaSP software of Welch (2003) to compute these MLE’s,
and from now on (θV , θϕ,αV , αϕ) are taken to be known and
equal to these estimates, and regard the approximate correla-
tion function R of Equation (3) as known.

We use independent objective prior distributions for β,m,
and σ with density functions π(β) ∝ 1, π(m) ∝ 1, and π(σ) ∝
σ−1. Combined with the likelihood (4) this produces the joint
posterior distribution of (β,m, σ ). This posterior is used to find
the predictive distribution of the simulator output at any un-
tried input x∗ = (V∗, ϕ∗) (see, for example, Santner, Williams,
and Notz 2003, section 4.1.3). The expression for the predic-
tive distribution is considerably simplified if one first stan-
dardizes the flow volumes V , by defining Ṽi ≡ Vi − VR and
Ṽ∗ ≡ V∗ − VR, where VR = 1TR−1V/1TR−11. Then, defin-
ing ṼT ≡ (Ṽ1, . . . , ṼN) and rT ≡ (R(x∗,x1), . . . ,R(x∗,xN)) for
xi ∈ D, the predictive distribution of yM(x∗) is

yM(x∗) | yg ∼ t(y∗(x∗), s2(x∗);N−2),

the noncentral Student-t distribution with N−2 degrees of free-
dom and parameters

y∗(x∗) = rTR−1yg + 1TR−1yg

1TR−11
(1 − rTR−11)

+ ṼTR−1yg

ṼTR−1Ṽ
(Ṽ∗ − rTR−1Ṽ),

s2(x∗) =
[
(1 − rTR−1r)

+ (1 − rTR−11)2

(1TR−11)
+ (Ṽ∗ − rTR−1Ṽ)2

(ṼTR−1Ṽ)

]

× 1

N − 2

[
(yg)

TR−1yg

− (1TR−1yg)2

1TR−11
− (ṼTR−1yg)2

ṼTR−1Ṽ

]
.

Note that the computations are the same level of difficulty as
those for the plug-in GaSP, so there is no computational cost in
accounting for the uncertainty in β,m, and σ .

This is our emulator for the identity transformation. Under
the transformation g(yM(x)) = log(yM(x) + 1), posterior mo-
ments for the inverse transformation do not exist, so we resort
to quantiles instead and use the median to predict yM(x∗) and
appropriate quantiles to provide credible bands (note that it suf-
fices to find the quantiles in the emulator for the log transfor-
mation and then transform them back to the original space). In
our analyses, we found that the GaSP’s in the transformed scale
were much more stable than those developed directly in the
original space, so from now on, unless explicitly stated, we limit
ourselves to using emulators derived in the log-transformed
space.

3.4 Catastrophic Event Contours

We can approximate the catastrophic event contour � by de-
termining the appropriate contour numerically from the emu-
lated GaSP surface. For Plymouth and Bramble Airport, �(ϕ)

is shown in Figure 4 for the emulator obtained by fitting a GaSP
to log(yM(·) + 1) and transforming back.

Since the emulators are only approximations to the computer
model, there will be error in the estimation of � . This is re-
flected in the 90% credible bands given in Figure 4 (found sim-
ply by transforming back to meters the 5% and 95% quantiles
of the posterior predictive distribution of the Bayesian emulator
for the log transformation).

Figure 4 suggests that there is considerable uncertainty for
both the Plymouth and the Bramble Airport contours. Reducing
this uncertainty requires additional design points and computer
model runs.

3.5 Adapting the Design

The critical frontier—the 1 m maximum-flow contour—is
close to the 0 m flow frontier, and (of course) there are no neg-
ative flow heights. Gaussian emulators can have difficulty near
such hard boundaries. Thus, it is particularly important to im-
prove the emulator near this 0 m flow boundary. Figure 2 indi-
cates (as large open dots) design points where there is no pyro-
clastic flow at the target location, and nearby points (as large
filled dots) where the maximum flow is positive. By adding
new design points to fill in the larger “gaps” between these two
classes of points, we may be able to improve the precision with
which we estimate � . In addition, Figure 4 indicates (with the
90% interval) the uncertainty in the estimated � curve at var-
ious input angles, and it is natural to choose additional design
points at locations of large uncertainty.

Additional computer model runs were obtainable in batches
of roughly 10 runs, so these two considerations were informally
combined to arrive at a choice of nine additional design points
for computer model runs, as a preliminary investigation of the
improvement that would be obtained. This augmented design is
given in Figure 5 at Plymouth.

Surprisingly, this augmented design turned out to be suffi-
ciently accurate for the risk assessment goals of this study (see
below), so additional adaptation was not required. It is clear,
however, that for the larger problem of constructing overall risk
maps this process of adaptive design will need to be automated.

New emulators were then fit to the augmented design region.
The new critical frontier for Plymouth is shown in Figure 6,
along with the 90% credible bands for the resulting frontier (as
dashed lines); for contrast, the 90% credible bands from the
original design are also shown (as dotted lines). While the criti-
cal frontier did not change markedly, the uncertainty decreased
substantially. The results for Bramble Airport with the new de-
sign points were similar and so were omitted.

Systematic methods for progressive refinement of models in
highly uncertain regions, long used in optimization (see Booker
et al. 1999, for example), also offer promise for use in adap-
tive emulators. Other approaches to adaptive designs can be
found in Williams, Santner, and Notz (2000), Gramacy, Lee,
and MacReady (2004), and Ranjan, Bingham, and Michailidis
(2008).
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408 M. J. BAYARRI ET AL.

Figure 4. Median estimates (solid curves) and 90% credible bands (dashed curves) of frontier �(φ), based on Gaussian process fit to
log-transformed simulation output, at Plymouth (on left) and at Bramble Airport (on right).

As partial validation for the accuracy of the emulator we con-
ducted a leave-one-out cross-validation study, and found that 65
of 71 points were within the nominal 90% prediction intervals.

4. INPUT MODELING: THE FREQUENCY AND
SEVERITY OF EXTREME EVENTS

One key to successful risk assessment using computer mod-
els is determination of a suitable input distribution for exercise
of the computer model. This is particularly challenging when
the goal is to study extreme events. In this section we propose

Figure 5. Adapted subdesign used to fit GaSP max-height surface at
Plymouth. Plus marks represent the additional points added to the de-
sign; large filled and open dots are original design points that achieved
yM(V, ϕ) > 0 and yM(V, ϕ) = 0 at Plymouth, respectively; small dots
are design points not used to fit � for Plymouth. Dashed curve is �

obtained from the GaSP max-height surface fit to the original design
and solid curve is � fit to the updated design.

a type of modeling of the needed input distribution that is par-
ticularly suited for this enterprise.

Since the classical “three types” theorem of Fisher and Tip-
pett (1928) and the influential book of Gumbel (1958) it has
been common to use the generalized extreme value (GEV) dis-
tribution to model extreme events, such as the maximum vol-
ume of the pyroclastic flows (PF’s) during some time inter-
val. This approach of approximating the probability distribution
of the maximum of independent identically distributed random
variables is well suited to finding approximate probability dis-
tributions of the most extreme occurrences of nearly station-
ary processes in fixed periods of time when the stationary dis-
tribution is unknown, but is wasteful and inefficient for prob-
lems (such as ours) in which evidence is available about the
uncertain rates of occurrence of events over a wide range of
extremity. Instead we employ the “peaks over threshold” ap-
proach introduced by Todorović and Zelenhasić (1970) (see
Coles 2001, chapter 4, for a modern treatment), based on point-
process methods modeling the joint distribution of the times
and extremities of events over fixed time intervals. This lets us
exploit more of the information contained in the rates of past
smaller flows to predict those of future larger ones.

4.1 The Proposed Pareto–Poisson Model

Figure 7 shows an empirical plot of the number of pyro-
clastic flows exceeding volume Vj ≥ v versus v during the pe-
riod from March 1996 through July 2008 for the Soufrière
Hills Volcano, on a log–log scale, for large volumes v ≥ ε

(here ε = 5 · 104 m3). Three principal sources of information
were used to assemble this inventory: (1) the record of daily
field observations made by the Montserrat Volcano Observa-
tory (MVO) scientists and reported in daily reports or weekly
reports (http://www.mvo.ms/ ) supplemented with (2) published
articles describing specific events at Soufrières Hills Volcano,
and (3) internal open-file reports of the MVO. The vertical
banding is an artifact, suggesting some rounding-off of smaller
reported PF volumes.
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USING STATISTICAL AND COMPUTER MODELS TO QUANTIFY VOLCANIC HAZARDS 409

Figure 6. Left: �(ϕ) (solid) with 90% credible bands for original (dotted) and updated (dashed) designs. Right: 90% credible bands along
(�(ϕ),ϕ) for GaSP max-height surface fit to original design (dotted) and updated design (dashed).

The approximately linear fall-off on a log–log scale suggests
that the probability distribution of flow volumes satisfies the
linear equation

log P[V ≥ v | V ≥ ε] ≈ −α log(v) + c (5)

for some constants α > 0 and c ∈ R, and hence, the distribution
of the {Vj} is approximately the Pareto, with

P[V ≥ v] ≈ (v/ε)−α, v ≥ ε, (6)

just as expected for a peaks-over-threshold model in the domain
of the Fréchet extreme value distribution (Coles 2001, sec. 4.2).
With the estimated value of α ≈ 0.64 < 1 (see Section 4.3), the
PF volumes will not have finite means or variances, and their
sums and averages will not obey the central limit theorem. The
total accumulated flow over any fixed time interval will have ap-
proximately an α-Stable distribution, not a normal distribution
(see Section 4.2).

Figure 7. Frequency-versus-magnitude plot for pyroclastic flows at
Soufrière Hills Volcano.

We model the PF’s whose volume exceeds some fixed thresh-
old ε as a marked Poisson process of initial volumes and ini-
tiation angle pairs {(Vj, ϕj)} at times τj > 0. With little ev-
idence of nonstationarity over this time period, we take the
Poisson rate to be some constant λε ; we also assume inde-
pendence of the Pareto-distributed volumes {Vj}. This model
cannot be exactly correct for pyroclastic flows, of course, for
many reasons—eruption rates will evolve over time; large PF’s
will deplete dome volumes, precluding a subsequent large PF
within a short time interval; large PF’s in one direction change
the dome geometry, influencing the initiation angle for subse-
quent PF’s, for example. Nevertheless the empirical evidence
against these simplifying modeling assumptions is very weak,
so we adopt them provisionally. In Section 4.5 we present more
specific criticisms of the present model, introduce some ap-
proaches for model validation, and discuss possible modifica-
tions of this model to meet its anticipated shortcomings.

4.2 Relation to α-Stable Distributions

Under this model the total accumulated volume

Xε
t :=

Jε (t)∑
j=1

Vj,

of the Jε(t) ∼ Po(λε t) PF’s exceeding volume ε at times τj ≤ t
has an infinitely divisible (ID) distribution—it is, in fact, a sta-
tionary independent increment (SII) or Lévy process with Lévy
measure

νε(du) = αλεε
αu−α−11{u>ε} du. (7)

For 0 < α < 1, as in our data, the distribution of {Xε
t } is identical

to that of the jumps exceeding ε of the fully skewed α-Stable
process Xt ∼ St(α,1, γ t,0) with shape parameter α and with
rate constant γ = πλ/{2�(α) sin(πα/2)} depending only on α

and on

λ ≡ λεε
α. (8)

We now turn to the problem of estimating the parameters α and
λ from data.
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410 M. J. BAYARRI ET AL.

4.3 The Likelihood Function

The problem of estimating the parameter α for α-Stable dis-
tributions and the closely related one of estimating the tails of
probability distributions (such as the α-Stable and Pareto) are
long studied and notoriously difficult (DuMouchel 1983; Smith
1987). For our Bayesian approach, growing out of Wolpert and
Ickstadt (2004) and Wolpert and Taqqu (2005), we begin with
the likelihood function, upon observing {(Vj, τj) : Vj > ε, 0 <

τj ≤ T}j≤Jε ,

L(α,λ) ∝ (αλ)Jε exp

[
−λTε−α − α

∑
j≤Jε

log Vj

]

= (αλε−α)Jε e−λTε−α−αSε . (9)

Maximum likelihood estimators (MLE’s) are easy to compute,
and depend on the data only through the sufficient statistics Jε

and Sε := ∑
j≤Jε

log(Vj/ε):

α̂ = Jε/Sε, λ̂ = Jεε
α̂/T.

These will be used below to construct an importance function
for evaluating a key integral needed for our estimates of risk.

4.4 Objective Bayesian Inference

Let π(α,λ,ϕ) denote an appropriate prior density function
for the Pareto and Stable shape parameter α, rate parameter λ

from Equation (8), and initiation angle ϕ. We will base infer-
ences on the posterior density

π∗(α,λ,ϕ) = π(α,λ,ϕ | data) ∝ L(α,λ)π(α,λ,ϕ);
note that the likelihood does not depend on the initiation angle
ϕ. Little expert prior information was available concerning α,
λ, and ϕ, so objective prior distributions were used.

The obvious objective prior distribution for the angle ϕ is the
uniform distribution on [0,2π). This was deemed reasonable
by the geologists in the project, as was the assumption that ϕ

may be viewed as independent of the other parameters. Thus
we turn to objective choices for π(α,λ).

A popular objective prior is the invariant Jeffreys’ rule prior
(Jeffreys 1961, p. 181), given by

πJ(α,λ) ∝ |I(α,λ)|1/2,

where I(α,λ) is the expected (Fisher) information matrix and
where | · | denotes matrix determinant. The Fisher information
matrix for the Pareto–Poisson model of Section 4.1 is available
in closed form:

I(α,λ) = Tε−α

[
λ(α−2 + log2 ε) − log ε

− log ε λ−1

]
,

and so the Jeffreys’ rule prior density is

πJ(α,λ) ∝ α−1ε−α1{α>0,λ>0}.

It is generally recognized, however, that the Jeffreys’s rule
prior can behave badly in multiparameter problems (see, e.g.,
Bernardo and Smith 1994, section 5.4); a more promising
choice is the one-at-a-time reference prior distribution of Berger
and Bernardo (1992). This reference prior requires the specifi-
cation of a “parameter of interest”—unfortunately, in this prob-
lem, the quantity of greatest interest is the risk probability, a

complicated function of α and λ. Instead, we construct two ref-
erence priors based on declaring first α and then λ to be the
parameter of interest. Each is computed with an easy applica-
tion of the algorithm in Berger and Bernardo (1992), restricting
(α,λ) to compact sets of the form [1/k, k]×[1/l, l], which grow
to R

2+ as k → ∞ and l → ∞, leading to

πRα(α,λ) ∝ λ−1/2α−1ε−α/21{α>0,λ>0}
and

πRλ(α,λ) ∝ λ−1/2[α−2 + (log ε)2]1/2ε−α/21{α>0,λ>0}.
Each of these three objective prior candidates is of the form

π(α,λ) = λa−1α−1g(α)1{α>0,λ>0} (10)

for some number a ≥ 0 and some bounded function g(α). We
will use each of them in the calculations of Section 5.2.

4.5 Checking the Statistical Model

Surely some of the assumptions presented in Section 4.1 that
underlie this model are false; for example:

1. Dome collapse generation mechanisms are clearly linked
to the nonstationary process of lava extrusion. Lava ex-
trusion rates typically vary between 0–20 m3/s and entail
fluctuations that occur on time-scales of days to months
(Voight et al. 1999). Over short time-scales, frequency-
magnitude models that assume stationarity would cer-
tainly be incorrect. For multiyear periods such as those
we consider here, however, the assumption of stationarity
for time-averaged extrusion rates is not unreasonable.

2. Some collapses, especially those of the small tail end
member, are not strictly independent events. Rockfalls
can trigger other rockfalls. However, the larger dome col-
lapse events we consider can reasonably be considered as
independent.

It is useful to examine the data to assess how well the model fits
these data. Under the proposed model, the points{

(xj, yj) := ((ε/Vj)
α, τj/t)

}
j≤Jε

,

and, with τ0 := 0,{
(xj, zj) := (

(ε/Vj)
α, e−λε−α(τj−τj−1)

)}
j≤Jε

,

would each be Jε independent draws from the unit square. Any
departures we detect from that uniform distribution will suggest
ways to alter and improve the model. The times may be less ir-
regular than iid uniform draws, for example, if there is a refrac-
tory period as in neural spike trains (in which case we may wish
to replace our Poisson event process with an inhibitory process
such as the Strauss or area interaction processes); they may be
more irregular than iid uniform draws if there are aftershocks as
in earthquakes (in which case a Poisson cluster process or a Cox
process may be more appropriate). Flow volumes may tend to
be larger after relatively long interevent times and smaller after
shorter intervals, perhaps, suggesting a Markov sequence rather
than independent random variables for flow volumes. All these
departures can be modeled once they are discovered. Prelimi-
nary investigation suggests that both point-clouds appear suffi-
ciently uniform; in later investigations we will explore this issue
more deeply.

TECHNOMETRICS, NOVEMBER 2009, VOL. 51, NO. 4

D
ow

nl
oa

de
d 

by
 [

D
uk

e 
U

ni
ve

rs
ity

 L
ib

ra
ri

es
] 

at
 1

1:
43

 0
7 

Fe
br

ua
ry

 2
01

3 



USING STATISTICAL AND COMPUTER MODELS TO QUANTIFY VOLCANIC HAZARDS 411

5. RISK ASSESSMENTS AT KEY LOCATIONS

We are finally in a position to compute the probability of
a catastrophic event in the next t years for two key locations:
Plymouth and Bramble Airport.

5.1 Probability of a Catastrophic Event

Fix some time t > 0, and consider the contour � : [0,2π) →
R+ from Section 3.1. Under the model of Section 4.1, the num-
ber of PF’s in a future time interval of length tyears whose vol-
ume Vi and initiation angle ϕi satisfy Vi > �(ϕi) (i.e., the num-
ber of catastrophic PF’s in t years) will have a Poisson proba-
bility distribution with conditional expectation

E(# catastrophic PF’s in t yrs | α,λ)

= tλ

2π

∫ 2π

0
�(ϕ)−α dϕ (11)

for given values of the parameters α and λ, so the probability
of a catastrophic event is

P(At least one catastrophic PF in t yrs | α,λ)

= 1 − exp

[
− tλ

2π

∫ 2π

0
�(ϕ)−α dϕ

]
.

There is a delicate point here that needs to be taken into ac-
count in risk assessment of rare events. Given the angle ϕ (and
α and λ),

P(At least one catastrophic PF in t yrs | α,λ,ϕ)

= 1 − exp[−tλ�(ϕ)−α].
We also know the distribution of ϕ (uniform on [0,2π)), so
it is tempting to view the above expression as the conditional
risk probability given ϕ (and α and λ), and then integrate over
the known distribution of ϕ. This is wrong because the relevant
Poisson mean is given in Equation (11), i.e., the integration over
ϕ must take place in the Poisson mean.

Although the parameter vector (α,λ) is typically unknown,
the maximum likelihood estimator of this probability is easy to
compute:

P̂(t) = MLE of P[At least one PF > �(ϕ) in t yrs | α,λ]

= 1 − exp

[
− tλ̂

2π

∫ 2π

0
�(ϕ)−α̂ dϕ

]
. (12)

The MLE distorts the risk estimate by ignoring uncertainty
in the estimation of α and λ. A better choice is to compute the
posterior probability of catastrophe in t years, using the likeli-
hood function of Equation (9) and a prior density of the form in
Equation (10) from Section 4.4:

P(t) = P[At least one PF > �(ϕ) in t yrs | data]

= 1 −
∫ ∫

R
2+

exp

[
− tλ

2π

∫ 2π

0
�(ϕ)−α dϕ

]

× π∗(α,λ)dα dλ (13)

for the posterior density π∗(α,λ) = Z−1L(α,λ)λa−1α−1g(α)×
1{α>0,λ>0}, with normalizing constant Z := ∫∫

R
2+ L(α,λ)λa−1 ×

α−1g(α)dα dλ. The λ integral in Equation (13) is available in
closed form, leaving:

P(t) = 1 − Z−1
∫ ∫

R
2+

exp[−λtε−αIε(α)](αλε−α)Jε

× e−λTε−α−αSε λa−1α−1g(α)dα dλ

= 1 − Z−1
∫ ∫

R
2+

λJε+a−1 exp
[−λε−α(T + tIε(α))

]
× e−αSε (αε−α)Jε π(α)dα dλ

= 1 − Z̃−1
∫

R+
[1 + (t/T)Iε(α)]−Jε−aαJε−1

× e−α[Sε−a log ε]g(α)dα (14)

where

Iε(α) := 1

2π

∫ 2π

0
[�(ϕ)/ε]−α dϕ

and where

Z̃ = Z TJε+a

�(Jε + a)
=

∫
R+

αJε−1e−α[Sε−a log ε]g(α)dα.

Only for some prior distributions can the normalizing constant
Z̃ be computed explicitly [for the Jeffreys’ rule prior, for ex-
ample, it is Z̃ = �(Jε)S

−Jε
ε and the posterior distribution of α

is α ∼ Ga(Jε,Sε)], but the computational method presented in
Section 5.2 does not require Z̃.

5.2 Numerical Computation

To compute the probabilities in Equation (14) we use impor-
tance sampling with an importance function fI(α)—so that for
any prior of the form of Equation (10) we approximate the risk
probability of Equation (14) as

P(t) ∼= 1−
∑

i wi[1 + t/(NT)
∑N

n=1(�n/ε)
−αi ]−Jε−a∑

i wi
, (15)

where the {αi} are draws from the distribution with density
function fI(α), and where �n ≡ �(2πn/N) for 1 ≤ n ≤ N for
some large integer N ∈ N. The weights are given by

wi ≡ α
Jε−1
i e−αi[Sε−a log ε]g(αi)1{αi>0}/fI(αi); (16)

note that in this form of importance sampling it is unnecessary
to know the normalizing constant Z̃. For efficiency, the same
importance sample is used to determine the risk probability si-
multaneously for all times t.

For the Jeffreys’s rule prior distribution we use the Gamma
Ga(Jε,Sε) density as an importance function, leading to con-
stant weights wi (i.e., these are exact draws from the posterior
distribution) and a simple bound of 1/(4M) for the Monte Carlo
sampling variance of an estimate of P(t) based on M samples,
so a sample of at least M ≥ 16,588 will ensure a 99% error
bound of no more than ±0.001. We used M = 1,000,000, con-
suming under 10 min of computing time. For the one-at-a-time
reference priors we use the Student-tν(μ̂, s) distribution

fI(α) ∝ (1 + (α − μ̂)2/3s2)−2,
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412 M. J. BAYARRI ET AL.

with ν = 3 degrees of freedom, centered at the MLE μ̂ = 0.64,

with scale s =
√

(î−1)αα = 0.03714, where î denotes the ob-

served information matrix evaluated at the MLE (α̂, λ̂). This
choice gives bounded weights {wi}, leading to efficient sam-
pling and negligible Monte Carlo sampling error with M =
250,000 draws.

One final source of uncertainty that needs to be taken into ac-
count is the uncertainty in the critical contour � , as displayed in
Figure 6. This uncertainty can be treated as above, with draws
of � from its posterior distribution, but we instead chose to
present 90% upper and lower credible bands for P(t), based on
the 90% upper and lower credible bands for � from Figure 6.
We took this approach because uncertainty in � is not inher-
ent to the problem, but rather is “removable” in the sense that
additional runs of TITAN2D in the construction of the critical
contours can reduce it arbitrarily. For our problem, this remov-
able uncertainty was quite small, rendering additional designed
TITAN2D runs unnecessary.

The risk predictions resulting from this computation are pre-
sented in Figure 8. As expected, the predicted risks at Plymouth
are higher than at Bramble Airport, and as suggested above,
the uncertainty arising from uncertainty in � was quite small.
The three reference prior distributions all gave nearly identi-
cal answers in each case, so no effort was made to distinguish
the curves for the different priors. This is a sign that the data
(through the likelihood function) are far more influential than
the prior; one would expect a greater difference in problems
with less extensive datasets.

It is worth emphasizing that the two major data-modeling as-
sumptions used in the computation of the catastrophe probabili-
ties were conservative. The stationarity assumption was conser-
vative because it ignores the well-known feature of vulcanism
that periods of volcanic activity seldom last more than one or
two decades, separated by (often quite long) periods of relative
inactivity; our risk predictions do not reflect the possibility that
the activity at Montserrat might “turn off.” Unfortunately the

Figure 8. Posterior probability of catastrophe P(t) at Plymouth (up-
per curves) and Bramble Airport (lower curves) within t years, for
0 ≤ t ≤ 50. Solid lines indicate posterior medians, dashed curves in-
dicate pointwise 90% credible bands.

data are quite sparse in this regard and improving the stationar-
ity assumption is, thus, difficult. Also, the Pareto tails assume
that possible flow volumes are unbounded, while in fact there
are clear physical limits to the magnitude of flow that could pos-
sibly occur. This is not likely to affect significantly the proba-
bility of “moderate” catastrophes. Also, the reliability of these
predictions rely on the adequacy of the computer model to pre-
dict reality. Although some satisfactory checks were performed,
full validation of the computer model with extremely rare data
on catastrophic events is very problematic.

In conclusion, while some improvements in the statistical
modeling are possible, we are quite confident that these would
not significantly alter the predictions in Figure 8. Note, how-
ever, that both Plymouth and Bramble Airport experienced
catastrophic pyroclastic flows during the first two years of the
eruptions at Soufrière Hills Volcano, which suggests that the
risk predictions in Figure 8 are actually too low. This is indeed
likely true for the reasons indicated at the end of Section 2.2
relating to the need for better choices of friction coefficients for
TITAN2D. Studies are currently being conducted to obtain im-
proved friction coefficients, and this should result in improved
risk predictions.

6. SUMMARY AND DISCUSSION

Risk assessment of catastrophic events—in the absence of
sufficient data relating to the events—requires a delicate inter-
play of mathematical computer modeling and statistical analy-
sis. Mathematical modeling is needed for the necessary extrap-
olation beyond the range of the data. Statistical modeling of
the available (not necessarily extreme) data is crucial for de-
termining the distribution of inputs that will drive the com-
puter model. More subtly, statistical techniques for emulating
computer models are needed when (as usual) the computer
model is expensive to exercise in order to determine the crit-
ical event contours needed for computation of the probability
of catastrophic events.

In risk assessment, incorporation of all major sources of un-
certainty into the analysis is important. The Bayesian approach
we adopted is ideally suited to this task. In particular, we were
able to incorporate not only the dominant uncertainty, the ran-
domness in the volcanic process itself, but also uncertainty in
the model for the input distribution (i.e., uncertainty about the
values of model parameters α and λ).

Another potential source of uncertainty in problems such as
this is error in the computer model. The computational mesh in
TITAN2D is refined adaptively during the computation in order
to maintain a high degree of accuracy, so numerical instability
or convergence problems do not contribute significant variabil-
ity or error. Other elements of the computer model, however,
such as the topographic inputs and the (already mentioned)
treatment of friction, may potentially introduce additional un-
certainty or bias in the model output. Unfortunately, the data
needed to investigate model validity are extremely sparse, as are
techniques for assessing validity for complicated surface out-
put such as that of TITAN2D. We hope to develop and present
(elsewhere) an analysis of the bias and uncertainty in the output
of TITAN2D, but that is quite beyond the scope of this article.
Note that any such bias analysis could, in principle, be incorpo-
rated directly into the probabilistic risk assessments considered
here through Bayesian methods.
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