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Bayesian Prediction of Deterministic Functions, 
With Applications to the Design and Analysis 

of Computer Experiments 
CARLA CURRIN, TOBY MITCHELL, MAX MORRIS, and DON YLVISAKER* 

This article is concerned with prediction of a function y(t) over a (multidimensional) domain T, given the function values at a 
set of "sites" {tm, t 2, ..., tl"} in T, and with the design, that is, with the selection of those sites. The motivating application 
is the design and analysis of computer experiments, where t determines the input to a computer model of a physical or behavioral 
system, and y(t) is a response that is part of the output or is calculated from it. Following a Bayesian formulation, prior uncertainty 
about the function y is expressed by means of a random function Y, which is taken here to be a Gaussian stochastic process. 
The mean of the posterior process can be used as the prediction function 9(t), and the variance can be used as a measure of 
uncertainty. This kind of approach has been used previously in Bayesian interpolation and is strongly related to the kriging 
methods used in geostatistics. Here emphasis is placed on product linear and product cubic correlation functions, which yield 
prediction functions that are, respectively, linear or cubic splines in every dimension. A posterior entropy criterion is adopted 
for design; this minimizes the expected uncertainty about the posterior process, as measured by the entropy. A computational 
algorithm for finding entropy-optimal designs on multidimensional grids is described. Several examples are presented, including 
a two-dimensional experiment on a computer model of a thermal energy storage device and a six-dimensional experiment on 
an integrated circuit simulator. Predictions are made using several different families of correlation functions, with parameters 
chosen to maximize the likelihood. For comparison, predictions are also made via least squares fitting of various polynomial 
and spline models. The Bayesian design/prediction methods, which do not require any modeling of y, produce comparatively 
good predictions. For some correlation functions, however, the 95% posterior probability intervals do not give adequate coverage 
of the true values of y at selected test sites. These methods are fairly simple and offer considerable potential for virtually automatic 
implementation, although further development is needed before they can be applied routinely in practice. 

KEY WORDS: Computer models; Correlation function; Cross-validation; Entropy; Experimental design; Interpolation; Kriging; 
Optimal design; Spline fitting; Stochastic processes. 

1. INTRODUCTION 

We are concerned here with the prediction of a function 
y on a domain T, given the function values at a set of "sites" 
D = {t0 E T, i = 1, ..., n}, which we are at liberty to 
select. We shall take T to be in Rk and y(t) to be in R1, 
although the primary elements of the approach can be de- 
scribed with more general T and y. The motivating appli- 
cation is the design and analysis of computer experiments 
(Sacks, Welch, Mitchell, and Wynn 1989), where t deter- 
mines the input to a computer model of a physical or be- 
havioral system and y(t) is a response that is part of the 
output or is calculated from it. We consider t to be fixed 
during any given run of the computer model, and we as- 
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sume the function y(t) is deterministic: If the program is 
run twice (on the same computer) with the same value of 
t, the same value of y will result. In this context, the ex- 
periment design consists of the sites in D; the experiment 
itself consists of running the computer model n times, each 
time with input determined by a different member of D. 
Knowledge of the n design sites and the corresponding re- 
sponses yi, . . *, Yn is then used to predict y(t) at any desired 
t E T. Interest in prediction derives from the fact that com- 
plex computer models often require long running times; the 
number of runs that can be made is therefore limited. We 
are concerned here with methods of prediction given D and 
with the choice of D. 

Here we use a Bayesian formulation, under which (un- 
certain) knowledge about the function y is expressed by 
means of the random function Y. This usage has previously 
been applied to surface estimation in several contexts, in- 
cluding interpolation and, more recently, image restoration 
(Geman and Geman 1984; Ripley 1988, chap. 5). Random 
functions have been studied for a long time under the head- 
ing of stochastic processes, and we borrow notation and 
nomenclature from that source. In particular, we shall refer 
to the representations of prior and posterior knowledge of 
y as the prior and posterior processes. The posterior mean 
of Y given the n-vector of responses YD can be used as the 
prediction function 9; this is clearly an interpolating func- 
tion, that is, y(t(')) = y(t(i)), for i = 1, ..., n. Bayesian 
interpolation has a long history-see Diaconis (1988) for 
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an interesting account of a method published by Poincare 
in 1896. More recently, Kimeldorf and Wahba (1970a) es- 
tablished the connection between Bayesian interpolation and 
smoothing splines, and Wahba (1978) provided more gen- 
eral results along the same lines. (See, also, Wahba 1990.) 

On another front, the use of random functions to repre- 
sent knowledge about deterministic functions observed with 
error is central to Bayesian regression methodology. Orig- 
inally, the prior process was generated simply by assigning 
a joint prior distribution to the p coefficients in a standard 
linear regression model (Raiffa and Schlaifer 1961; Tiao 
and Zeilner 1964; Lindley and Smith 1972). Chaloner (1984) 
reviewed much of the corresponding work in design of ex- 
periments. Because of their finite dimensionality, however, 
these priors are not well suited to prediction of determin- 
istic functions where there is no observation error. In par- 
ticular, knowledge of y at p suitably chosen sites is suffi- 
cient to predict y at all t with no uncertainty whatever; this 
seems unrealistic, and leads to obvious difficulties if n > 
p. We shall not consider finite-dimensional processes fur- 
ther here. Infinite-dimensional processes have been used as 
Bayesian priors for prediction in regression settings by Blight 
and Ott (1975) and Wahba (1978); O'Hagen (1978) and 
Steinberg (1985) used them to develop design criteria as 
well. 

Another large body of work, with a long history and a 
slightly different philosophy, is based on the view of y as 
a realization of a stochastic process, that is, Y is taken as 
a model for y. The prediction of future values of a time 
series given past values (Parzen 1961) is a particularly well- 
studied example of the modeling approach. Similar ideas 
have been widely applied in the analysis of spatial data and 
support, for example, the kriging methods used in geo- 
statistics. Descriptions of these methods and references to 
the extensive associated literature are available, for exam- 
ple, in the texts by Journel and Huijbregts (1978), Ripley 
(1981), and Davis (1986). Sometimes a Bayesian philos- 
ophy is mixed in, by assigning subjective priors to the pa- 
rameters of the model (Kitanidis 1986; Omre 1987). The 
modeling approach has also been taken for prediction in 
various settings by Kimeldorf and Wahba (1970b), Sacks 
and Ylvisaker (1985), Ylvisaker (1987), Sacks, Schiller, 
and Welch (1989), and Sacks, Welch, Mitchell, and Wynn 
(1989). The classical best linear unbiased predictor (BLUP) 
is commonly used to estimate y under this approach. 

We interpret Y as a representation of knowledge about y; 
this is the sense in which we consider our approach to be 
Bayesian. However, we are deliberately vague about whose 
knowledge we are representing, and in what situation. We 
shall favor prior processes that we think could be used by 
an impartial, if not totally ignorant, Bayesian in a wide range 
of applications. Such priors will of necessity ignore special 
information that may be available to the experimenter in a 
particular case. To relieve some anxiety about the choice 
of a specific prior, we require only that a class of priors be 
specified; within that class, the one that performs the best 
with respect to some cross-validational criterion will be se- 
lected. The choice of a class of priors is rather arbitrary, 
which limits the appeal of the method, although we think 

the ones we emphasize here have some attractive features. 
In any case, once the choice is made, matters proceed fairly 
smoothly. 

An advantage to the use of random functions for predic- 
tion is that the variability of Y given YD can be used to 
provide measures of posterior uncertainty, and designs can 
be sought to minimize the expected uncertainty in some 
sense. See Ylvisaker (1987), Sacks, Welch, Mitchell, and 
Wynn (1989), and Section 3 for references to previous work 
along these lines. The development of practical design 
methods has not been extensive, however, particularly for 
construction of designs for prediction in high-dimensional 
spaces. 

In Section 2, we present the approach we have adopted 
for prediction. Like many previous authors, we restrict at- 
tention to Gaussian prior processes. We are particularly in- 
terested in the one-dimensional linear and cubic correlation 
functions (Sections 2.4, 2.5), which, when extended to higher 
dimensions by the product correlation rule (Section 2.6), 
yield prediction functions that are, respectively, linear or 
cubic splines in every dimension. For design, we use a pos- 
terior entropy criterion (Section 3.1), which is fundamen- 
tally similar to the criterion of D-optimality that is used 
frequently in the design of regression experiments. In Sec- 
tion 3.2 we describe a computational algorithm for finding 
entropy-optimal designs on multidimensional grids. We 
present several examples in Section 4, including one ex- 
periment on a computer model of a thermal energy storage 
device and another on an integrated circuit simulator. 

This article is in many respects complementary to that of 
Sacks, Schiller, and Welch (1989), who first applied spatial 
stochastic models to the design of computer experiments 
for prediction, and to that of Sacks, Welch, Mitchell, and 
Wynn (1989), who discussed this methodology and some 
of the issues associated with it. Our article, which has dif- 
ferent emphases and offers some alternative viewpoints and 
techniques, is based largely on a technical report (Currin, 
Mitchell, Morris, and Ylvisaker 1988), which we shall cite 
for material that is not presented here. The methods de- 
scribed here are still at a relatively early stage of devel- 
opment for general practical use, even though they are based 
largely on ideas that have been put forward at many dif- 
ferent times and places. The hard questions concern the 
choice of prior process, both for design and for prediction, 
and the choice of design criteria. 

2. PREDICTION 

2.1 The Prior and Posterior Processes 

We represent prior "knowledge" about the unknown 
function y(t), t E T, by the Gaussian process Y = {Yt, t E 
T}, such that, for every finite set of sites S C T, the random 
vector Ys is multivariate normal with mean vector E[Ys] = 
,s and with positive definite covariance matrix cov(Ys, Ys) 
= ss. Normality is chosen for convenience; the posterior 
process, given the vector of observed responses YD on the 
set of design sites D C T, is well known and is also Gaus- 
sian. Its mean and covariance at any finite set of sites S C 
T is given by 
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/SID = E[YS I YD] = As + o-SDo-J(YD - AD) (2.1) 
and 

OSSID = COVIYS, YS I YD] = oSS - OSDODDODS, (2.2) 

where o0SD = o-'s = cov(Ys, YD). From a Bayesian view- 
point, the posterior process itself is the object of interest; 
since it is used for prediction, we shall sometimes refer to 
it as the predictive process. Further reduction to a single 
prediction function 9 depends on the specification of the 
loss L(y, 9) incurred when selecting 9. It is well known 
that if L = (9(t) - y(t))2 at specified t, then the posterior 
expectation of L is minimized when 

Y9(t) = ttID = lt + 0OtDU_DD( YD - AD)* (2.3) 

This is by far the most popular choice of prediction function 
derived from Gaussian prior processes. A notable exception 
is found in O'Hagan (1978), where 9 is required to be a 
simple parametric approximating function (e.g., a poly- 
nomial of low degree). From an approximation theoretic 
viewpoint, (2.3) is the unique interpolating function in the 
span of the n basis functions that appear as elements of o0tD, 
viewed as functions of t. Here the basis functions follow 
automatically from the choice of prior process Y and design 
D and do not need to be chosen explicitly by the user. The 
function 9 at (2.3) can also be viewed as a minimal norm 
interpolant; see, for example, Micchelli and Wahba (1981) 
and Sacks and Ylvisaker (1985). 

Since o-DD does not depend on t, predictions can be gen- 
erated very quickly for a large number of sites once the n- 
run experiment on the computer model has been completed. 
The vector o-D(YDD- AD) need be computed only once; it 
is best obtained as the solution to an n x n system of linear 
equations. 

2.2 Stationarity 

Since we are seeking a general method here, we shall not 
discuss ways of eliciting and implementing problem-spe- 
cific prior information. Instead, we shall impose some con- 
ditions of stationarity, which are intended to produce prior 
processes that are noninformative, or at least impartial in 
some respects. 

In particular, we shall require that the prior mean and 
variance be constant for all t in T: A, = ,u, u-t = o-2, and 
that, at any two sites t and s in T, the prior correlation p,, 
between Y, and Y, depends only on the difference vector d 
= t - s through a suitable correlation function R. That is, 
Pts= R(t - s) = R(d), where R(O) = 1. (The difference 
vector d is defined, since we assume here that T is in Rk.) 
Of course, R must be such that for any finite set of sites 
S, the correlation matrix Pss generated by R is positive def- 
inite to satisfy the requirements for Y set out at the begin- 
ning of Section 2.1. 

Under these stationarity restrictions, the prior distribution 
for Ys at any set of m sites S C T does not change if S is 
shifted within T. Equations (2.1)-(2.2) become 

/LSID = W1r + PSDPDD( YD - ,Jn) (2.4) 
and 

CSSID = C [PSS- PSDP DDPSDS], (2 .5 ) 

where Jm is an m-vector of l's and Jn is an n-vector of l's. 
In particular, for prediction at a single site t, 

y (t) = Wt|D = / + PtDPDD(YD - pJ) (2.6) 
and 

QJtt|D = (2[ 1 - PtDDPDt]* (2.7) 

If desired, a linear model for y could be incorporated by 
means of a nonstationary prior, either through the mean of 
Y, or, if the coefficients are assigned prior distributions, 
through the covariance of Y. The need for this in prediction 
has not yet become evident to us, however. In the examples 
we have considered, some of which are presented in Sec- 
tion 4, predictions based on simple stationary priors are quite 
good, even when y can be well approximated by a linear 
model. 

A natural way to eliminate ,u and o- from the prior pro- 
cess would be to assign them standard noninformative prior 
distributions. For fixed R, the posterior distribution for y(t) 
would be a scaled and shifted Student's t, as one would 
expect (see, for example, Kitanidis 1986). In this article, 
however, we shall view ,u and C- as parameters of the prior 
process and shall handle them as described later. 

2.3 The Parameters of the Prior Process 

What we have described so far is really a family of 
Bayesian procedures, indexed by ,u, o-, and whatever pa- 
rameters 0 may appear in the expression for R. In practice, 
we choose the member of the family that we think shows 
the best predictive performance on the function at hand- 
this suggests cross-validation. Of the various kinds of cross- 
validation we have tried (Currin et al. 1988), maximum 
likelihood seems the most reliable. This is an often-used 
method for estimating the parameters in spatial process 
models (Wecker and Ansley 1983; Mardia and Marshall 
1984; Sacks, Schiller, and Welch 1989; Sacks, Welch, 
Mitchell, and Wynn 1989). Maximum likelihood estima- 
tion is not usually regarded as cross-validation, but consider 
the following setup. Pick the size ns of a "training sample" 
S randomly (uniformly) from the integers 0, 1, . . ., n - 1. 
Then choose S randomly from D and the "test site" s ran- 
domly from D - S. Following Geisser and Eddy (1979), 
define the predictive deficiency to be X = -log p(y3 I ys), 
where we use p generically to denote a probability density 
function. Then E(X) = -log p(YD), that is, minimizing the 
expected predictive deficiency is the same as maximizing 
the likelihood. [This can be shown through an argument 
that begins by writing the likelihood in n! ways as P(YD) 

= P(Yil)P(yi2 I yil) .. P(Yin Iy, yi 2, .I . ., yinl) and then 
taking logs on both sides, where il, i2, ..., in is a permu- 
tation of 1, 2, ..., n.] 

The log likelihood is 

L = --{n log(2i,) + n log 2 + logjpDD(0)j 

1 
+ 27 (YD - JJfl)T[PDD(O9)F1(YD - ,Jn) 

where dependence on 0 is now explicitly indicated in the 

This content downloaded by the authorized user from 192.168.72.223 on Fri, 7 Dec 2012 14:23:18 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


956 Journal of the American Statistical Association, December 1991 

notation. Maximization over ,u and o- yields the well-known 
formulas 

JT[PDD(O)1JYD 

and 
1 

2()= -(YD - (O)Jn )T[PDD(O)F1(YD - (0y)J 
n 

Determination of 0 is usually done by constrained iterative 
search. This can require a considerable amount of com- 
putation, depending on the dimension of 0. We have not 
yet encountered a situation where different starting values 
led to appreciably different final values, but some authors 
have reported the existence of local optima (Warnes and 
Ripley 1987; Ripley 1988, chap. 2). Unfortunately, there 
is sometimes not enough information in the data to distin- 
guish well among competing values of (0, o-). This would 
not matter if the posterior process were insensitive to joint 
changes in 0 and o- in the region of high likelihood, but one 
cannot expect such behavior. 

2.4 Linear Correlation Functions in One Dimension 

In the simple one-dimensional case with T = [0, 1], con- 
sider the well known correlation functions 

1 1 
R(d) = I1-- Jd|, 2< 0< o? (2.8) 

0 2 
and 

R(d)= 1-IdI, l di<0; 
0 

= 0, dl 0. (2.9) 

We shall refer to (2.8) as the linear correlation function, 
and to (2.9) as the nonnegative linear correlation function. 
In the absence of much prior information about y, the latter 
is more appealing, since it has the property that, for any 0, 
uncertainty about y(s) given a single observation at t is non- 
decreasing as the distance of s from t increases. For both 
of these correlation functions, the ith element of PtD is a 
linear spline, so 9(t) is a linear spline interpolating func- 
tion. [See Equation (2.6).] 

2.5 Cubic Correlation Functions in One Dimension 

It is well known that the result of integrating a stochastic 
process is to produce a process that is "smoother" in var- 
ious senses. This technique can be used to derive useful 
candidates for prior processes in the present setting. Sup- 
pose, for example, that there is a stationary Gaussian pro- 
cess Y on T = [0, 1] whose first derivative Y is a stationary 
Gaussian process having the linear correlation function given 
by (2.8). Mitchell, Morris, and Ylvisaker (1990) found 
necessary and sufficient conditions for the existence of such 
a process. Its correlation function has the form 

R(d) = 1 - -l d2 + 2 Id13, (2.10) 

where 01 and 02 are positive parameters that satisfy 02 C 
2O1 and 02- 60102 + 12O12 ' 2402. 

Since 9(t) is a linear combination of n functions of the 
form R(t - t(i)), the interpolating function that follows from 
the choice of cubic R at (2.10) is seen to be a cubic spline. 
Another correlation function that produces cubic splines is 
the nonnegative cubic correlation 

R(d) = 1- 6(-) + 6(! !) ' d| < 2 

= 2(1 _ Idl I cdl < 0, 

= 0, IdI 2 0, (2.11) 

where 0 > 0. This correlation function can be obtained by 
letting Y, be the integral from t to t + 0/2 of a process with 
nonnegative linear correlation R(d) = 1 - 21dj/0, for |dl 
< 0/2, and R(d) = 0, for |dl 2 0/2. An advantage of the 
nonnegative cubic correlation is that 0 can be made as small 
as desired, thus permitting very local prediction. It also re- 
quires only one parameter rather than two, which makes 
the task of maximizing the likelihood easier. 

There are, of course, numerous other candidates for cor- 
relation functions. See, for example, Journel and Hu- 
ijbregts (1978), Mitchell et al. (1990), Young (1977), and 
Steinberg (1985). One guiding principle is simplicity since, 
asymptotically at least, it does not matter which member 
of an equivalence class of correlation functions is selected 
(Stein 1987). Not much else, however, is known about the 
relationship between the prior process and predictive per- 
formance on particular classes of true response functions. 

2.6 Extension to More Dimensions 

Suppose now that T is two-dimensional and that we want 
to be able to predict at sites within the unit square. Consider 
the three sites t, s, and u in Figure 1. From the development 
for one dimension already presented, we can predict y(u) 
given y(s), and y(t) given y(u). We shall adopt this as the 
way to transfer information from s to t; that is, we require 
P[Yt I Ys] = f p[yu I Y] P[Yt I yU] dyu, where, for example, 
P[Yt YU] refers to the conditional density function of Yt 

0~~~~~~~~~~~~ 
N 

.o I 

t *---- _ lu{ 

Dimension (1) 

Figure 1. Under the Product Correlation Rule, Pts = PtuPus = R1('t1 - 

s1)R2(t2 - 82). 
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given Yu = y,. Since Yt, Y, and Y, are jointly Gaussian, it 
can be shown that this holds if and only if Pts = ptupus 
Under our assumptions of stationarity, this becomes Pts = 
R1(t- u)R2(u2 - s2) = RI(t - s)R2(t2 - s2), where R1 
and R2 are correlation functions for one-dimensional pro- 
cesses. The same reasoning leads us in k dimensions to the 
product correlation rule, by which we define 

k k 

Pts= H Rj(tj - s) = H Rj(dJ), (2.12) 
j=1 j=l 

where t and s are in Rk and Rj (j = 1, 2, ...,k), are cor- 
relation functions for one-dimensional processes. This rule 
has been used previously for prediction in spatial settings, 
for example, Ylvisaker (1975). [Connections with splines 
are noted by Chen, Gu, and Wahba (1989)]. 

In situations where a single predictor variable is repre- 
sented by a point in more than one dimension (like "lo- 
cation" on a two-dimensional surface), the selection of the 
coordinate axes for representing that point may be arbi- 
trary. Then one might modify (2.12) by requiring the cor- 
relation between the responses at two locations (with the 
other variables fixed) to depend, for example, on the Eu- 
clidean distance between them. There are examples of such 
correlation functions in the literature on kriging and on thin 
plate splines. When each variable has a distinct physical 
meaning, however, the use of an isotropic distance between 
two sites as a basis for choosing the form of the correlation 
function loses its intuitive appeal. 

In this article, we adopt the product correlation rule as 
given in (2.12). For example, in k dimensions, the linear 
correlation (2.8) becomes 

R(d) = H (1 |dj. (2.13) 

We generally allow each dimension to have its own cor- 
relation parameter(s), although this complicates the prob- 
lem of maximizing the likelihood. 

An example of the appearance of the interpolating func- 
tion that arises from the product of linear correlations is 
shown in Figure 2, where T is the unit square and there are 
three observations as shown. Within each elementary rect- 
angular piece of the grid generated by the three sites, 9(t) 
can be (at most) bilinear. Similarly, the product of cubic 
correlations would produce bicubic functions in each piece. 

3. DESIGN 

3.1 The Entropy Criterion 

Suppose now that T is a finite set of N sites and that we 
want to choose a design D in n runs for prediction of y on 
T, where n < N. After the experiment is run, knowledge 
of y at the unsampled sites D = T - D will be embodied 
in the (N - n)-dimensional normal distribution of Y-JD gen- 
erated by the predictive process there. The mean gID and 
the covariance matrix 0-DTID of this distribution are given 
by (2.4)-(2.5). 

We would like to choose D to minimize, in some sense, 
the "amount of uncertainty" in YD-ID. To quantify this, we 
shall use Shannon's (1948) entropy for a (multidimen- 

1.0 l ' _ l 

6.2 

0 .-- - -- 

4.6 5.8 6.6- 
I / 5.4// 1 

0.6 - 

t2 I'--n-WNX_ 
t2 ~~~~~~5.0 

0.4- 4.6 
1 \ 1\\ \ \ 

4.2 

0.2. _ _ 4 _ _ _ _ _ _ 

0.0 
0.0 0.2 0A 0.6 0.8 1.0 

tl 

Figure 2. Contours of Constant Predictive Mean 9(t) After Observing 
y(0.3, 0.2) = 4, y(0.5, 0.8) = 5, and y(0.8, 0.6) = 7. The prior cor- 
relation function is a product of two one-dimensional linear correlations 
with 01 = 02 = 5 and A = 5. 

sional) random variable X, which is -E pi log pi if X is 
discrete. For continuous X, pi px(x) dx, where px(x) is 
the density of X at x and dx is the volume element in an 
arbitrarily fine discretization of the sample space. Then the 
entropy is H(X) = E[-log px(X)] - log dx, which is al- 
ways nonnegative; the lower the entropy, the more precise 
is the knowledge represented by X. The second term (-log 
dx) does not depend on the distribution of X, and we shall 
ignore it for our purposes. Lindley (1956) proposed using 
the expected reduction in entropy as a criterion for design. 
This has been done, for example, by Box and Hill (1967) 
and Borth (1975) for model discrimination, by Smith and 
Verdinelli (1980) for inference in hierarchical linear models, 
by Shewry and Wynn (1987) for spatial sampling, and by 
Mitchell and Scott (1987) for group testing. 

In the present setting, we take X to be YID-I In general, 
it can be shown that the prior expectation of H(YTID) can 
be minimized over designs in T by choosing D as the subset 
of T on which the prior entropy H(YD) is maximized (Shew- 
ry and Wynn 1987). For Gaussian priors, the design de- 
pendent part of H(YD) is (1/2) log1o-DD1, so the entropy cri- 
terion is the same as maximization of IoDDI over all n-run 
designs D. Under our assumption of variance stationarity, 
this is the same as maximization of IPDDI. We shall call this 
D-optimality because, like the usual D-optimality criterion 
in the linear model setting, it minimizes the posterior 
generalized variance of the unknowns that one is trying to 
estimate. 

A geometric interpretation of D-optimality for Gaussian 
priors has been given by Johnson, Moore, and Ylvisaker 
(1990). They showed that, when the prior correlation be- 
tween sites is extremely weak and is a decreasing function 
of an appropriately defined intersite distance, the entropy 
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criterion maximizes the minimum distance among design 
points and favors those designs with the fewest pairs whose 
intersite distance matches this minimum. 

The tendency of D-optimality to maximize intersite dis- 
tances is also evident in augmenting existing designs. Shew- 
ry and Wynn's (1987) result, applied to the one-point aug- 
mentation of an n-run design, implies that the optimal site 
for the new observation is one at which the predictive vari- 
ance (after the first n runs) is maximum. This usually oc- 
curs at sites that are remote from the existing ones. 

The question of which design criterion to use is still quite 
open, in spite of the considerable attention given elsewhere 
to the minimization of the average posterior variance on T 
(or, under the modeling approach, average mean squared 
error). See, for example, O'Hagan (1978), Micchelli and 
Wahba (1981), Sacks and Ylvisaker (1985), Steinberg 
(1985), Sacks, Schiller, and Welch (1989), and Sacks, 
Welch, Mitchell, and Wynn (1989). Another intuitively ap- 
pealing criterion, which involves some computational dif- 
ficulty in practice, is the minimization of the maximum 
posterior variance. See Johnson et al. (1990) for an inter- 
esting geometric interpretation of this criterion. 

A practical weakness of design optimality for fixed R is 
that one seldom knows, at design time, what correlation 
function will be selected for the analysis. This difficulty has 
a parallel in optimal design for regression experiments, where 
the optimal design is highly dependent on the choice of 
regression model, which is not usually made until the data 
are analyzed. A pragmatic approach there is to base the 
design on weaker prior information than one expects to in- 
voke in the analysis (e.g., use a cubic rather than a linear 
or quadratic polynomial model for design). We adopt a 
similar approach in the examples of Section 4, choosing 
R(d) to decay rapidly as |dl increases for the purpose of 
design construction. 

If the experiment is done in several stages, one can de- 
sign each stage using a correlation function chosen on the 
basis of data from the preceding stages. The sequential 
modification of the prior is an attempt to approximate what 
would be accomplished by a full Bayesian approach, in which 
R is itself assigned a vague prior, but which is much more 
intractable. There are some examples of two-stage designs 
in Currin et al. (1988), but we found the second-stage de- 
sign to be generally less effective than we had expected. 
For the present article, we shall consider only one-stage 
designs. 

3.2 Design Algorithm 

The computation of optimal designs in this setting is dif- 
ficult, especially in several dimensions, and there have been 
few attempts at algorithms other than the one we describe 
below. Sacks and Schiller (1988), in trying to minimize the 
maximum posterior variance, used various exchange al- 
gorithms as well as simulated annealing, with mixed re- 
sults. Sacks, Schiller, and Welch (1989) and Sacks, Welch, 
Mitchell and Wynn (1989) used a standard quasi-Newton 
optimization routine for minimization of the average pos- 
terior variance. 

The designs constructed for this article are all based on 
the entropy criterion (D-optimality). They were obtained 
from a computer algorithm adapted from DETMAX (Mitchell 
1974), which was first developed for the purpose of con- 
structing D-optimal designs for linear regression. The op- 
timization method is based on a series of "excursions," which 
are sequences of designs in which each design differs from 
its predecessor by the presence or absence of a single site. 
All additions and deletions are made with the goal of max- 
imizing the determinant of the correlation matrix for the 
resulting design. As noted above, the best site t to add to 
an existing design D is the one at which the variance func- 
tion ,2tD is greatest. The search for this site is conducted 
over a grid in T. Except when T has few dimensions or the 
grid is very coarse, it is not practical to make the search 
exhaustive. Instead we have incorporated a multiple search 
procedure that can best be envisioned by thinking of a set 
of n hikers trying to climb a hill. Each hiker starts at one 
of the n current design sites; at each of these the variance 
function is zero. The search for the maximum variance pro- 
ceeds by stages, where, in each stage, each hiker takes one 
step in the direction that maximizes that hiker's altitude. 
We restrict each hiker to consider only the neighboring grid 
points associated with a change in exactly one of the k de- 
sign variables, so at most 2k possibilities exist-fewer if - 
the hiker is at a boundary of T. Under this procedure, the 
variance function (2.7) is evaluated at (at most) 2nk sites 
in each stage. Sometimes two hikers will merge, in which 
case they continue as one. The search ends when all hikers 
have stopped at (local) maxima; the site that corresponds 
to the largest of these is taken to be the best site to bring 
into the design at the current point in the excursion. 

When required to delete a site, the algorithm makes use 
of the fact that the largest determinant after deletion of a 
site in D can be achieved by choosing that site to be the 
one associated with the greatest element of the diagonal of 
PDD Straightforward methods are used for updating pDD 

1 and 
loglpDDj as each excursion proceeds. 

Except in very simple cases, the algorithm is unlikely to 
produce a globally optimal design, although the use of ex- 
cursions does give it some capability for escaping local op- 
tima. We usually make several tries, and choose the best 
result. When the number of candidates is large, as will usu- 
ally be required for experiments in many dimensions, this 
can take a nontrivial amount of computing time. (See Sec- 
tion 4.4 for a specific example.) It is the nature of the al- 
gorithm, however, to make most of its progress during the 
first few iterations, so reasonably good designs can be 
achieved without waiting for the algorithm to run to its nat- 
ural stopping point. 

Figure 3 gives an example of a design (on a 65 grid in 
[0, 1]5) generated by our algorithm for the case n = 6 and 
k = 5 for the product linear correlation function (2.13) with 
Oj= 100 for all j. (When generating designs in the absence 
of previous data, we usually choose the same correlation 
function for each dimension, so all 61's are the same here.) 

This design exhibits some interesting geometrical struc- 
ture, as shown by the intersite distance graph in Figure 3. 
Because of the high value of 0, there is a large region in 
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SITE t1 t2 t3 t4 t5 

1 0 0 0 0 0 
2 0.6 0 1 1 0 
3 0 0.6 1 0 1 
4 1 1 0.6 0 0 
5 1 0 0 0.6 1 
6 0 1 0 1 0.6 

6 

' r _5~~~@ 

Figure 3. The Design Generated by our D-Optimality Algorithm for 
Five Design Variables and Six Runs, on a 65 Grid in [0, 1]5, Based on 
the Product Linear Correlation Function (Eq. 2.13) With Common 0 = 
100. The graph below the design depicts the intersite distances, where 
the distances are defined by d(t, s) = lj5-j I tj - sj I, and the distances 
are 2.6 (----- ), 2.8 (- - -), and 3.2 () 

the middle of T in which there are no design sites; predic- 
tions here rely heavily on information from the suffounding 
design sites.- 

At the other extreme, designs that infiltrate T to a greater 
extent can be constructed by using correlation functions R(d) 
that decrease rapidly with |d|. An example is the product 
exponential coffelation 

R(d ) = tI exp(- oIdjj) 
= 
(xp- E )dl 

0>0 31 

with large values of 0. As 0 increases, these designs ap- 
proach the "maximin distance" designs of Johnson et al. 
(1990), where intersite distance is defined as lldjl. Exam- 
ples of designs based on (3. 1) are given in the next section. 

4. EXAMPLES 

4.1 Introduction 

In this section we discuss the application of the methods 
of this article to three examples. In the first, the data are 
generated by a known test function, although we shall treat 
it as an unknown function evaluated by a computer model. 
In the last two examples, real computer models are used. 
In all three examples, the likelihood criterion was used to 
determine the parameters of the prior process. 

4.2 Test Function in Two Dimensions 

The data were generated by the function 

y(tl, t2) =[ 1 - exp( 1 /(2t2)/ 

230t3 l90t2+ 292t+ 6 
. ^+3 snv21 + / 

For prediction of y(t) on the unit square T:0 ' tj ' 1, for 
j = 1, 2, we designed a 16-run experiment using the prod- 
uct exponential correlation function (3.1) with e-0 = .0001. 
The best design on a 20 x 20 grid produced by our algo- 
rithm in ten tries is shown in Figure 4. The computing time 
per try was about 45 seconds on a Cray X-MP. 

Predictions were made using correlations derived from 
the product correlation rule (2.12) applied to the linear and 
nonnegative linear correlations (2.8)-(2.9) and to the cubic 
and nonnegative cubic correlations (2.10)-(2. 11). We also 
tried the correlation used by Sacks, Welch, Mitchell, and 
Wynn (1989), 

R(d) = f1 exp(-O OIdj IP) (4.2) 
i 

The case p = 1 yields the product exponential correla- 
tion, of which (3.1) is a special case. Versions of this have 
been used by Blight and Ott (1975) for prediction (in one 
dimension), by Sacks and Ylvisaker (1985), Shewry and 
Wynn (1987), and Sacks and Schiller (1988) for construct- 
ing designs, and by Currin et al. (1988) for both design and 
prediction. The sample paths associated with the exponen- 
tial correlation are quite rough; they are not differentiable 
and exhibit many changes of direction. The case p = 2 
yields sample paths that are infinitely differentiable; this 
process has been used by O'Hagan (1978), Sacks and Schiller 
(1988), Cunin et al. (1988), and Sacks, Schiller, and Welch 
(1989). 

We also fitted several polynomial models by least squares, 
as well as a bicubic spline function, with four equispaced 
knots in each dimension, using the algorithm "EO2DAF" 
from the NAG subroutine library (Numerical Algorithms 

iS0 

0 

* 

t2 

* f 

O 1 
tt 

Figure 4. Design for k = 2 and n = 16, Used in the Example of 
Section 4.2. This was the best design (under the entropy criterion) 
produced by our algorithm in ten tries on a 20 x 20 grid, given a 
product exponential correlation function with each p = e0@ = .0001. 
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Table 1. Summary of Prediction Errors for the Two-Dimensional Test Function (4.1), for Several Prediction Methods 

Error Max. RMS Int. Int. 
Design Predictor D.F R2 error error width covg. 

r Bayes (SWMW) - - 2.17 .55 .79 .45 
| Bayes (C) - 2.45 .60 1.42 .79 
| Bayes (C+) - 2.61 .70 1.81 .83 

Figure 4 ) Bayes (L, L+) - 3.10 .70 5.18 .99 
Cubic Poly. 6 93.8 3.70 .91 7.83 1.00 
4 x 4 Bicubic Spline 0 100.0 5.73 .98 
Quadratic Poly. 10 76.5 5.72 1.64 9.99 .98 
Bicubic Poly. 0 100.0 22.28 4.07 - 
Bicubic Poly. 0 100.0 3.53 1.04 - 
Cubic Poly. 6 98.9 4.19 1.11 3.58 .91 
Bayes (C) - 4.89 1.41 2.20 .71 
Bayes (C+) - 5.27 1.59 2.45 .69 

4 x 4 Bayes (L, L+) - 5.92 1.62 6.43 .94 
|Bayes (SWMW) -5.44 1.63 2.02 .59 
Quadratic Poly. 10 86.3 6.05 1.90 8.05 .94 

V 4 x 4 Bicubic Spline 0 100.0 7.60 2.72 

NOTE: Correlation functions used for Bayesian prediction are: linear (L), nonnegative linear (L+), cubic (C), nonnegative cubic (C+), and Equation (4.2) (SWMW). Quadratic, cubic, and 
bicubic polynomials were also fit by the method of least squares, as was a bicubic spline with knots on a regular 4 x 4 grid. The maximum absolute error and the root mean squared (RMS) 
error are evaluated on a set of 400 random test sites. Int. width refers to the average width of the 95% posterior probability intervals; nt. covg. is the proportion of the test sites at which 
the interval covered the true value of y. For the least squares fits, the regression R2 and the degrees of freedom for error are also given. Results are given for two 16-run designs: the one 
shown in Figure 4 and a 4 x 4 factorial design. 

Group, Inc. 1987). The fitting equation supplied by this 
algorithm has 36 coefficients. Since there were only 16 runs, 
the algorithm automatically chose the interpolating solution 
that minimizes the sum of squares of the coefficients. We 
repeated the whole exercise using a 4 x 4 factorial design 
(with levels 0, .33333, .66667, 1) instead of the design in 
Figure 4. 

The errors in y(t) at 400 test sites (the same for all meth- 
ods) chosen randomly from a uniform distribution on T, are 
summarized in Table 1. Also shown, for each method, is 
the average width of the 95% posterior probability intervals 

at the 400 test sites and the proportion of test sites at which 
the true y(t) is covered by the interval. 

The poor performance of the bicubic polynomial approx- 
imation for our design can be attributed to the near sin- 
gularity of the least squares equations for fitting that model 
to data from that design. The least squares prediction equa- 
tion in this case is a wildly fluctuating interpolator. 

Contours of constant 9 for the product cubic correlation, 
applied to the data from our design, are shown in Figure 
5(a); contours of the true response (4.1) are shown in Fig- 
ure 5(b). 

1. I I1.c I 

02/// 2/l 1?/ 11 

0.8 6 0.8 

6 

0. ~~~~~~~~~~~~~~~~~~~~~~~~~~6 0. ~~~~~~~~~~~~~~~~~~~~~~~~~0. 
t2 t2 

0A.4 8 0.- 8 

10 10 
0.2 0.2 12 

121 

14 
0.0 II 
0.0 0.2 0.4 0.6 0.8 1.0 0*C 0.0 0.2 0.4 0.6 0.8 1.0 

ti ti 

(a) (b) 

Figure 5. (a) Contours of Constant k'tl, t2) After 16 Observations of the Function (Eq. 4. 1), Where the Prior Correlation Function is a Product 
Cubic (Denoted by "Bayes(C)" in Table 1) with Parameters Chosen by Maximizing the Likelihood. (b) Contours of constant y(tl, t2) for the true 
function (Eq. 4. 1). 
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Table 2. Design and Responses for Our Nine-run Experiment 
on the TWOLAYER Model 

t, t2 y 

.0000 .3333 .5056 

.0000 1.0000 .4290 

.2500 .0000 .5288 

.2500 .6667 .2383 

.5000 .9167 .0354 

.5833 .2500 .0000 

.8333 .5833 .0000 
1.0000 .0000 .0000 
1.0000 1.0000 .0000 

NOTE: Variables t1 (melting temperature of one layer) and t2 (thickness of that layer) are 
each scaled to the interval [0, 1]. The response y is the utility index. 

4.3 Thermal Energy Storage System Example 
(Two Dimensions) 

We now give the results of a computer experiment on a 
model (TWOLAYER) of a thermal energy storage system 
made of layers of phase change materials. The experiment 
was conducted to determine the effect of the melting tem- 
perature (tl) and thickness (t2) of one of the layers on a 
"utility index" (y), in a rectangular region of interest. For 
our initial experiment, we chose a nine-run design, gen- 
erated to be optimal on a 13 x 13 grid for the product 
exponential correlation (3.1) with e-0 = .0001. The design 
points and the responses are shown in Table 2. 

Again Bayesian predictions were made using several dif- 
ferent correlation functions, and least squares approxima- 
tions were made using various polynomial and spline models. 
The whole exercise was repeated with data from a 3 x 3 
factorial design with each factor at levels 0, .5, and 1. The 
results are given in Table 3, where the errors of prediction 
are computed on a set of 100 test sites (the same for all 
methods) randomly chosen from a uniform distribution on T. 

Figure 6 shows the contours of constant 9 for the pos- 
terior process derived from the product nonnegative cubic 
correlation function, applied to the data from our design. 

1.0 . 

0 75. 

0.1 

o.oo 0.2s o.so 0.7s .200 

4) ~~~03 

ii ~~~~0.4 
el0.25. 

0.5 

0.1 
0.00 0.25 0.50 0.75 1.00 

tj = Melt Temperature (coded) 

Figure 6. Contours of Constant 9(t1, t2j After 9 Observations of the 
Utility Index y Produced by the Computer Model TWOLAYER. The 
correlation function is a product nonnegative cubic with parameters 
chosen by maximizing the likelihood. The design sites are indicated 
by the closed circles. 

A similar experiment, with 8 initial runs augmented by 
three more sites, is described by Currin et al. (1988). 

4.4 Circuit Simulation Example (Six Dimensions) 

This experiment was part of a larger experiment de- 
scribed by Currin et al. (1988). It was run on the same 
computer model that was used for the main example of Sacks, 
Welch, Mitchell, and Wynn (1989). The model is used to 
help design an integrated circuit, in this case a CMOS VLSI 
clock driver. From a master clock, the circuit generates two 

Table 3. Summary of Prediction Errors for the TWOLAYER Model, for Several Prediction Methods 

Error Max. RMS Int. Int. 
Design Predictor D.F. R2 error error width covg. 

(Bayes (SWMW) .151 .040 .238 .95 
Bayes (L+) .172 .043 .353 .98 
Bayes (C +) .145 .045 .143 .89 

J Bayes (L) .199 .048 .361 .97 
Table 2 Bayes (C) - .163 .051 .158 .87 

Quadratic Poly. 3 95.7 .147 .056 .615 1.00 
3 x 3 Bicubic Spline 0 100.0 .257 .077 
Biquadratic Poly. 0 100.0 .518 .209 

(Bayes (SWMW) - .129 .040 .098 .77 
| Bayes (C+) .135 .040 .100 .77 

3 x 3 ) Bayes (C) - .128 .042 .115 .77 
Biquadratic Poly. 0 100.0 .156 .046 

| Quadratic Poly. 3 99.9 .156 .047 .104 .77 
Bayes (L, L+) .145 .051 .383 .98 

_ 3 x 3 Bicubic Spline 0 100.0 .308 .112 

NOTE: Correlation functions used for Bayesian prediction are: linear (L), nonnegative linear (L+), cubic (C), nonnegative cubic (C+), and Equation (4.2) (SWMW). Quadratic and biquadratic 
polynomials were also fit by the method of least squares, as was a bicubic spline with knots on a regular 3 x 3 grid. The maximum absolute error and the root mean squared (RMS) error 
are evaluated on a set of 100 random test sites. Int. width refers to the average width of the 95% posterior probability intervals; Int. covg. is the proportion of the test sites at which the 
interval covered the true value of y. For the least squares fits, the regression R2 and the degrees of freedom for error are also given. Results are given for two nine-run designs: the one 
shown in Table 2 and a 3 x 3 factorial design. 
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Table 4. Design Sites and Response Values for Runs 1-16 
of Experiment on Circular Simulator 

tt t2 t3 t4 t5 t6 Y 

1.00 .00 .75 .00 .50 .50 -1.3480 
.00 1.00 1.00 .00 .00 .00 -.9880 
.00 .00 .00 .00 1.00 1.00 -.8510 
.75 .50 .25 .75 1.00 .75 -.3150 

1.00 .00 1.00 1.00 1.00 .00 -.5709 
1.00 1.00 1.00 .00 1.00 1.00 -1.2960 
.50 .25 .00 .00 .00 .25 -1.0190 

1.00 1.00 .75 1.00 .00 .50 -1.1351 
.00 .00 .50 1.00 .00 .00 -1.1501 
.25 .50 .75 .25 1.00 .00 -.1160 
.00 1.00 .00 1.00 1.00 .00 .1627 

1.00 .00 .00 1.00 .25 1.00 -.7740 
.25 .00 1.00 .25 .00 1.00 -2.3570 
.00 .75 1.00 1.00 .75 1.00 -.9529 
.00 1.00 .00 .50 .00 1.00 -.7490 

1.00 1.00 .00 .25 .50 .00 .3390 

output clocks of opposite polarities. The objective of this 
experiment is to determine the effect of six transistor widths 
on the "clock skew," which is a measure of the degree of 
asynchronization between the clocks. 

Table 4 shows the design sites for the first 16 runs and 
the response values (clock skew) found at those sites. The 
actual values of the design variables have been shifted and 
scaled to make T = [0, 1]6. 

This design was generated using the product exponential 
correlation (3.1) with e-@ = .1, following the same phi- 
losophy that we used in the examples above. The search 
was restricted to a 56 grid to save computer time. The de- 
sign shown here is the best one found by the algorithm in 
10 tries, which took a total of about 20 minutes on a Cray 
X-MP. 

Bayesian predictions were made using the same kinds of 
correlation function used in the previous examples. In ad- 
dition to the Bayesian predictions, a first order polynomial 
model was fit by least squares. Because this particular com- 
puter model is relatively fast running, it was feasible to 
compare the predictions to the true responses at 100 test 
sites, chosen randomly from T. The results are given in 
Table 5. 

Table 5. Summary of Prediction Errors for the Circuit Simulator 
Experiment for Several Prediction Methods 

Error Max. RMS Int. Int. 
Predictor D.F. R2 error error width covg. 

Bayes (C+) - .334 .145 .366 .75 
Bayes (C) .362 .146 .260 .59 
Bayes (SWMW) .335 .151 .334 .73 
Linear Poly. 9 89.9 .429 .167 1.328 1.00 
Bayes (L, L+) .444 .177 1.221 1.00 

NOTE: Correlation functions used for Bayesian prediction are: linear (L), nonnegative linear 
(L+), cubic (C), nonnegative cubic (C+), and Equation (4.2) (SWMW). A first order polynomial 
was also fit by the method of least squares. The maximum absolute error and the root mean 
squared (RMS) error are evaluated at a randomly selected set of 100 test sites, the same 
for all methods. Int. width refers to the average width of the 95% posterior probability intervals; 
Int. covg. is the proportion of the test sites at which the interval covered the true value of y. 
For the linear polynomial fit, the regression R2 and the degrees of freedom for error sre also 
given. 

4.5 Conclusions 

The Bayesian predictors performed comparatively well in 
all three examples, although the gain over the more con- 
ventional methods was substantial only in the first. The most 
disturbing note was the failure of the 95% probability in- 
tervals for the Bayesian predictions to cover the true values 
consistently well, except for the intervals produced by the 
linear and nonnegative linear correlations. We expect that 
better performance will be possible as more sophisticated 
versions of Bayesian design and prediction emerge. In par- 
ticular, assigning some sort of prior distribution to the cor- 
relation parameters, instead of fixing them, may improve 
the coverage properties of the intervals. 

Whether the effort required to implement the approach 
we have discussed here is warranted in practice depends on 
the nature of the true response function and on the avail- 
ability of the necessary software. The method itself is fairly 
simple. Assuming that the computations can be done more 
economically, and that reasonably flexible and robust priors 
can be developed, it offers considerable potential for vir- 
tually automatic implementation. The Bayesian structure 
supports algorithmic approaches to design, as we have seen, 
and the analysis that yields the predictions is naturally 
adaptive-y becomes more subtle and complex as more sites- 
are observed, with no intervention required to add terms to 
a parametric model. The advantage of this is particularly 
evident in the third example, where an apparently effective 
16-run design in 6 dimensions was constructed without the 
need to explicitly decide on the form of a model for the 
expected response. Here a full factorial design at several 
levels would require far too many runs; even a two-level 
resolution V design is not possible in 16 runs. 

A final note: When the true response really is a simple 
polynomial, the Bayesian method does not seem to suffer, 
as long as the correlation function is suitably smooth. This 
can be investigated theoretically by considering the behav- 
ior of the correlation function when R(d) 1. We plan to 
discuss this and related issues elsewhere-here we report 
only an empirical result. We partially repeated the example 
of Section 4.2, but with 

y = 4.90 + 21.15t, - 2.17t2 - 15.88t 2 - 1.38t2 - 5.26tlt2. 

Again using the design in Figure 4, we tried the C+ cor- 
relation and the SWMW correlation with p = 2, and both 
produced very good predictions. For the former, the root 
mean squared error at the 400 random test sites was .029; 
for the latter, it was .00012. 

[Received September 1989. Revised December 1990.] 
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