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We present a framework that enables computer model evaluation oriented toward answering the question:
Does the computer model adequately represent reality? The proposed validation framework is a six-step
procedure based on Bayesian and likelihood methodology. The Bayesian methodology is particularly well
suited to treating the major issues associated with the validation process: quantifying multiple sources
of error and uncertainty in computer models, combining multiple sources of information, and updating
validation assessments as new information is acquired. Moreover, it allows inferential statements to be
made about predictive error associated with model predictions in untested situations. The framework is
implemented in a test bed example of resistance spot welding, to provide context for each of the six steps
in the proposed validation process.
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1. INTRODUCTION

Indeed, in practice, the processes of computer model devel-

1.1 Overview

We view the most important question in evaluation of a com-
puter model to be: Does the computer model adequately rep-
resent reality? An austere view expressed by Oreskes, Shrader-
Frechette, and Belitz (1994) is that validating a computer model
cannot be done and that the “primary value of models is heuris-
tic: models are representations, useful for guiding further study
but not susceptible to proof.” This view has a substantial basis
in purely scientific roles, as distinct from a model’s use in policy
and engineering contexts. But the real question, we contend, is
not whether a model is absolutely correct or only a useful guide.
Rather, it is to assess the degree to which it is an effective sur-
rogate for reality: Does the model provide sufficiently accurate
predictions for the intended use? As we clarify as we proceed,
here we intend accuracy to refer to both possible bias in the
model and possible uncertainty.

The question and attitude that we set out here are not new;
they appear again and again in discussions and comments on
validation in many arenas over the years, at least as long ago
as the work of Caswell (1976). A detailed discussion of many
issues surrounding validation has been given by Berk et al.
(2002). But incisive argument on the validity of models, seen
as assessment of their utility, has been hampered by the lack
of structure in which quantitative evaluation of a model’s per-
formance can be addressed. It is our purpose here to explore
structure and methodology to produce such evaluations.

Numerous other issues are crucial to computer model devel-
opment and use of computer models (in, e.g., optimization).

opment and validation often occur in concert; aspects of val-
idation interact with and feed back to development; for exam-
ple, a shortcoming in the model uncovered during the validation
process may require a change in the mathematical implementa-
tion. In this article, however, we address these other issues only
to the extent to which they interact with the framework that
we envision for answering the foregoing basic question. Gen-
eral discussions of the entire validation and verification process
have been given by Roache (1998), Oberkampf and Trucano
(2000), Cafeo and Cavendish (2001), Easterling (2001), Pilch
et al. (2001), Trucano, Pilch, and Oberkampf (2002), and Sant-
ner, Williams, and Notz (2003).

The main goal of this article is to outline a step-by-step
process to produce tolerance bounds that take into account the
key uncertainties in the problem. This step-by-step process is
illustrated on an engineering example involving spot welding.
The inferential ideas behind the methodology were given by
Kennedy and O’Hagan (2001) but are still not well understood.
Hence the remainder of the section focuses on motivating the
methodology and supplying background material. The method-
ology itself is presented in Sections 26, with illustrations using
the test bed model. The presentation is designed so that both en-
gineers and statisticians can follow the process before technical
details, notation, and other topics are introduced. The reader

© 2007 American Statistical Association and
the American Society for Quality
TECHNOMETRICS, MAY 2007, VOL. 49, NO. 2
DO! 10.1198/004017007000000092

138

Reproduced with permission of the copyright owner. Furthrer reproduction prohibited without permission.




VALIDATION OF COMPUTER MODELS

wishing to jump directly to the specifics of the methodology
can focus on Sections 2.2 and 5.

1.2 Motivation for Tolerance Bounds

To motivate our approach to model evaluation, it is useful
to begin at the end and consider the type of conclusions that
will result from the methodology. As noted earlier, we focus
not on answering the yes/no question “is the model correct?,”
but rather on assessing the accuracy of predictions in uses of
the model. We do this by presenting tolerance bounds, such
as 5.17 £ .44, for a model prediction of 5.17, with the inter-
pretation that there is a specified chance (e.g., 90%) that the
corresponding true process value would lie within the specified
range. Such tolerance bounds should be given whenever predic-
tions are made; that is, they should be routinely included along
with any predictions arising from use of the model.

This focus on giving tolerance bounds rather than stating a
yes/no answer as to model validity arises for three reasons:

e Models rarely give highly accurate predictions over the en-
tire range of inputs of possible interest, and it is often dif-
ficult to characterize regions of accuracy and inaccuracy.

o The degree of accuracy needed can vary from one applica-
tion of the computer model to another.

e Tolerance bounds account for model bias, the principal
symptom of model inadequacy; accuracy of the model
cannot be represented simply by a variance or standard er-
TOr.

All of these difficulties are obviated by the simple step of rou-
tinely presenting tolerance bounds along with model predic-
tions. Thus, at a different input value, the model prediction and
tolerance bound might be 6.28 £ 1.6, and it is immediately ap-
parent that the model is considerably less accurate at this input
value than at the previous input value, for which the tolerance
bound was +.44. Either of the bounds, .44 or 1.6, might be ac-
ceptable or unacceptable, depending on the model’s intended
use.

Producing tolerance bounds is not easy. Here is a partial list
of the hurdles:

e Uncertainties in model inputs or parameters can arise in
several ways: based on data, on expert opinion, or simply
on a prior “uncertainty range.”

e When model runs are expensive, only limited model run
data may be available.

o Field data of the actual process under consideration may
be limited and noisy and may be of various types, includ-
ing functional data.

o Model runs may be made at input values different from
those at which field data are observed.

¢ One may desire to “tune” unknown parameters of the com-
puter model based on field data and at the same time
(because of sparse data) apply a validation methodology;
sometimes there are even more tuning parameters than
data.

o The computer model itself typically will be highly nonlin-
ear and often will be biased, that is, will differ systemati-
cally from the real process.
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e Validation should be viewed as an accumulation of evi-
dence to support confidence in the model outputs and their
use, and the methodology should allow updating of current
conclusions as additional information arrives.

This article describes an approach that deals with these hur-
dles and, using a mix of Bayesian and likelihood techniques,
can produce usable tolerance bounds for computer model pre-
dictions, thereby giving specific quantitative meaning to valida-
tion. Technical details of the approach are given in Section 5.
The remainder of this section is given over to added discussion
of validation and the approach that we recommend. Details ad-
dressing some of the listed hurdles are not given because they
are not needed for the test bed problem. For example, uncer-
tainties in inputs based on data are not addressed but can be
accommodated in a straightforward way.

Implementation of the suggested methodology has the fol-
lowing added implications:

e The methodology allows explicit estimation of the bias
of the model (together with the uncertainty in the bias)
through comparison with field data. This allows direct
judgment as to the model’s validity in various regions of
the input space. In addition, the methodology allows one
to adjust the prediction by the estimated bias and provides
tolerance bounds for this adjusted prediction. Depending
on the size of the bias, this can result in considerably more
accurate predictions than can be achieved using the model
alone (or using field data alone). Note, however, that this
adjustment might have limited utility in extrapolation to
new situations, unless we are willing to make strong as-
sumptions about how the bias extrapolates.

e Predictions and tolerance bounds can be given for applica-
tions of the computer model to new situations in which
there are little, or no, field data, assuming information
about “related” scenarios is available; this can be done
through hierarchical Bayesian analysis. We do not address
this issue in the current article; our predictions in the test
bed example are made within the context of the given sce-
narios.

o Fast approximations to the computer code are used (typi-
cally, needed) for the proposed methods; these approxima-
tions have additional utility for use with complex computer
codes in other contexts, such as in optimization.

1.3 Comparison With Statistical Model Validation

Computer model validation has developed with some signifi-
cant differences from standard statistical model validation. It is
useful to understand these differences and how they shape the
particular methodology used for computer models.

Some of the methodology is driven by the unusual nature
of many computer models: the very limited availability of data
and the expense of running the computer model in particular.
Indeed, it is not uncommon for computer models to take hours
or days to run, so analysis of computer models often involves
developing approximations to the model that can be used in the
analysis.

The other major unusual aspect of the analysis of computer
models is that it often focuses on what is to be done with a
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“rejected” computer model, rather than simply answering the
question of whether or not the computer model is valid in the
sense of hypothesis testing. It is useful to illustrate this key issue
with a simple nonlinear regression example.

Pedagogic Example. At various times #;, independent data
were obtained from the nonlinear regression model

y(t) =g(t) + €, 1

where the €; are independently N(0, 02), with o2 unknown.
Three independent replicate observations were obtained at each
point on an equally-spaced grid of 10 values of ¢ in the interval
(.11, 3.01). These data are given in Table 1.

The hypothesized regression model is

Hy: g(t) = Sexp(—ut), (2)

with u unknown. (Suppose that the data are thought to have
arisen from a chemical reaction process with initial chemical
concentration 5 and reaction rate u; this is then a standard phys-
ical model for the amount of chemical remaining at time ¢.) One
might begin the statistical analysis by finding the best fit of this
function to the data; the maximum likelihood fit is at & = .63,
and the resulting function is graphed in Figure 1 along with the
data.

Visually, it is clear that the function is not a good fit to the
data, and formal statistical tests would agree. For instance, a
modified F test rejects Hp at a p value of .0004; even if trans-
formed to an error probability scale as —eplogp = .0086 (see
Sellke, Bayarri, and Berger 2001), the indication is that there is
indeed quite strong evidence against Hy.

A next step might be to look at the residuals from Figure 1
and seek missing structure. The residuals are graphed in Fig-
ure 2, along with a linear fit. It might be tempting to think that
such additional structure found in the residuals is real, but a
number of issues are involved with doing so:

e If the hypothesized model is incorrect, then “over-fitting”
typically will have occurred; the fit attempts to make up for
the model inadequacy by overshifting u to compensate.

e This overfitting makes it problematic to believe any struc-
ture found in the residuals (see, e.g., the linear structure in
Fig. 2).

e Uncertainties must be taken into account when proceed-
ing.

Table 1. Pedagogic Exampls, With Data Consisting of 3 Replicate
Observations of the Regression Function (plus noise) at
Each of 10 Times

t y(-)

110 4.730 4.720 4.234

432 3.177 2.966 3.653

754 1.970 2.267 2.084
1.077 2.079 2.409 2.371
1.399 1.908 1.665 1.685
1.721 1,773 1.603 1.922
2.043 1.370 1.661 1.757
2.366 1.868 1.505 1.638
2.688 1.390 1.275 1.679
3.010 1.461 1.157 1.530
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Figure 1. Maximum Likelihood Fit of Model (2) and Data for the Ped-
agogic Example.

At this point, it would be natural from a statistical standpoint
to simply postulate a different form (perhaps nonparametric) for
the unknown g(#). In the computer model world [i.e., when g(r)
is the computer model itself] this is not directly possible, un-
less the analysis so far has suggested a possible improvement
(which is subsequently implemented) in the computer model.
There are several reasons for this, the most important of which
is that the computer model is typically crucially needed for ex-
trapolation beyond the range of the data; a purely statistical
model is usually not trustworthy for such extrapolation.

The approach to dealing with this situation introduced by
Kennedy and O’Hagan (2001) formally introduces a bias func-
tion, b(r), so that the situation is modeled as

(i) = Sexp(—ut;) + b(t;) + €;, 3)

where b(#) is an unspecified function. One then jointly attempts
to determine u and b(-); simultaneous inference can prevent the
overfitting of u and can properly account for all uncertainties.
The major difficulty with this approach is a lack of identifia-
bility of u and b(-) (and also of o> when replicates at the design
points ¢; are not available). To see this, imagine that we had

T T
0.0 05 10 15 20 25 a0

Figure 2. Residuals of the Fit to Mode! (2), and a Linear Fit to the
Residuals.
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an infinite amount of data at a dense set of ¢;, so that we have
completely observed the function y(f) and know precisely that
(1) = Sexp(—ut) + b(r). Because b(-) is arbitrary, for each dif-
ferent u there is a b(-) that exactly fits the equation, so the two
are severely confounded. (There seems to be some confusion
about this issue; see the discussion in Kennedy and O’Hagan
2001.)

Dealing with such severe confounding is not commonly done
in statistics and may seem unreasonable, yet here we have lit-
tle choice; simply stopping the analysis with the statement “the
computer model is rejected and must be improved” does not
typically suffice in the computer modeling world. There is also
growing understanding that bias and resulting confounding are
more common in statistics than might be thought (see, e.g.,
Gustafson 2006 and the references therein).

The most straightforward method of handling such con-
founding is Bayesian analysis; one places a prior distribution on
u and b(-), a distribution that contains as much expert knowl-
edge as available. Some considerations here are as follows:

e In the computer model scenario, # may have physical
meaning (e.g., the reaction rate in the example), or at least
physical limits, so that experts may be able to construct a
fairly tight prior distribution for u.

o The prior distribution typically “encourages” b(-) to be 0,
allowing a correct computer model to emerge with little
bias if supported by the data.

The posterior distributions of u and b(-) typically will be
highly correlated and sensitive to the priors, but useful infor-
mation as to the nature of the bias and its inherent uncertainty
still can be obtained from the analysis. Some inferences, such as
certain types of prediction, and uncertainty in prediction, seem
to remain very stable over different prior specifications for the
bias. We do not illustrate these inferences with this example,
but rather use the spot weld test bed for illustration.

It should be noted that extrapolations to prediction in new re-
gions (e.g., to t > 3 in the pedagogic example) will tend to be
very sensitive to prior assumptions on u and b(-). There is no
magic here; what the framework does is simply give a reason-
able context in which to talk about such extrapolation.

As a postlogue to the pedagogic example, the true model used
to generate the data was

y(t;) = (3.5)exp(—1.7t;)) + 1.5 + ¢, )

with 02 = (.3)2. Thus the actual bias function was b(t) =
1.5[1 — exp(—1.71)]. The “error” in the modeling of the chemi-
cal reaction was in not recognizing that there would be a resid-
ual of the chemical (here, 1.5 units) unreacted. Note that if we
had used the best-fitting model, then the estimated reaction rate
#t = .63 would be quite far from the true reaction rate u = 1.7,
the overtuning that can result from not recognizing the exis-
tence of bias. (When the methodology proposed in this article
was applied to the example, it yielded a posterior mean for u of
1.72. Although such a close match was undoubtedly just luck,
given the lack of identifiability, this at least demonstrates the re-
sistance of the methodology to overtuning.) Gustafson (2005)
discussed nonidentifiability in other statistical situations and
compared Bayesian and non-Bayesian methods of attempting to
deal with the issue, indicating the considerable problems with
the latter.

1.4 Background

The key components of the approach outlined here are the
use of Gaussian process response-surface approximations to a
computer model, following the work of Sacks, Welch, Mitchell,
and Wynn (1989), Currin, Mitchell, Morris and Ylvisaker
(1991), Welch et al. (1992), and Morris, Mitchell, and Ylvisaker
(1993), and introduction of Bayesian representations of model
bias and uncertainty, following the work of Kennedy and
O’Hagan (2001) and Kennedy, O’Hagan, and Higgins (2002).
The Gaussian process approximations have proven valuable in
real settings where functions are complex and data limited (e.g.,
Gough and Welch 1994; Chapman, Welch, Bowman, Sacks,
and Walsh 1994; Aslett, Buck, Duvall, Sacks, and Welch 1998)
and their adoption here is both natural and convenient.

The approach taken here results in a computational burden
that significantly increases with large numbers of model in-
puts, large numbers of unknown parameters, or large amounts
of data (model run or field). Hence a primary concern is to fo-
cus on methods that have the potential for significant scale-up.
Thus, as described in the companion article (Higdon, Kennedy,
Cavendish, Cafeo, and Ryne 2004), a fully Bayesian approach
to the problem was originally developed, but this has difficul-
ties in appropriately scaling up and also requires considerable
expertise in Markov chain Monte Carlo (MCMC) computa-
tion. Hence we have focused instead on simplifications such as
“modularity” (analyze components of the problem separately
to the extent possible) and the use of maximum likelihood or
other methods to reduce the computational burden and allow
the Bayesian part of the analysis to be stable.

Validation is an intrinsically hard statistical problem, and
analyses that produce tolerance bounds for computer model
predictions in complex situations can require considerable ad-
ditional methodological development. Two such extensions of
the methodology to functional data have been considered by
Bayarri et al. (20064, b). These extensions also consider uncer-
tainty in the computer model inputs. Other extensions for deal-
ing with high-dimensional output data include Higdon, Gat-
tiker, and Williams (2005), who used principal components;
Schmidt and O’Hagan (2003), who used a singular value de-
composition; Lee, Higdon, Bi, Ferreira, and West (2002), who
used a Cholesky decomposition with pivoting; Higdon (2002),
who used a spatial moving average; and Lee, Higdon, Calder,
and Holloman (2005), who used convolutions of Markov ran-
dom fields with smoothing kernels. Generalizations to nonsta-
tionary scenarios have been addressed by Gramacy, Lee, and
Macready (2004), and dynamic emulators were considered by
Conti, Anderson, O’Hagan, and Kennedy (2005).

A related approach to Bayesian analysis of computer mod-
els is that of Craig, Goldstein, Seheult, and Smith (1997),
Craig, Goldstein, Rougier, and Seheult (2001) and Goldstein
and Rougier (2003, 2004), which focuses on using linear Bayes
methodology to address the problem. Another significant body
of work in computer modeling is that addressing the importance
and uncertainty of input variables and/or the corresponding out-
put distributions (propagation of error) (e.g., Saltelli, Chan, and
Scott 2000; Oakley and O’Hagan 2002, 2004; Oakley 2004). Of
course, the propagation of error issue appears in a host of scien-
tific applications, a notable recent one being that of Stainforth
et al. (2005).
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1.5 Test Bed

The test bed provides a context for implementing each step
of the framework and also prompts consideration of various is-
sues. It is an application drawn from engineering practice.

Test Bed: The Spot Weld Example. In resistance spot weld-
ing, two metal sheets are compressed by water-cooled copper
electrodes under an applied load, L. Figure 3 is a simplified
representation of the spot welding process, illustrating some of
the essential features for producing a weld. A direct current of
magnitude C is supplied to the sheets by two electrodes to cre-
ate concentrated and localized heating at the interface where
the two sheets have been pressed together by the applied load
(the so-called “faying surface”). The heat produced by the cur-
rent flow across the faying surface leads to melting, and, after
cooling, a weld “nugget” is formed.

The resistance offered at the faying surface is particularly
critical in determining the magnitude of heat generated. Be-
cause contact resistance at the faying surface, as a function of
temperature, is poorly understood, a nominal function is spec-
ified and “tuned” to field data. The effect of this tuning on the
behavior of the model is the focus of the example.

The physical properties of the materials will change locally
as a consequence of local increases in temperature. Young's
modulus and the yield stress of the sheet will fall (i.e., the metal
will “soften”), resulting in more deformation and an increased
size of the faying contact surface, further affecting weld forma-
tion. At the same time, the electrical and thermal conductivities
will decrease as the temperature rises, all of which will affect
the rate of heat generation and removal by conduction away
from the faying surface.

The thermal/electrical/mechanical physics of the spot weld-
ing process are modeled by a coupling of partial differen-
tial equations that govern heat and electrical conduction with
those that govern temperature-dependent, elastic/plastic me-
chanical deformation (Wang and Hayden 1999). Finite-element
implementations are used to provide a computer model of the
electrothermal conceptual model. Similarly, a finite-element
implementation is made for the equilibrium and constitutive
equations that compose the conceptual model of mechani-
cal/thermal deformation. These two computer models are im-
plemented using a commercial code (ANSYS). Key inputs of
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Figure 3. Schematic Representation of the Spot Welding Process.
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the model are summarized in Table 2. Interesting outputs are
given in Section 2.2.

2. THE MODEL AND ITS USES (STEPS 1 AND 2)

Understanding the uncertainties associated with the com-
puter model and how the model is used are initial steps in the
validation process.

2.1 Step 1: Specify Model Inputs and Parameters
With Associated Uncertainties or Ranges.
The Input/Uncertainty Map

A convenient way to organize information about inputs and
their uncertainties is through what we call the input/uncertainty
(I/U) map. [This is related to the idea of a PIRT (Phenomena
Identification and Ranking Table); see Pilch et al. 2001.] The
map has four attributes:

e A list of model features or inputs of potential importance

e A ranking of the importance of each input

¢ Uncertainties, either distributions or ranges of possible
values, for each input

¢ Current status of each input, describing how the input is
currently treated in the model.

The I/U map is dynamic; as information is acquired and the
validation process proceeds, the attributes (especially the sec-
ond, third, and fourth ones) may change or require updating.
The inputs are drawn from the development process and will in-
clude parameters inherent to the scientific/fengineering assump-
tions, the mathematical implementation, and the numerical pa-
rameters associated with the implementing code. In short, the
inputs are the ingredients necessary to make the model run.
Because this list can be enormous, more important parameters
must be singled out to help structure the validation process by
providing a sense (albeit imperfect) of priorities. We adopt a
scale of 1-5 for ranking the inputs, with | indicating only a
minor likely impact on prediction error and S indicating a sig-
nificant potential impact.

Spot Weld. The purpose of the spot welding model is to in-
vestigate the process parameters for welding aluminum. The
I/U map of the model is given in Table 2. The list of inputs
in Table 2 was more fully described by Bayarri et al. (2002).
Initially, only three inputs have rank 5 based on the model de-
veloper’s assessment. These three parameters (and gauge) arc
the focus of the validation experiments; earlier experiments by
the model developer led to the impact assessments appearing in
the table. The specified ranges of the controllable parameters
(current, load, and gauge) are given in step 2. No uncertainty
about these inputs, either in the computer model or in the lab-
oratory data collected for the validation exercise, is assumed.
(In contrast, if validation of the model were required at the pro-
duction level, then uncertainties in current and load might be
significant; the I/U map is context-dependent.)

Several items connected with the I/U map in Table 2 arc
worth noting. First, the most significant specified uncertainty
(impact factor 5) in the model is contact resistance. The model
incorporates contact resistance through an equation that for the
faying surface has a multiplicative constant u about which it is
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Table 2. The I/U Map for the Spot Welding Model
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Current
Input Impact Uncertainty status
Geometry Electrode 3 Unspecified Fixed
symmetry-2d
Cooling channel 1 Unspecified Fixed
Gauge Unclear Unspecified 1,2mm
Materials Unclear Aluminum (2 types Fixed
x 2 surfaces)
Stress/ 4 Unspecified Fixed
strain Piecewise linear (worse at high T)
Co. Cy, 05 3 Unspecified Fixed
Contact 1/o =u-f,; f fixed 3 Unspecified Fixed by modeler
resistance u=0for 5 u€[0.8,8.0] Tuned to data
electrode/sheet for 1 metal
u = tuning for faying
Thermal 2 Unspecified Fixed
conductivity «
Current 5 No uncertainty Controllable
Load 5 No uncertainty Controllable
Mass density (p) 1 Unspecified Fixed
Specific heat (c) 1 Unspecified Fixed
Numerical Mesh 1 Unspecified Convergence/speed
parameters M/E coupling time 1 Unspecified compromise
Boundary 1 Unspecified
conditions Fixed
Initial conditions 1 Unspecified Fixed

only known that u lies in the interval [.8, 8.0]. It will be neces-
sary to tune this parameter of the model with field data. The sec-
ond most significant uncertainty in the model (impact factor 4)
is the linear approximation for stress/strain. Because the mod-
eler is unable to specify the uncertainty regarding this input,
error in this input will simply enter into the overall unknown
(and to be estimated) bias of the model.

Initial impact assessments are based on experience to reflect
a combined judgment of the inherent sensitivity of the input
(the extent to which small changes in the input would affect the
output) and the range of uncertainty in the input. These may be
revised through sensitivity analyses and “tuning with data” that
occur later in the process. Inputs about which we are *“clueless”
might be singled out for attention at some point along the vali-
dation path, but the effect of “missing” inputs (i.e., nonmodeled
features) may never be quantifiable or may emerge only after all
effects of “present” inputs are accounted for.

In model validation, attention may need to be paid to the nu-
merical accuracy of the implemented model, for instance, in
assessing whether numerical solvers and finite-element codes
have “converged” to the solution of the driving differential
equations. This can be important and, as detailed by Cafeo and
Cavendish (2001), is an issue of model and code verification.
Ideally, numerical accuracy should be addressed early in the
model development process and before the validation activity
emphasized in this article. It is often the case that convergence
is not obtained, however; for example, modelers may simply
use the finest mesh size that is computationally feasible, even
if it is insufficient for assuring convergence. The method that
we propose for validation still works: the error introduced by
a lack of convergence becomes part of the “bias” of the model
that is to be assessed (see Sec. 5). The I/U map should of course
clearly indicate the situation involving such convergence. The

possible confounding effect of parameters, such as grid size,
on other assumptions about the model will make improving the
model more difficuit. Ideally, identifying this effect could be
done through designed experiments, varying values of the nu-
merical parameters to assess numerical accuracy.

2.2 Step 2: Determine Evaluation Criteria

Evaluation of a model depends on the context in which it is
used. Key elements of evaluation are as follows:

¢ Specification of an evaluation criterion (or criteria) defined
on model output

e Specification of the domain of input variables over which
evaluation is sought.

Even if only one evaluation criterion is initially considered,
other evaluation criteria inevitably emerge during the valida-
tion process. The overall performance of the model may then
depend on the outcomes of the validation process for several
evaluation criteria (the model may fail for some and pass for
others), leading ultimately to follow-on analyses about when
and how the model should be used in prediction.

Informal evaluations (i.e., does the computer model produce
results that appear consistent with scientific and engineering in-
tuition) are typical during the development process. Later in the
validation process these informal evaluations may need to be
quantified and incorporated in the formal process. Sensitivity
analyses may in some respects be considered part of the evalu-
ation if, for example, the sensitivities confirm (or conflict with)
scientific judgment.

Spot Weld. Two evaluation criteria were initially posed:
1. Size of the nugget after eight cycles
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2. Size of the nugget as a function of the number of cycles.

Criterion 1 is of interest because of the model’s primary pro-
duction use; criterion 2 is of interest as a possible aid in re-
ducing the number of cycles to achieve a desired nugget size.
Ideally, the evaluation would be based directly on the strength
of the weld, but weld diameter is taken as a surrogate because
of the feasibility of collecting laboratory data on the latter. (Of
course, if nugget size were not strongly correlated with weld
strength, then these criteria probably would be inappropriate.)
In production, the spot welding process results in a multiple set
of welds, but the evaluation criterion considered here involves
only a single weld. Criterion 2 was later discarded as a result of
the difficulty during data collection of getting reliable computer
runs producing output at earlier times than eight cycles.

The feasible domains of the input variables were specified as
follows:

Material: aluminum 5182-O and aluminum 6111-T4
Surface: treated or untreated

Gauge (mm): 1 or 2

Current (kA): 21-26 for 1-mm aluminum; 2429 for 2-mm
aluminum

e Load (kN): 4.0-5.3.

Material and surface enter the model through other input vari-
ables relating to properties of materials. The initial specification
in Table 1 views material and surface as fixed. The tuning para-
meter, u, has the range indicated in Table 1 and is the only other
input not fixed.

3. DATA COLLECTION (STEP 3)

Both computer and field (laboratory or production) experi-
ments are part of the validation and development processes and
produce data essential for the following functions:

e Developing needed approximations to (expensive) numer-
ical models

Assessing bias and uncertainty in model predictions
Studying sensitivity of a model to inputs

Identifying suspect components of models

Designing and collecting data that build on and augment
existing or historical data.

The iterative and interactive nature of the validation and de-
velopment processes will result in multiple stages of computer
experiments and even field experiments.

Intuitively, designs should cover the ranges of the key in-
put values, and “space-filling” strategies can be devised to ac-
complish this in an effective way (Sacks et al. 1989; Bates,
Buck, Riccomagno, and Wynn 1996). The specific strategy we
use is to select a latin hypercube design (LHD) minimizing
maxLyp min; ; §(z;, zj), where 8 is Euclidean distance. We use
code from W. Welch to produce such designs.

Spot Weld. The inputs to be varied were C = current, L =
load, G = gauge, and the unknown tuning parameter u; the
other inputs were held fixed. The cost (30 minutes per com-
puter run) is high, so a limited number (26) of runs were
planned for each of the 2 gauge sizes. The 26 runs for I-
mm metal covered the three-dimensional rectangle, [20, 27] x
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[3.8,5.5] x [1] x [1.0,7.0], in the (C, L, G, u) space, whereas
those for the 2-mm metal covered the three-dimensional rectan-
gle, [23, 30] x [3.8,5.5] x [2] x [.8, 8.0]. The explicit values of
the 26-point maximin LHDs, along with the resulting model
output for the nugget diameter, are given in Table 3. The com-
puter runs exhibited some aberrant behavior. Many (17) runs
failed to produce a meaningful outcome at cycle 8; these runs
were eliminated. For reasons that are not yet clear, many runs
were unable to produce reliable data for earlier cycle times; as
aresult, evaluation criteria depending on early cycle times were
abandoned. The data retained (35 runs) are used in the subse-
quent analyses.

Field data usually will be harder to obtain than computer ex-
perimental data and, as in the spot welding example, are often
a result of other experiments not designed for the validation
study. Typically, field data will depend crucially on the specifi-
cations in Section 2.2 and what can be feasibly obtained; spe-
cific design strategies usually seem to have little affect. The
field data for the test bed are as follows.

Spot Weld. The field data for spot weld are given in Table 4.
They were obtained by physical experimentation, the details of
which make reasonable the assumption that the measurement
errors are independent normal with mean 0 and unknown vari-
ance.

Note that replicated data were available at the various input
values. Having such replicate data is highly desirable, in that
doing a reasonable job of pinning down the measurement er-
ror variance makes the validation analysis considerably more
accurate.

4. MODEL APPROXIMATION (STEP 4)

4.1 Introduction

Unless the computer model code is very cheap to run, us-
ing the code directly to perform the validation analysis is dif-
ficult, because validation (see Sec. 5) typically requires many
code evaluations. Thus it is common to use approximations to
the computer model—based on a limited number of runs—for
validation. There are other reasons for desiring such approxi-
mations, such as ease of use “in the field” (compared with use
of the original code), in optimization (where typical algorithms
may again require many evaluations of the code), and in “output
analysis” (i.e., analysis of the sensitivity of outputs to inputs or
analysis of output distributions based on random inputs.)

A very useful general tool for models whose output depends
smoothly on inputs (very common in engineering and scientific
processes) is the Gaussian process response surface technique
(GASP) advanced by Sacks et al. (1989) and frequently used
subsequently (Currin et al. 1991; Morris et al. 1993; Kennedy
and O’Hagan 2001; Santner et al. 2003; Higdon et al. 2004).
This technique meshes well with the validation analysis pro-
posed in step 5.

More formally, denote model output by y¥ (x, u), where x is
a vector of controllable inputs and u is a vector of unknown
calibration and/or tuning parameters in the model. The goal is
to approximate y™ (x, u) by a function $(x, u) that is easy to
compute. In addition, it is desirable to have a variance func-
tion VM (x, u) that measures the accuracy of W(x, u). We now
turn to the details of how the GASP approach achieves these
goals.
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Table 3. Spot weld Data From 52 Model Runs
Nugget Nugget

Gauge Load Current diameter Gauge Load Current diameter
{mm) u) (kN) (KA) (mm) (mm) u(-) (kN) (kA) {mm)
1 6.52 4.072 26.44 - 2 4.544 3.936 27.76 7.15
1 4.60 4.684 21.68 5.64 2 5.696 414 25.52 6.39
1 3.64 5.024 23.64 - 2 1.088 4.684 28.32 6.38
1 7.00 4.412 23.36 - 2 0.8 4.276 24.40 4.87
1 6.76 4.888 25.04 - 2 3.68 4.412 26.08 6.47
1 1.00 4.82 22.52 4.36 2 4.832 4.616 23.00 6.68
1 3.40 4.616 27.00 - 2 7.136 4344 27.20 6.71
1 5.32 4.48 20.84 6.12 2 4.256 5.228 24.68 6.54
1 2.92 5.092 20.56 5.00 2 3.392 4.004 23.28 5.97
1 1.48 5.364 21.12 4.53 2 1.952 448 23.84 5.72
1 2.20 4.004 21.40 5.20 2 2.528 3.8 24.96 6.23
1 2.68 4.344 25.88 - 2 2.24 4.208 29.72 -
1 2.44 5.50 23.08 - 2 1.376 5.024 25.80 5.46
1 4.36 3.80 25.32 - 2 7.424 4.072 28.88 -
1 1.24 4.208 24.76 6.06 2 6.272 4,548 29.16 7.36
1 6.04 4752 20.00 - 2 6.848 5.364 23.56 -
1 5.56 5.432 25.60 - 2 3.968 4.888 29.44 7.16
1 1.96 4.956 26.16 6.69 2 3.104 5.432 28.60 6.61
1 5.80 3.936 23.92 717 2 512 5.5 26.64 5.98
1 4.84 4.14 22.80 - 2 6.56 3.868 26.36 6.74
1 3.16 3.868 22.24 5.71 2 5.984 4.956 2412 5.32
1 6.28 5.228 21.96 5.38 2 8 5.092 28.04 -
1 1.72 4,548 24.20 5.85 2 2.816 4.82 26.92 6.70
1 5.08 5.16 26.72 - 2 5.408 5.16 30.00 -
1 412 5.296 24.48 6.87 2 1.664 5.296 27.48 6.02
1 3.88 4.276 20.28 4.91 2 7.712 4.752 25.24 5.50
NOTE: Run failures are indicated by —.

4.2 The GASP Response-Surface Methodology

Let yM = (yM(xl,u|)....,yM(x,,,,u,,,)) denote the vector
of m evaluations of the model at inputs DM = ((xj,u):i =
l,...,m} and write z = (x, u). The computer model is exer-
cised only at the inputs D™, so that yM(z) is effectively un-
known for other inputs z ¢ DM. Before seeing y™, we assign
yM(.) a prior distribution, specifically a stationary Gaussian
process with mean and covariance functions governed by un-
known parameters 0L and 6™ = (WM, oM, BM ). (In essence, we
are assuming that the output of the code at any finite number of
locations has a multivariate normal distribution.)

The mean function of the Gaussian process is assumed to be
of the form W’(-)@L, where ¥(z) is a specified k x 1 vector
function of the input z and 6% is a k x 1 vector of unknown
parameters. A constant mean [k =1, ¥(z) = 1, and oL = 0] is
often satisfactory if one plans to use the model approximation
only within the range of the available model run data. A more

complicated mean function can be useful if the model approxi-
mation is to be used outside the range of the data because, out-
side of this range, the Gaussian process approximation to the
model will gradually tend toward its estimated mean function.
This can be especially important when such features as tempo-
ral trends are present.

The parameter AM is the precision (the inverse of the
variance) of the Gaussian process, and the other parameters
(oM, ﬂM ) control the correlation function of the Gaussian
process, which we assume to be of the form

d
Mz, 2*) = exp(— Z BM 2 — z;I“IM) .
Jj=1

Here d is the number of coordinates in z, the (ij ’s are numbers
between 1 and 2, and the ﬂjM ’s are positive parameters. The
product form of the correlation function (each factor is itself a
correlation function in one-dimension) aids later computations.

&)

Table 4. Spot Weld Example, With Field Data Consisting of 10 Replicate Observations of Nugget Size at Each of 12 Input Values

L c G vF(.)

4.00 21.0 1 481 5.08 5.09 4.84 5.40 5.14 492 5.31 495 480
4.00 235 1 5.31 6.52 5.89 5.51 5.77 4.96 5.04 5.22 5.54 6.36
4.00 26.0 1 5.52 6.62 5.97 5.76 6.13 5.82 5.81 6.00 6.00 6.52
5.30 21.0 1 5.09 4.43 4.63 5.01 5.07 414 403 4.30 4,09 4,02
5.30 23.5 1 5.11 5.17 5.71 5.60 5.85 4,60 5.51 482 6.37 5.23
5.30 26.0 1 5.34 5.19 5.86 5.94 5.98 5.09 5.43 5.14 5.21 5.73
4.00 24.0 2 6.78 5.89 6.49 6.78 6.81 7.00 7.16 6.68 6.68 6.98
4.00 26.5 2 6.62 6.54 6.30 6.00 6.67 6.89 7.15 5.99 5.90 7.29
4.00 29.0 2 7.28 6.98 7.46 7.87 8.02 6.97 8.15 7.14 7.55 7.75
5.30 24.0 2 6.62 6.74 6.59 6.39 6.45 6.64 5.59 6.30 5.64 6.05
5.30 26.5 2 7.25 6.80 6.50 6.36 7.67 7.14 5.95 7.10 7.57 7.08
5.30 29.0 2 7.62 7.71 8.14 7.26 8.37 7.68 6.95 6.41 8.35 7.50
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Prior beliefs about the smoothness properties of the function
will affect the choice of a¥. The choice of a™ = 2 for all j
reflects the belief that the function is infinitely differentiable,
which is plausible for many engineering and scientific models.

This can be summarized by saying that, given the hyperpara-
meters 8- and 0™ = (\M, M, gM), the prior distribution of yM
is GP(W'(-)8", J7¢¥ (-, -)), that is, a Gaussian process with the
given mean and covariance functions. As before, let y¥ denote
the vector of model evaluations at the set of inputs D¥. Con-
ditionally on the hyperpartameters, y¥ is a priori multivariate
normal with covariance matrix ' = CM (DM, pM) /MM where
CM (DM, DM) is the matrix with (i, ) entry M(z;, zj), for z;, z;
in DM,

After observing y¥, the conditional posterior distribution
of yM given the hyperparameters, pOM()IyM, 0%, 0M), is a
Gaussian process with updated mean and covariance functions
given by

EM @)|y™, 0, 0M) = W' (2)0" + v,/ (TY)~' (y" — X0Y)  (6)
and

cov[y" (@), yM(z)|yM. 04, 6M]

= M)~ @, @)
where r;/ = 557 (M(z,21). ..., M (2, 2m)), T is as given ear-
lier, and X is the matrix with rows ¥/(z), ..., ¥'(z,,).

With specifications for 8~ and 8, the GASP behaves as a
Kalman filter, yielding a posterior mean function (6) that can
be used as the fast approximation or inexpensive emulator for
yM(-). Thus [given (6%, 6M)], the response surface approxima-
tion to yM(z) at any point z is simply E[yM(z)|y™, 6%, oM]
given by (6), and the variance measuring the uncertainty in
this approximation is, following (7), var[y™ (z)|y™, 0%, M) =
I/AM - r’z(l‘M)"rz. Note that the variance is O at the design
points at which the function was actually evaluated.

The hyperparameters (9%, ") are typically unknown. Two
possibilities then arise:

¢ Plug in some estimates in the foregoing formulas, for in-
stance maximum likelihood estimates (MLEs), as in the
GASP software of W. Welch, pretending that they are the
“true” values. For MLE estimates (é’“, oM ), this produces
the following model approximation for input z:

FMLE(z) = W' ()0 + ¥, (F M)~ (y¥ — X81),

where 0 = (AM, &M, BM) is used to compute '™ and #,.
Similarly, var[y" (z)|y", 8%, 6M] = 1/AM — &, (TM)~ '3,
is used as the estimate of the approximation variance. This
results in an underestimate of the true variability, because
the uncertainty in the estimates of 0L and 6™ is not taken
into account, although the prediction variance can be ad-
justed using standard estimates of this uncertainty.

o Integrate the hyperparameters with respect to the poste-
rior distribution in a full Bayesian analysis (as detailed in
Paulo 2005), leading to a more appropriate approximation:
the integral of (6) with respect to the posterior distribu-
tion of (8L, 0M), p(GL. 0M|yM). This is done in practice by
using MCMC techniques to generate a sample of size N,
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((01‘("), 0M(i))} from this posterior distribution, evaluating
(6) at these generated values, and averaging. The variance
of this approximation is obtained by adding two terms: the
posterior expectation of (7) and the posterior variance of
(6). In practice, these terms are estimated by the sample
average of (7) and by the sample variance of (6) evalu-
ated at the generated values (84", D), Alternatively.
one may wish to draw realizations from the marginal pos-
terior of yM (z), p(yM () |y™) directly and then compute ap-
propriate summary statistics. This can be done in practice
for each generated value (9“1, gM() by computing (6)
and (7) and then drawing a normal random variable with
mean and variance given by these numbers.

Spot Weld. The vector of controllable inputs is x = (C, L.
G), and the tuning parameter is u. Using a GASP full Bayesian
analysis with the data from Table 3 leads to the response surface
approximation to yM(C, L, G, u) shown in figure 8 of Higdon
et al. (2004). The MLE approximation is very similar and hence
is omitted here.

4.3 Maximum Likelihood Estimate Plug-in
or Full Bayes?

The full Bayesian analysis is theoretically superior, because
the resulting variance takes into account the uncertainty in the
GASP parameters. When the function being approximated is
very smooth, the additional uncertainty is not really needed, but
it could be relevant when approximating less smooth models.
The advantage of using the MLE plug-in approach is compu-
tational; implementing a GASP with fixed parameters is easier
than averaging GASPs over a posterior sample of parameters.

The primary focus in this article is not in model approxima-
tion itself, but in the validation/prediction analysis discussed in
the next section. In such analyses, we have found that using
the MLEs of the GASP parameters typically yields much the
same answers as the full Bayesian analysis, at least when tun-
ing/calibration parameters are present in the computer model.
The reason for this is that the uncertainty in calibration and tun-
ing parameters, together with the uncertainty in the “bias” of
the computer model, tend to overwhelm the uncertainty in the
model approximation. Hence our current (cautious) recommen-
dation is to use MLE plug-in GASPs, together with Bayesian
analysis of the validation/prediction process. This allows imple-
mentation of the validation methodology in vastly more compli-
cated scenarios (Bayarri et al. 2006b) than would otherwise be
possible.

5. ANALYSIS OF MODEL OUTPUT (STEP 5)

In this section we describe the structure (statistical model)
and analysis that we use for computer model evaluation, and il-
lustrate the methods using the test bed example. Some technical
details that threaten to cloud the exposition are relegated to the
appendixes. We begin by describing the statistical structure and
necessary notation. In Section 5.2 we address computation of
the posterior distributions, predictions, and tolerance bounds,
the heart of the matters at hand.
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5.1 Notation and Statistical Modeling

The computer model approximates reality, and the discrep-
ancy between the model and reality is the model bias. Account-
ing for this bias is the central issue for validation. There are (at
least) three possible sources for this bias:

e The science or engineering used to construct the model is
incomplete.

o Calibrated/tuned parameters may be in error.

o Numerical implementation may introduce errors (e.g.,
may not have converged).

The first two sources are typical; the third occurs with some
frequency.

The computer model alone cannot provide evidence of bias.
Either expert opinion or field data are needed to assess bias;
here we focus on the latter. If field data are unavailable (even
from experiments involving related models), then strict model
validation is impossible. Useful things may still be said, but
the ultimate goal of confirming accuracy of predictions is not
attainable.

Recall that y™(x, u) denotes the model output when (x, u)
is input. When u is not present, we formalize the statement
“reality = model + bias” as

YRx) = yM(x) + b(x), ®)

where yR(x) is the value of the “real” process at input x and
b(x) is the (unknown) bias function. When u is present as a
calibration parameter, we call its true (but unknown) value u,,
and then bias is defined through

R = (x, u,) + by, (%). )

In situations where u is viewed as simply a tuning parameter,
there is no “true value,” so u, should be thought of as some type
of best-fitting value of u, with the bias defined relative to this.
Note that there is confounding between u, and the bias func-
tion, that is, they are not statistically identifiable. This important
issue was discussed in Section 1.3 and has profound implica-
tions for the possible types of analysis; in particular, the natural
way to deal with a lack of identifiability is to use prior informa-
tion to provide identification or at least use Bayesian analysis
to properly account for the uncertainty caused by the noniden-
tifiability. For notational convenience, we often drop the depen-
dence of b on the true value of the calibration parameter.

Field data at inputs x,, X3, ..., X, are assumed to be “reality”
measured with error. Specifically,

yFx) =Ry + €f,

where the € are independent normal random errors with mean
0 and variance 1/Af. This equation may be reasonable only af-
ter suitable transformation of the data, and often more com-
plicated error structures (such as correlated errors) are needed;
these typically can be accommodated with some additional
computational effort. Note that u is not an input in determin-
ing the field data.

The assumption that ¢/ has mean 0 implies no bias in the
field measurements; that is, the measurement process is “well
calibrated.” Otherwise, the situation is problematic; the esti-
mated bias will be a combination of both model and field bias,

(10
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and there is no data-based way to separate the two. Additional
insight or expert opinion is required be necessary to permit such
separation. Unfortunately, it is quite common for “existing field
data” (e.g., historical data, data acquired for different purposes
but now used for validation) to be biased (see, e.g., Roache
1998), so obtaining unbiased field data may be challenging in
its own right (see Trucano et al. 2002 for further discussion).

For the Bayesian model to be complete, the priors must be
specified for the unknowns: u, A¥, and b(x). These are chosen
as follows:

e p(u) is specified in the I/U map; it is often uniform on a
given range.

o p(AF) is exponential (see Sec. A.3).

e The prior for the bias function will be a GASP (see
Sec. A.3).

If computation of y¥ is fast, the Bayesian analysis can pro-
ceed directly. Otherwise (as in the spot welding example, where
a single model run may take 30 minutes), we need to also
incorporate the model approximation from Section 4 into the
Bayesian analysis. We must then either add the GASP (hy-
per)parameters for y” to the list of unknowns for a complete
Bayesian analysis or use the plug-in MLE method if required
by computational limitations; see Section 5.2.1 for details.

We choose the GASP for the bias to have correlation func-
tion of the same form as in (5), with its own set of covariance
parameters (A?, 82, a”) but with all components of a® set at 2.
Restricting ol at 2 (or even at some other value, such as 1.9)
reduces the number of hyperparameters that must be taken into
account. Because the bias cannot be observed directly and field
data are usually scant, the information about the hyperparame-
ters is limited, and reducing their number is computationally ad-
vantageous. Moreover, predictions and their error bounds will
be only marginally affected by imposing this restriction. In fact,
the restriction implies that the bias is very smooth, a condition
all but certain to hold where reality, y®, is smooth, a typical
state in engineering and scientific applications; this smoothness
assumption is also of help in deconfounding the bias and u.

The mean function of the GASP for the bias process is typi-
cally chosen to be either zero or an unknown constant 1”. Be-
cause the bias is not directly observed, it is doubtful whether
more complicated mean structures are viable. For interpolation,
the choice between zero mean and unknown level will have only
a marginal effect on the results of the analysis; for extrapolation,
however (as in the case of the mean of the GASP approximation
to the code output described in Sec. 4) the latter choice might be
more appropriate, because it may affect predictions and associ-
ated tolerance bounds (defined precisely in Sec. 5.2.3). As in
the case of the GASP approximation to the computer model, a
plug-in method can be used to determine the GASP correlation
parameters, if required for computational simplification. This is
discussed in Section 5.2.1.

5.2 Bayesian Inference

5.2.1 The Posterior Distribution and Its Computation.
Assume first that approximation of y¥ is not necessary. The
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modeling assumptions from Section 5.1 are that, for each field
input x,

Y@ =R x) + €,
YRy =M (x, u) + bu(x),
and
e ~N(0, 1/2F).

Given the unknowns, these produce a multivariate normal
density for the collection of all field data, y©, denoted by
F&Fu, AF, b). (Strictly, we should write u, instead of u, but
in the Bayesian approach, all unknowns are considered ran-
dom, and so we drop the * subscript for notational simplicity.
We also suppress the dependence of b on u.) Denote the prior
distribution of the unknown elements (u, A", b) by p(u, AF, b).
(Prior construction was already described briefly in Sec. 5.1;
details are given in App. A.) Write the posterior density of these
unknowns, given the data y*, as

pu, AF, bly") o f(yFlu, AT, b) pu, AT b). (1)

The posterior distribution is determined through MCMC
techniques (cf. Robert and Casella 1999). Carrying out the
MCMC analysis requires evaluating y¥ (x, u) at each generated
value of u and x in the field design space DF. This is infeasi-
ble when model runs are expensive, in which case we resort to
the GASP approximation of y™, described in Section 4, to carry
out the computations. This (unavoidably) introduces additional
uncertainty into the predictions.

Two Key Simplifications.  For reasons that have to do with
achieving a stable MCMC algorithm, we recommend two sim-
plifications, which together we call a modular-MLE analysis:

1. Use a modular analysis, in which the GASP hyperpara-
meters for the computer model are determined only from
the computer model data. In a full Bayesian analysis,
the field data also could influence these hyperparameters.
There are scientific as well as computational reasons for
using the modular approach. These are discussed in Ap-
pendix A.

2. Rather than keeping GASP hyperparameters random in
the Bayesian analysis, fix them (for both the computer
model and the bias) at their MLEs; leave only the preci-
sions and calibration parameters random. (Details on how
these estimates are computed are given in App. A.) The
reason for doing this is partly computational and partly to
ensure that the methodology is stable. Further discussion
of this is given in Appendix A.

Despite the fact that the modular-MLE analysis is only ap-
proximately Bayes, the resulting answers seem to be close to
those from a full Bayesian analysis, at least when it comes to
prediction (see Sec. 5.2.4). We note that this type of approxi-
mation was also used by, for example, Kennedy and O’Hagan
(2001).

The resulting MCMC analysis (see App. B for details) pro-
duces a set of N draws from the posterior distribution of the un-
knowns u, AF, y™(x, u), and b. To be more precise, the output
of the computations is a sample {u'?, AF® WM (x u?) pW(x),
i=1,..., N}. The posterior distribution of all quantities of in-
terest can be estimated from these samples.

TECHNOMETRICS, MAY 2007, VOL. 49, NO. 2

As an example, the posterior distributions of calibration or
tuning parameters can be estimated by a histogram computed
from the samples of the u'”. From these samples, an esti-
mate, 4, of the unknown u also can be formed; for instance.
the average of the samples is an approximation to the posterior
mean of u. Credible intervals for u can be formed by taking
appropriate percentiles of the ordered samples.

Spot Weld. The vector of controllable inputs is x = (C, L,
G), and there is a tuning parameter u. Figure 4 gives the pos-
terior density of u based on the modular-MLE approach. The
estimated posterior mean is i = 3.28. Clearly, there is consid-
erable uncertainty in the values for u. Assessments of prediction
accuracy (described in Sec. 5.2.2) account for this uncertainty
and help alleviate the danger of overtuning that can result if one
were to simply pick and use a single fixed parameter value, such
as 3.28.

The considerable right tail here is likely due to the fact that
there were data from two thicknesses (gauges) of material. The
“optimal” tuning parameter for each gauge would be differ-
ent. This again indicates how misleading it would be to simply
choose a best estimate of the tuning parameter and proceed as if
it were known. Note that the full-Bayesian analysis of Higdon
et al. (2004) leads to a qualitatively similar posterior.

Similarly, the estimated bias function is given by
N

Py — O]

b(x) = N Zb (x).
i=1

Separately graphing this bias function is not particularly use-

ful, because of its very considerable posterior dependence on u.

Thus, when we present bias functions in later figures, we give

them conditionally on interesting values of u.

5.2.2 Predictions and Bias Estimates. The central issue
for validation is assessing whether the accuracy of the pre-
dictions produced by the computer model is adequate for the
model’s intended use. The MCMC samples described earlier
can be used to produce predictions with associated uncertain-
ties, thus quantifying validation.

For instance, to predict the real process yR (x) at a set of (new)
inputs DX, (denoting the resulting vector by yRew), all we need
is access to draws from the posterior predictive distribution of

_ .

04

postenor density estmate
02
L

o1

0.0

Figure 4. The Posterior Distribution of the Tuning Parameter u in the
Spot Weld Example.

—
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YRows POYR YT, yM), where yF and yM are the available field
and model data. Because of (9), these are obtained from draws
from the joint posterior predictive of yM.,, and bygw. Denote
these draws by

M(i)

Ynew bgéw, i=1,....N. (12)

Details on how to obtain such draws are given in Appendix C.

Pure-Model Prediction. 1f there are no calibration/tuning
parameters, then define, for any x € Df,, the pure-model pre-
diction of yR (x) simply as W (x). If we have available a new
model run at input X, then we do not need the approximation
and can use yM (x); indeed, modelers often plan to perform a
new model run if a prediction is desired at a new x. If there are
calibration/tuning parameters, we can use an estimate G based
on the previous data, evaluate 3 (or yM if possible) at input
(x, 1) and define the pure-model prediction as 3 (x, &1). For @,
we can use the posterior mean or mode of u, although we could
make other choices. Denote the pure-model prediction of y&.,,
by 9%~:w(ﬁ)-

For the spot welding example, the entire pure-model predic-
tion function &M (L, C, G, i), based on the computer model ap-
proximation and & the posterior mean, is (for four different val-
ues of load and gauge) plotted as a solid line in the top graphs
of Figure 5.

Bias-Corrected Prediction. The bias-corrected predic-
tion of the true process yX at DﬁEw is given by the estimate of
the posterior predictive mean of yX_,

N
) 1 . .
B = - S[VA0 + ]

i=1

(13)
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If the code is fast, then the draw from the approximation to the
code in the foregoing formula is replaced by its actual value.

When bias is present, the bias-corrected prediction im-
proves on the pure-model prediction. For example, in the spot
welding example the entire bias-corrected prediction function,
}R(L, C, G), is (for four different values of load and gauge)
plotted as the solid line in the bottom graphs of Figure 5.

Bias of the Pure-Model Prediction. Because common
practice today is to use some variant of pure-model prediction,
it is useful to explicitly look at the bias of this procedure. The
bias function of the pure-model prediction is clearly given by

b; = 9ﬁew = Vew (@),
If one were actually trying to establish that the computer model
is uniformly valid in some sense, then one would have to show
that this bias function is effectively zero.

In the spot welding example, the bias function, l;,;(L, C,G),
for pure-model prediction is plotted (for four different values
of load and gauge) as the solid line in the middle graphs of
Figure 5.

Variances of These Predictors. The covariance matri-
ces corresponding to the pure-model predictor and the bias-
corrected predictor can be estimated by

N

. . 1 R . . .
COV(Fripw (1) = = [T () = (Ynew + biw)]

i=1

X [%w(ﬁ) - (Yﬁ{:(\:v) + bgéw)]/

Current

Figure 5. The Spot Welding Example. The first two columns correspond to G = 1 mm, with L= 4N and L = 5.3N, respectively; the next two
columns correspond to G =2 mm, with L= 4N and L = 5.3N. The f[rsl row gives the pure-model weld diameter predictions, j'M (L,C,G, 1), and
90% tolerance bands. The middle row gives the associated biases, b, (L, C, G), and 90% tolerance bands. The last row gives the bias-corrected

predictions, yP (L, C, G), and 90% tolerance bands. The circles represent the field data observed at those input values.
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and

M(i)

N
cov(y NEW) = Z[yﬁEW yNEW + br(u’g:w)]
i=|

X [yﬁsw (yxs(’w) +b¥z:w)]/-

It is easy to see that

COV(JRew) = cov(Frt, (@) — b b},

so that bias-corrected prediction clearly will have smaller vari-
ance than pure-model prediction (a strong incentive to use bias-
corrected prediction).

5.2.3 Tolerance Bounds. As discussed in Section 1, we
are concerned primarily with the predictive accuracy statement:
“With probability y, the prediction is within (tolerance) T of
the true yR(x).” Such tolerance bounds for pure-model predic-
tion are obtained straightforwardly from the samples (12). For
a given y, we can estimate T = (7(x):x € Df,)’ by making
sure that y x 100% of samples satisfy

|Faw (B) —

[In the previous formulas, all operations should be interpreted
in a componentwise fashion, i.e., |x| = (|x;],i=1,...,n) and
x<yiffx;<y,i=1,...,n]

Similarly, for the bias-corrected prediction, the tolerance Tt is
estimated by making sure that y x 100% of the samples satisfy

[ynew + biaw]| < 7.

- [yzé(v'v) + blglr)sw]l <T.

The tolerance bands for the bias of pure-model prediction
follow from simply subtracting the pure-model prediction func-
tion, $ (x, @), from the bands for bias-corrected prediction.

It can be convenient and straightforward—although we do
not pursue the matter here—to modify the definition of tol-
erance bounds by making them asymmetric and to determine
(1, T2) such that y x 100% of the predictive samples satisfy

AM(I) (i) ~M(i) ()
Ynew +Dbaew — T < yNEw < ¥new T buew + T2,

subject to minimizing 7, + T2 componentwise. This would be
useful if bias were very large and the tolerance bounds would
be one-sided or nearly so.

5.2.4 Comparison of Full Bayes and Modular-MLE Analy-
ses. The spot welding example was examined from a fully
Bayesian perspective by Higdon et al. (2004). Although their
prior specification differs from ours, the results of the two stud-
ies are very similar. Recall that the advantage of our approach
is that the sampling mechanism is quite stable and allows non-
experts to directly apply the methodology with relatively sim-
ple codes. In addition, for comparison purposes, a full Bayesian
(modular) analysis of the pedagogic example was implemented,
using methodology of Bayarri et al. (2002) and Paulo (2005).
The two approaches yielded qualitatively very similar answers;
in particular, the bias-corrected predictions and tolerance bands
were almost identical.
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6. FEEDBACK AND FEEDFORWARD (STEP 6)

The analyses in steps 4 and 5 will contribute to the dynamic
process of improving the model and updating the I/U map by
identifying the following:

e Model inputs whose uncertainties need to be reduced

e Needs (such as additional analyses and additional data)
for closer examination of important regions or parts of the
model

o Flaws that necessitate changes to the model

e Revisions to the evaluation criteria.

In the spot welding example, for instance, the posterior distrib-
ution of u (Fig. 4) will now replace the uncertainty entry in the
I/U map. Another aspect of feedback is using the steps 4 and 5
analyses to further refine the validation process, for example, to
design additional validation experiments.

The feed-forward notion is to develop the capability of pre-
dicting the accuracy of new models that are related to models
that have been studied, but for which no specific field data are
available. This can be done by using hierarchical Bayesian tech-
niques, and we will explore it elsewhere.

7. CONCLUDING COMMENTS

Here we collect some relevant comments that otherwise
would have impeded the flow of the article.

I. Combined validation and calibration. It is generally be-
lieved that data used for calibration/tuning cannot be
used simultaneously for model validation. However, the
Bayesian methodology described herein readily accom-
modates such simultaneous use of data by incorporating
the posterior distribution of the tuning parameters in the
overall assessment of uncertainties. In contrast, simply
replacing a tuning parameter by some optimal “tuned”
value @i (commonly done using least squares) obscures the
interaction between bias and tuning and can lead to overly
optimistic assessments of validity.

2. New model runs for prediction. In performing predictions,
it is often sensible to include new model runs, if feasible,
to obtain yM(x, @1) for some key values of x. In this ar-
ticle we emphasized prediction when such new runs are
unavailable, but the analysis can easily incorporate such
new runs (cf. App. C), without having to redo all of the
computations from scratch. Using such model runs may
be particularly helpful in assessing changes arising from
moving from input x to nearby input x’. We forego further
consideration of this modification.
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APPENDIX A: THE STATISTICAL MODEL
A.1 Likelihood

Here we present the more complicated case of a slow com-
puter model, when the approximation detailed in Section 4 must
be used. The situation where y™ is fast follows as a particular
case.

Recall that the design space for the model data is DM =

(z1,...,2,}, where z; = (x;,u;), i =1, ..., m. The model data
are represented by yM = (yM(zl),..., M(z,,)). The design
space for the field data is DF = {x],....x;}. The data con-

sist of n; replications taken at each point in DF. Denoting
these replications by {ij(x,?), Jj=1,...,n}, given yR(x;'), =
I,...,n, we can replace the field data with the independent
sufficient statistics ¥ = GF(x}), ..., ¥ (x}))’, where 3 (x!) =
Ly e, and st = S0, 37 o) — 5 xR,

We denote the field design space augmented by the calibra-
tion parameters u by Df , which is the same design space as D,
except that we simply replace each x} by (x}, u). It is useful to
augment the observed data (y, §F, s%) with the bias function
evaluated at DF, b, and the computer model evaluated at points
in D, denoted by y¥. In what follows, n’ = (ny, ..., n,).

Define ¢ (D8, D") to be the matrix with (i,j) entry o (w;,
w;), and define w (D) to be the vector with component i equal
to uf (w;), where w; and w; are the ith and jth points in the
design spaces D# and D". Also, let &/ (D#, D#) = Cf (D%). Then

FGE sE b,y yMi0L oM 1P, 6% AF u)
=fGEIAF) x fFFF b, Y™ AF) x £(b16°, u?)
x fFoyMIyM, 0L, 0M u) x f(yM|0L, 0M),

where, letting u = uM (D) + cM (DL, DMy [cM (DM~ (yM —
uM(DM)) and T = CM(DEy — CM(DE, DM) [(CM(DM))~! x
cMoM, Dh),

(A1)

f(s%-|AF) =AFX2<AFs2F‘Z(n,'— l))’ (A.2)

i=1
S b, y¥ A = N(iflyt‘ +b, k‘—F(diagnr‘). (A3)
Fb|6”, pu*y = N(b|u"(DF), % c”w’”)), (A4)

FOMiyM. 0k, 0M u) =Ny |, T),

and

(A5)

oMot M) =N(yM MMy, cM(DM)y).

Note that we can analytically integrate out b and y” in (A.1) to
obtain

(A.6)

FGF 52 yM 0L, M b 6P AT u)
_ | _
=f(s%|AF) X N(yF|u +u"(DF), X+ F (diagn) !

+ %C”(DF)) x f(yM|eL, oM). (A7)

A.2 Modularization

Here we describe the approximate Bayesian analysis, which
we refer to as the modular approach. The basic idea is to first
do the analysis of all the model data, ignoring the contribution
of the field data in estimating GASP model approximation pa-
rameters (including 0L), then treat the model parameters (other
than tuning parameters) as specified by the resulting posterior
distribution—or possibly by their MLE—and incorporate the
field data through a separate Bayesian analysis. Formally, this
is a partial likelihood approach, treating (A.6) as the only part of
the likelihood used to determine the model GASP parameters.

This approach is implemented as follows:

Stage 1. Analyze the model data in isolation to obtain the
posterior density p(6%,8M|y™), using (A.6) to-
gether with the prior density p(8L, 0™) specified in
Section A.3. This will typically be represented by
an MCMC cloud of realizations of points (0". 0M).
Alternatively, if the MLE plug-in approach is used,
then simply use (éL, 6™) in what follows.

Stage 2. To incorporate the field data y©, find the marginal
posterior [defining 6 = (6%, M)

p(u”,O”.AF,ulyF,yM, stage )

- / p(u®. 07 A uly” . y™.0) p(6ly™) b,

or use p(u®, 8%, AF ulyF,yM, 6) if the MLE plug-
in approach is used. This step is implemented by
drawing a point from the stage 1 cloud [or us-
ing (8L, 6M)]; generating u®, 6%, AF, u, and per-
haps also b and y¥; and repeating. Note that in
generating from p(u®, 8°, AF|yF, yM 0, ), the full
likelihood [(A.7) or (A.1)] must be used, together
with the prior density p(u?, 8%, AF) p(u).

The motivation and advantages of the modular approach are
as follows:

1. Field data can affect the GASP model approximation pa-
rameters (the a’s, B’s, and A’s) in undesirable ways, al-
lowing them to do some of the “tuning” of the model,
instead of limiting the tuning effect of the field data to
u. Indeed, this was observed in the spot welding exam-
ple, where u was shifted to the edge of its domain and the
GASP parameters played the role of model “tuners.” The
modular approach prevents this from happening.

2. This easily generalizes to systems with several model
components, M;, each of which has separate model run
data. Dealing first with the separate model run data in
setting up the GASP model approximations and incorpo-
rating the field data only at the tuning/validation stage
makes for an easier-to-understand and computationally
much more efficient process.

3. Computations are simplified considerably, because the
overall posterior factors into lower-dimensional blocks.
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A.3 Prior Distributions

Paulo (2005) specifically addressed the problem of specify-
ing the prior p(8%, ) and sampling from the corresponding
posterior p(8%, 6™ |yM). In that article, several priors are de-
rived and compared on the basis of their frequentist properties.

However, as already mentioned, for computational reasons,
we recommend simply computing the MLEs of 8. and 8™
based on model data alone, and considering those parameters
as fixed in the second stage of the modular approach.

To carry out the analysis of the second stage, we must specify
the prior on u?, 8 = (8%, A%), A, and u. The prior on the cali-
bration parameter u is the one specified in the I/U map. Choos-
ing default priors for the other bias GASP parameters is actually
quite challenging, because of the typically limited data avail-
able, and the fact that no direct data about the bias are available.
Also, as with the model GASP parameters, we noticed consid-
erable confounding between the parameters, and thus opted for
a method (described later) that fixes the ﬂb parameters at rea-
sonable values and allows only A” (and possibly 1?) to vary.

It then remains to choose priors for A? and AF. As long as
replications are available, using a standard prior such as 1/AF
should be fine for the error precision, but replications are not
always available. Other problems are that the likelihood for A?
can be quite flat, and A® can be highly confounded with u. This
leads us to advocate the use of data-dependent priors, centered
at estimates of A? and AF

Any of these choices can be criticized from a strict Bayesian
standpoint, but we feel that there are compelling practical rea-
sons to make them. First, a great deal of confounding is occur-
ring here; we want the flexibility of GASPs in approximating
the model and representing the bias, but they have too many pa-
rameters. Proper subjective priors for these parameters are sim-
ply not going to be available, and the principled objective priors
of Paulo (2005) are computationally too intensive. Because the
methodology is being designed for use by nonexperts, it also
is not feasible to use more standard default priors with the ad-
vice to “watch out for convergence or stability issues.” Finally,
even with the rather ad hoc methods that we use to determine
the GASP parameters (and center some of the priors), the vari-
ability of the resulting predictions seems to be similar to that
from a full (careful) Bayesian analysis. Hence we feel that we
are capturing the major uncertainties of the problem, while us-
ing a blend of techniques that results in a reliable and stable
methodology.

Here are the details of the proposed implementation:

1. Using the first-stage approximation to the computer
model, produce the pure-model prediction at the points
in the field design space D augmented with a reason-
able guess, i, of the calibration parameter (e.g., the MLE
or simply the a priori mean). Recall that we denote this
augmented design space by Dg . Denote the vector of re-
sulting model predictions by y¥.

2. Treat the vector y7 — §M as a realization from a Gaussian
process with a nugget, namely as a realization from a mul-
tivariate normal with constant mean u? and covariance
matrix C?(DF)/A? 4 1/AF . Using the GASP software of
W. Welch, we can then obtain an (MLE) estimate of ﬂ” .
which will be the fixed value used in the analysis. Note
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that if the model and field design points were the same,
then there would be no need to use the model approxima-
tion to determine the vector y¥.

3. The GASP software also will yield MLE estimates, A? and
AF, but it is important to allow A? and AF to vary in the
Bayesian analysis. For these parameters, we choose inde-
pendent exponential priors with means equal to a modest
multiple (e.g., 5) of the MLEs. In line with Paulo (2005),
experience has shown that the final predictions are rela-
tively insensitive to the choice of the multiplying factor.

4. If a nonzero mean, 1, is used for the bias, then we sug-
gest simply using the usual constant prior (which can be
shown to yield a proper posterior). We typically do not
use a mean for the bias; we usually set u? =0.

APPENDIX B: THE MCMC METHOD FOR
POSTERIOR INFERENCE

Here we present the details of the MCMC method for poste-
rior inference under the modular MLE approach that we recom-
mend for routine implementation of the methodology. (When
performing a full Bayesian analysis, algorithms described in
Paulo 2005 and Bayarri et al. 2002 work well, although they
may require monitoring and tuning.)

As detailed in Section A.3, the only parameters that have
not been fixed are the calibration parameter u, the preci-
sions A and A%, and possibly the bias mean u”. These are
sampled in the MCMC; given the current state of the chain
y%ld, boid, )‘(I;ld' Agld, Uold, We determine the next state as fol-
lows:

1. Generate (y%ew, brew) directly from its full conditional,
which is a multivariate normal whose parameters are de-
termined using the fact that, conditional on all other para-
meters, the distribution of (y¥, b, y¥. §¥) is multivariate
normal with readily computed mean vector and covari-
ance matrix.

2. Generate A,,Few from its full conditional, which is F(kFlal,
ay), where a; =31 n;/2 + aF and a3 = rp + s%-/2 +
(3 —brew —yMew) diagn (§F —bpew —yM..,,)/2 if, a pri-
ori, Af ~ I'(af, rr) (In Sec. A.3 we recommended o = 1
and rr = SAF, but the MCMC works in this more general
setting as well.)

3. Generate Ab,, directly from its full conditional, which
is F(Ab|a|,a2). where a; = n/2 + ap and a; = rg +
b ew [CP(DF)) ™! brew/2, if, a priori, A? ~ T'(ap, r). (In
Sec. A.3 we recommended a;, = | and r, = SA?, but the
MCMC works in this more general setting as well.)

If a nonzero bias mean is used in the analysis, then we
also must sample 2., directly from its full conditional.
This is a normal distribution with mean 1’ [C?(DF)]~! x
bnew/l'[C”(DF)]_I 1 and precision given by Aﬁew X
r[ctohH~"1.

4. Generate upey using a Metropolis-Hastings step (e.g.,
Robert and Casella 1999). We have had success with the
strategy of choosing with probability Q (e.g., .5) to pro-
pose a draw from the prior on u, p(u), and with proba-
bility 1 — Q to propose a locally perturbed version of the
current value of the chain, that is, a random vector drawn

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




VALIDATION OF COMPUTER MODELS

from the product of uniform distributions on the intervals
(U4i.old — €i, Ui old + €;), Where u; olq is the ith component
of uglg and the ¢; are chosen as, say, a fixed proportion of
the range of u; in the prior.

APPENDIX C: PREDICTIONS

For prediction, it is necessary to sample from the posterior
predictive distribution of the real process evaluated at a set
DA, of new design points, namely

fp({yM(x, u), b(x): X € Dy HI§© . 5. ¥, 0)

x pO1y*. st y*)do,

where 8 represents the vector of parameters that have not been
fixed at some value. To obtain these draws, we proceed as fol-
lows: For each element of a sample from the posterior dis-
tribution of 8, p(815F, s, yM), say 8, we must generate a
realization from p({y™ (x, ), b(x) :x € Dl }I§*, 5%, yM, 0).
This distribution is multivariate normal with parameters readily
computed using standard Kalman filter formulas.

If we decided to collect more computer model data to aid
prediction, then formally we should rerun the MCMC to update
the posterior of the unknown parameters given this additional
information. That is rarely practical, even if we are following
a modular approach, so we recommend adding the additional
code data to the vector yM but leaving all other aspects of the
posterior unchanged.

[Received April 2005. Revised December 2006. |
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