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This work focuses on combining observations from field experiments with detailed computer simulations of a physical process to carry
out statistical inference. Of particular interest here is determining uncertainty in resulting predictions. This typically involves calibration of
parameters in the computer simulator as well as accounting for inadequate physics in the simulator. The problem is complicated by the fact
that simulation code is sufficiently demanding that only a limited number of simulations can be carried out. We consider applications in
characterizing material properties for which the field data and the simulator output are highly multivariate. For example, the experimental
data and simulation output may be an image or may describe the shape of a physical object. We make use of the basic framework of Kennedy
and O’Hagan. However, the size and multivariate nature of the data lead to computational challenges in implementing the framework. To
overcome these challenges, we make use of basis representations (e.g., principal components) to reduce the dimensionality of the problem
and speed up the computations required for exploring the posterior distribution. This methodology is applied to applications, both ongoing
and historical, at Los Alamos National Laboratory.
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1. INTRODUCTION

Understanding and predicting the behavior of complex phys-
ical processes is crucial in a variety of applications, includ-
ing weather forecasting, oil reservoir management, hydrology,
and impact dynamics. Inference on such systems often makes
use of computer code—a simulator—that simulates the phys-
ical process of interest, along with field data collected from
experiments or observations on the actual physical system.
The simulators we work with at Los Alamos National Labo-
ratory (LANL) typically model fairly well understood physi-
cal processes—this can be contrasted with agent-based simula-
tions, which model social activity. Even so, uncertainties play
an important role in using the code to predict behavior of the
physical system. Uncertainties arise from a variety of sources,
including uncertainty in the specification of initial conditions,
uncertainty in the value of important physical constants (e.g.,
melting temperatures, equations of state, stress–strain rates), in-
adequate mathematical models in the code to describe physical
behavior, and inadequacies in the numerical algorithms used
for solving the specified mathematical systems (e.g., unresolved
grids).

These features clearly distinguish the simulation code from
the actual physical system of interest. Much of this uncer-
tainty, however, can be mitigated by utilizing experimental ob-
servations to constrain uncertainties within the simulator. When
the simulation code is sufficiently fast, estimation approaches
based on Monte Carlo can be used (Berliner 2001; Higdon,
Lee, and Holloman 2003; Kaipio and Somersalo 2004). In ap-
plications such as weather forecasting where both the data and
simulations arrive in a sequential fashion, filtering approaches
can also be quite useful (Bengtsson, Snyder, and Nychka 2003;
Kao, Flicker, Ide, and Ghil 2004).

When the application is not readily amenable to sequential
updating and the simulation code takes minutes, days, or even
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weeks to complete, alternative estimation approaches are re-
quired. This is the case for our applications. In this article we
base our approach on that of Kennedy and O’Hagan (2001),
which utilizes the Gaussian process (GP) models described in
Sacks, Welch, Mitchell, and Wynn (1989) to model the simu-
lator output at untried input settings. This model for the simu-
lator is then embedded in a larger framework so that parameter
estimation (i.e., calibration) and prediction can be carried out.
Section 2.1 gives a fully Bayesian overview of this formulation.

Although the formulation can, in principle, account for mul-
tivariate simulation and experimental output, even moderately
multivariate output can render the required computations for fit-
ting such models infeasible. Our experience is that multivari-
ate output is quite common in physics and engineering applica-
tions. This article describes an extension of this formulation that
allows for highly multivariate output, while still maintaining
sufficient computational tractability to allow a fully Bayesian
analysis via Markov chain Monte Carlo (MCMC).

1.1 Historical Implosion Experiments

To facilitate the description of our methodology, we utilize
an application from the beginnings of the Manhattan project at
LANL (Neddermeyer 1943) in which steel cylinders were im-
ploded by a high-explosive (HE) charge surrounding the cylin-
der. Figure 1 shows the results of such experiments.

To describe these implosions, Neddermeyer devised a rudi-
mentary physical model to simulate an experiment that depends
on three inputs:

• x1: the mass of HE used in the experiment.
• t1: the detonation energy per unit mass of HE.
• t2: the yield stress of steel.

The first input x1 is a condition under the control of the ex-
perimenter; the remaining two inputs t = (t1, t2) are parameter
values. We wish to estimate the best setting t = θ from the ex-
perimental data. More generally in the framework, we describe
simulation inputs with the joint vector (x, t) where the px vec-
tor x denotes controllable—or at least observable—input con-
ditions of the experiment, and the pt vector t holds parameter
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Figure 1. Cylinders before and after implosion using TNT. The
photos are from Neddermeyer (1943), experiments 2 and 10.

values to be calibrated, or estimated. Hence, a given simulation
is controlled by a (px + pt ) vector (x, t), which contains the
input settings. In this cylinder example, we have px = 1 and
pt = 2.

Output from Neddermeyer’s simulation model for a particu-
lar input setting (x, t) is shown in Figure 2. In describing the
modeling formulation, we will need to make the distinction be-
tween an arbitrary setting t for the calibration inputs and the
best setting θ , which is something we are trying to estimate.
Although this particular simulation code runs very quickly, we
mean it to be a placeholder for a more complicated, and com-
putationally demanding, code from which a limited number of
simulations (typically less than 200) will be available for the
eventual analysis.

The data from this application come in the form of a se-
quence of high-speed photographs taken during the implosion,
which takes place over a span of about 30 ms. The original
photographs from the experiments were unavailable so we con-
struct synthetic data using the rudimentary simulation model
using a true value of θ = ( 1

2 , 1
2 ) for the calibration parameters.

We generated data from three experiments, each with differ-
ent values for x1, the HE mass. For experiments 1, 2, and 3,
x1 is .77, .05, and .96, respectively, in standardized units. To
better mimic reality, we also add an effect to this synthetic
data that results in slightly faster inward movement of the in-
ner radius at angles φ between the detonators, which are at
φ = 0◦,90◦,180◦, and 270◦. This effect is due to colliding det-
onation waves induced by the four separate detonations. This
effect varies with φ and is, therefore, not accounted for in the
simulation model, which assumes the radius is constant over φ

at any given time. The experimental data are shown in Figure 3.
As is typical of experiments we are involved in, the amount and
condition of the observed data varies with experiment. Here the
number of photographs and their timing vary with experiment.
We take a trace of the inner radius of the cylinder to be the re-
sponse of interest. The trace, described by angle φ and radius r ,
consists of 16 points equally spaced by angle.

Figure 2. Implosion of the inner radius of the steel cylinder using
Neddermeyer’s simulation model.

Figure 3. Hypothetical data obtained from photos at different times
during the three experimental implosions. For each photograph, the
data consist of 16 locations along the inner edge of the cylinder. All
cylinders initially had a 1.5-inch outer radius and a 1.0-inch inner ra-
dius.

We choose this example as the context in which to explain
our approach because it possesses the features of the applica-
tions we are interested in, while still remaining quite simple.
Specifically, we point the reader to the following properties of
this example:

• The application involves a simulator from which only a
limited number of simulations m (m < 200) may be car-
ried out. Simulator output depends on a vector of input
values (x, t), where the px vector x denotes the input spec-
ifications and the pt vector t holds the parameter settings
to be calibrated.

• The dimensionality of the input vector (x, t) is limited.
Here it is a three-dimensional vector (px + pt = 1 + 2 =
3); in the application of Section 3, pt = 8. We have worked
with applications for which the dimension of (x, t) is as
large as 60. However, applications with high-dimensional
(pt > 100) inputs, as is the case in inverse problems in
tomography applications, are beyond the scope of the ap-
proach given here.

• Observations from one or more experiments are available
to constrain the uncertainty regarding the calibration para-
meters θ . In most applications we have worked with, the
number of experiments n is small (n < 10). The experi-
mental data are typically collected at various input condi-
tions x, and the simulator produces output that is directly
comparable to these field observations. Note that the sim-
ulator can also model the observation process used in the
experiment to ensure that the simulations are compatable
with the experimental data.

The goal of the analysis described in the next section is to

• Use the experimental data to constrain the uncertainty re-
garding the calibration parameters θ .

• Make predictions (with uncertainty) at new input condi-
tions x.
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Figure 4. A modern implosion experiment carried out at the
dual-axis radiographic hydrodynamic test facility at LANL. High-en-
ergy X rays interrogate the object as it implodes.

• Estimate systematic discrepancies between the simulator
and physical reality.

We develop our methodology in the context of Neddermeyer’s
implosion application. We currently apply this methodology to
modern implosion experiments conducted at the dual-axis radi-
ographic hydrodynamic test facility at LANL, which uses high-
energy X rays to record the implosion (Fig. 4). Current simu-
lation models are also far more advanced, with detailed models
for material properties and equations of state. Even using the
most modern supercomputers, these simulations can take hours,
or even days.

Although the focus here is on implosion experiments, the
methodology readily generalizes to other applications. In the
following section we describe the basic, univariate model for-
mulation and then give our extension to deal with highly multi-
variate data. In Section 3 we apply this methodology to a mod-
ern cylinder test for high explosives. The article then concludes
with a discussion.

2. MODEL FORMULATION

In this section we review the basic univariate formulation of
Kennedy and O’Hagan (2001). Theirs is a methodology for cal-
ibrating a computationally demanding simulator that may be
biased when compared to reality. After pointing out difficulties
with directly applying this formulation when the simulation and
experimental output is highly multivariate, we describe the de-
tails of our extension of this methodology. Throughout this sec-
tion, we use Neddermeyer’s cylinder application to motivate the
model formulation.

2.1 Univariate Formulation

Here we give a brief explanation of the univariate formula-
tion of Kennedy and O’Hagan (2001). Although their original
implementation is not fully Bayesian, we give a fully Bayesian
description here because it better integrates with the multivari-
ate formulation to follow. The formulation is described in gen-
eral and then followed by an application to one of the Nedder-
meyer experiments.

At various settings x1, . . . ,xn, observations y1, . . . , yn are
made of the physical system

y(xi ) = ζ(xi ) + ε(xi ), i = 1, . . . , n,

where ζ(xi ) denotes the response of the actual physical system
and the ε(xi )’s denote observation error. In one of these cylinder
experiments, ζ(xi ) represents the actual radius of the cylinder
as a function of xi , which encodes the amount of HE, angle,
and time; y(xi ) gives the experimentally observed radius at xi .
Often the size and nature of the ε(xi )’s are sufficiently well
characterized that their distribution can be treated as known.

We take y = (y(x1), . . . , y(xn))
T to denote the physical obser-

vations. If the observations are multivariate, xi can be used to
encode the elements of the observations. For the cylinder exper-
iments, this could be accomplished by having xi index the time
and angle of each observation. Hence, a single experiment may
account for many components of the vector y.

The observed data are then modeled statistically using the
simulator η(x, θ) at the best calibration value θ according to

y(xi ) = η(xi , θ) + δ(xi ) + ε(xi ), i = 1, . . . , n,

where the stochastic term δ(xi ) accounts for the discrepancy
between the simulator η(xi , θ) and reality ζ(xi ), and θ denotes
the best, but unknown, setting for the calibration inputs t. In
some cases, the discrepancy term can be ignored; in other cases,
it plays a crucial role in the analysis.

We treat the fixed set of m simulation runs

η(x∗
j , t∗j ), j = 1, . . . ,m,

as supplementary data to be used in the analysis. We are in the
situation where the computational demands of the simulation
code are so large that only a fairly limited number of runs can be
carried out. In this case, a GP model for η(x, t) is required for
input combinations (x, t) at which the simulator has not been
run.

Generally, if x is a vector in Rpx and t a vector in Rpt , then
the function η(·, ·) maps Rpx+pt to R. We utilize a Gaussian
process to model this unknown function (O’Hagan 1978; Sacks
et al. 1989; Santner, Williams, and Notz 2003). A mean func-
tion μ(x, t) and covariance function Cov((x, t), (x′, t′)) are re-
quired to fully specify a GP prior model for η(x, t). Follow-
ing Sacks et al. (1989) and Kennedy and O’Hagan (2001), we
scale all inputs to the unit hypercube, take μ(x, t) to be a con-
stant, and specify a product covariance having power exponen-
tial form

Cov((x, t), (x′, t′)) = 1

λη

px∏

k=1

ρ
4(xk−x′

k)
2

ηk ×
pt∏

k=1

(ρη,px+k)
4(tk−t ′k)2

= 1

λη

R((x, t), (x′, t′);ρη), (1)

where the parameter λη controls the marginal precision of
η(·, ·) and the (px + pt ) vector ρη controls the dependence
strength in each of the component directions of x and t. This
specification leads to a smooth, infinitely differentiable repre-
sentation for η(·, ·). The parameter ρηk is the correlation be-
tween outputs evaluated at inputs that vary in only the kth di-
mension by half their domain. We note that it is often useful to
add a small white-noise component to the covariance model (1)
to account for small numerical fluctuations in the simulation.
Such fluctuations are commonplace in complicated computer
codes; slight changes in the input settings can alter the effect of
adaptive meshing or stopping rules within iterative routines in
the simulation code.

The prior model formulation is completed by specifying in-
dependent priors for the parameters controlling η(·, ·): π(μ),
π(λη), and π(ρη). This prior formulation is discussed in Sec-
tion 2.2.

The discrepancy term δ(x) accounts for inadequacies in
the simulation model. Inadequacies are often due to missing
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physics or approximations built into the simulation model, lead-
ing to systematic differences between reality ζ(x) and the cal-
ibrated simulation model η(x, θ). For Neddermeyer’s mathe-
matical simulation model, the assumptions of symmetry and
incompressability of steel will yield discrepancies with reality.
Often these discrepancies persist as the input condition varies.
To account for this, we specify a GP model for the discrepancy
term δ(x) with a mean function of 0 and a covariance function
of the form

Cov(x,x′) = 1

λδ

p∏

k=1

ρ
4(xk−x′

k)
2

δk

= 1

λδ

R((x,x′);ρδ). (2)

The prior specification for the parameters governing the GP
model for δ(·) requires we define π(λδ) and π(ρδ), which de-
pend on the known ability of the simulator to adequately model
the physical system.

We define y = (y(x1), . . . , y(xn))
T to be the vector of field

observations and η = (η(x∗
1, t∗1), . . . , η(x∗

m, t∗m))T to be the sim-
ulation outcomes from the experimental design. We also define
the joint (n+m) vector D = (yT ,ηT )T with associated simula-
tion input values (x1, θ), . . . , (xn, θ) for its first n components
and (x∗

1, t∗1), . . . , (x∗
m, t∗m) for its final m components. The sam-

pling model, or likelihood, for the observed data D is then

L(D|θ ,μ,λη,ρη, λδ,ρδ,�y)

∝ |�D|−1/2 exp

{
−1

2
(D − μ1m+n)

T �−1
D (D − μ1m+n)

}
,

(3)

where

�D = �η +
(

�y + �δ 0
0 0

)
,

�y is the n × n observation covariance matrix, �η is obtained
by applying (1) to each pair of the n+m simulation input points
corresponding to D, and �δ is an n × n matrix obtained by ap-
plying (2) to each pair of the n input settings xi , i = 1, . . . , n,

that correspond to the observed field data y. Note that �η de-
pends on the experimental input conditions xi , the simulator
input conditions (x∗

j , t∗j ), and the parameter value θ . Hence, up-
dating θ affects �η , which means its determinant and a linear
solve need to be recomputed to evaluate (3).

Let π(θ) denote the joint prior distribution of the unknown
best calibration value θ . The resulting posterior density has the
form

π(θ ,μ,λη,ρη, λδ,ρδ|D)

∝ L(D|θ ,μ,λη,ρη, λδ,ρδ,�y) × π(θ) × π(μ)

× π(λη) × π(ρη) × π(λδ) × π(ρδ),

which can be explored via Markov chain Monte Carlo
(MCMC). We use tuned, univariate random-walk Metropolis–
Hastings updates in our MCMC implementation (Metropolis,
Rosenbluth, Rosenbluth, Teller, and Teller 1953; Besag, Green,
Higdon, and Mengersen 1995).

Figure 5. Univariate model formulation applied to a simplified im-
plosion application. (a) An initial set of simulation runs is carried out
over the input settings (x∗

j
, t∗

j
), j = 1, . . . ,m. (b) Experimental data

are collected at n = 3 input settings; data are given by the black dots;
90% uncertainties are given by the black lines. The green circles corre-
spond to the m = 20 simulation output values. (c) Posterior mean esti-
mate for the simulator output η(x, t). (d) Posterior distribution for the
calibration parameter θ and the resulting simulator-based predictions
(blue lines). (e) Posterior mean estimate and pointwise 90% prediction
intervals for the model discrepancy term δ(x). (f) Posterior mean esti-
mate and pointwise 90% prediction intervals for the implosion, giving
radius as a function of time for the physical system ζ(x).

In Figure 5 the univariate formulation is applied to a sim-
plification of experiment 1, from Section 1.1. Here the radii
measurements of experiment 1 are averaged azimuthally, giv-
ing a single measured radius at three different times indexed
by x. For these simulations, only the detonation energy t was
varied—the amount of HE and the yield stress of steel were
held fixed at their nominal values. Hence, η(x, t) gives the sim-
ulated radius as a function of time x and input detonation en-
ergy t . Even though the simulation model produces a trace of
radius by implosion time, we take only the m = 20 values cor-
responding to the dots in the top row plots of Figure 5. Each
of these “simulations” is really only a single point taken from a
dense time series produced by the simulator.

From Figure 5, it is clear that this analysis allows infer-
ence about a number of important quantities. Of key interest
in almost any application are the posterior estimates for η(x, t)

[Fig. 5(c)], the calibration parameters θ , the calibrated simula-
tor η(x, θ) [Fig. 5(d)], the model discrepancy δ(x) [Fig. 5(e)],
and the physical system ζ(x) [Fig. 5(f)]. With these, one can
explore the sensitivities of the simulator model, describe the pa-
rameter settings for which the simulator is consistent with the
data, and make predictions for the physical system at settings x

for which no experimental data exist.

2.2 Extension to Multivariate Formulation

This basic formulation has proven effective in a wide variety
of applications—see Higdon, Kennedy, Cavendish, Cafeo, and
Ryne (2004) or Bayarri et al. (2007) for additional examples.
However, the size of any problem one might tackle with this
basic approach is limited because a likelihood (3) evaluation
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requires solving an (n + m) × (n + m) matrix. This is painfully
obvious in the imploding cylinder application of Section 1.1,
where a single simulation produces a 20 × 26 grid of radii over
time and angle. Here the 36 simulations result in 18,720 val-
ues; we would like to use these data to estimate the GP model
for the simulator output. The three experiments give an addi-
tional 96 values. Hence, a direct application of this univariate
formulation is not computationally feasible.

Our experience is that high-dimensional simulation output is
the rule, rather than the exception. Hence, a rather general so-
lution to this problem is of considerable value. One approach
is to exploit the Kronecker structure in the simulation output as
in Williams et al. (2006). However, this approach results in a
rather inflexible covariance specification for the GP models and
requires that the experimental data be i.i.d. on the same support
as the simulation output. The approach we present here is ap-
plicable in a far wider array of applications, including the HE
cylinder application of Section 3, which has temporal depen-
dence in the experimental error. In the following sections, we
briefly comment on design of the simulation runs and describe
a basis representation for the simulator output, as well as for the
discrepancy to deal with the high dimensionality of the prob-
lem. These components are combined into a complete model
formulation described in Section 2.2.4. We use Neddermeyer’s
implosion application as a vehicle to describe this general ap-
proach.

2.2.1 Design of Simulator Runs. A sequence of simulation
runs is carried out at m input settings varying over predefined
ranges for each of the input variables:

⎛

⎝
x∗

1 t∗1
...

...

x∗
m t∗m

⎞

⎠ =
⎛

⎜⎝
x∗

11 · · · x∗
1px

t∗11 · · · t∗1pt

...
. . .

...
...

. . .
...

x∗
m1 · · · x∗

mpx
t∗m1 · · · t∗mpt

⎞

⎟⎠ . (4)

We would like to use this collection of simulation runs to screen
inputs as well as to build simulator predictions at untried input
settings using a Gaussian process model.

We typically use space-filling Latin hypercube (LH) designs
(Tang 1993; Ye, Li, and Sudjianto 2000; Leary, Bhaskar, and
Keane 2003) to generate simulation runs in the applications
we encounter. Such designs spread points evenly in higher-
dimensional margins, while maintaining the benefits of the LH
design. We standardize the inputs to range over [0,1]px+pt to
facilitate the design and prior specification (described later).
Specifically, for the cylinder application, we use a strength 2,
orthogonal array (OA)-based LH design for the simulation runs.
The OA design is over px + pt = 1 + 2 = 3 factors, with each
factor having four levels equally spaced between 0 and 1: 1

8 , 3
8 ,

5
8 , 7

8 . We have found that, in practice, this design of simulation
runs is often built up sequentially.

For the cylinder application, the output from the resulting
simulator runs is shown in Figure 6. The simulator gives the ra-
dius of the inner shell of the cylinder over a fixed grid of times
and angles. Surfaces from the left-hand frame are the output
of three different simulations. Due to the symmetry assump-
tions in the simulator, the simulated inner radius only changes
with time τ—not angle φ. However, because the experimen-
tal data give radius values that vary by angle at fixed sets of
times (Fig. 3), we treat the simulator output as an image of radii

(a) (b)

Figure 6. Simulated implosions using input settings from the
OA-based LH design. Simulation output gives radius by time (τ ) and
angle (φ) as shown in (a) for three different simulations. The radius by
time trajectories are shown for all m = 36 simulations in (b).

over time t and angle φ. All m = 36 simulations are shown
in the right frame of Figure 6 as a function of time only. It is
worth noting that the simulations always give the output on this
fixed grid over time and angle. This is in contrast to the com-
paratively irregular collection of experimental data that varies
substantially as to its amount as well as the angles and times at
which the radius is measured.

2.2.2 Simulator Model. Our analysis requires a probabil-
ity model to describe the simulator output at untried settings
(x, t). We use the simulator outputs to construct a GP model
that “emulates” the simulator at arbitrary input settings over the
(standardized) design space [0,1]px+pt . To construct this emu-
lator, we model the simulation output using a pη-dimensional
basis representation:

η(x, t) =
pη∑

i=1

kiwi(x, t) + ε, (x, t) ∈ [0,1]px+pt , (5)

where {k1, . . . ,kpη } is a collection of orthogonal, nη-dimen-
sional basis vectors, the wi(x, t)’s are GPs over the input space,
and ε is an nη-dimensional error term. This type of formula-
tion reduces the problem of building an emulator that maps
[0,1]px+pt to Rnη to building pη independent, univariate GP
models for each wi(x, t). The details of this model specifica-
tion are given later.

The simulations rarely give incomplete output, so this output
can often be efficiently represented via principal components
(PCs; Ramsay and Silverman 1997). After subtracting out the
mean simulation and possibly scaling the simulation output, we
collect the m simulations in vectors of length nη. These stan-
dardized simulations are stored in the nη ×m matrix �. We ob-
tain the basis vectors Kη = [k1; . . . ;kpη ] via singular value de-
composition (SVD) of the standardized simulation output ma-
trix �. We also scale each ki so that each wi(x, t) process can
be modeled with a mean of 0 and a marginal variance close to 1.

Our choice for the number of basis vectors is currently
ad hoc. We would like to adequately capture the simulator out-
put. This leads us to select pη so that at least 99% of the vari-
ance in the m simulations is explained. Our experience is that
this takes no more than 5 PC bases for the types of physical sys-
tems we typically work with. We have also found that the GP
model wi(x, t) predicts well for the first few components, but
eventually predicts poorly for the latter components. These lat-
ter components typically explain no more than .05% of the vari-
ation and do not add to the predictive ability of the GP model.
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Figure 7. Principal component bases derived from the simulation
output.

Hence, we determine pη on a case-by-case basis with these is-
sues in mind.

For the cylinder example, we take pη = 3 so that Kη =
[k1;k2;k3]; the basis functions k1, k2, and k3 are shown in
Figure 7. Note that the ki ’s do not change with angle φ due to
the angular invariance of Neddermeyer’s simulation model.

We use the basis representation of (5) to model the nη-
dimensional simulator output over the input space. Each PC
weight wi(x, t), i = 1, . . . , pη, is then modeled as a mean
zero GP

wi(x, t) ∼ GP
(
0, λ−1

wi R
(
(x, t), (x′, t′);ρwi

))
,

where the covariance function is given by (1) with marginal pre-
cision λwi and correlation distances for each input dimension
given by the (px + pt ) vector ρwi .

We define the m vector wi to be the restriction of the
process wi(·, ·) to the input design settings given in (4), wi =
(wi(x∗

1, t∗1), . . . ,wi(x∗
m, t∗m))T , i = 1, . . . , pη. In addition, we

define R((x∗, t∗);ρwi) to be the m × m correlation matrix re-
sulting from applying (1) using ρwi to each pair of input set-
tings in the design. The mpη vector w = (wT

1 , . . . ,wT
pη

)T has
prior distribution

w ∼ N
(
0mpη,diag

(
λ−1

wi R((x∗, t∗);ρwi); i = 1, . . . , pη

))
, (6)

which is controlled by pη precision parameters held in λw and
pη(px +pt) spatial correlation parameters held in ρw . The cen-
tering of the simulation output makes the zero-mean prior ap-
propriate. The preceding prior can be written more compactly
as w ∼ N(0mpη,�w), where �w is given in (6).

We specify independent �(aw,bw) priors for each λwi and
independent Beta(aρw , bρw) priors for the ρwik’s.

π(λwi) ∝ λ
aw−1
wi e−bwλwi , i = 1, . . . , pη,

π(ρwik) ∝ ρ
aρw −1
wik (1 − ρwik)

bρw −1,

i = 1, . . . , pη, k = 1, . . . , px + pt .

We expect the marginal variance for each wi(·, ·) process to be
close to 1 due to the standardization of the simulator output.
For this reason, we specify that aw = bw = 5. In addition, this
informative prior helps stabilize the resulting posterior distribu-
tion for the correlation parameters, which can trade off with the
marginal precision parameter (Kern 2000).

Because we expect only a subset of the inputs to influence
the simulator response, our prior for the correlation parame-
ters reflects this expectation of “effect sparsity.” Under the pa-
rameterization in (1), input k is inactive for PC i if ρwik = 1.
Choosing aρw = 1 and 0 < bρw < 1 will give a density with
substantial prior mass near 1. For the cylinder example, we take
bρw = .1, which makes Pr(ρwik < .98) ≈ 1

3 a priori. In gen-
eral, the selection of these hyperparameters should depend on

how many of the px + pt inputs are expected to be active. An
alternative prior for each element of ρw has a point mass at 1
and spreads the rest of the prior probability between 0 and 1.
We have found both priors lead to very similar posterior predic-
tions (Linkletter, Bingham, Hengartner, Higdon, and Ye 2006).
Although px +pt is small for this particular application, analy-
ses of modern implosion experiments have involved as many as
60 different inputs.

If we take the error vector in the basis representation of (5) to
be iid normal, we can then develop the sampling model for the
simulator output. We define the mnη vector η to be the concate-
nation of all m simulation output vectors η = vec(�). Given
precision λη of the errors, the sampling model is then

η ∼ N
(
0mnη,K�wKT + λ−1

η Imnη

)
,

where the mnη × mpη matrix K is given by K = [Im ⊗
k1; · · · ; Im ⊗ kpη ], and the ki ’s are the pη basis vectors pre-
viously computed via SVD. A �(aη, bη) prior is specified for
the error precision λη.

2.2.3 Discrepancy Model. The model for the simulator re-
sponse is one component of the complete model formulation,
which uses experimental data to calibrate the parameter vec-
tor t as well as to account for inadequacies in the simulator.
We closely follow the formulation of Kennedy and O’Hagan
(2001). Here a vector of experimental observations y(x) taken
at input condition x is modeled as

y(x) = η(x, θ) + δ(x) + e,

where η(x, θ) is the simulated output at the best parameter set-
ting θ , δ(x) accounts for discrepancy between the simulator
and physical reality, and e models observation error. For dis-
cussion and motivation regarding this particular decomposition,
see Kennedy and O’Hagan (2001) and the accompanying dis-
cussion.

Previously, Section 2.2.2 gave a detailed explanation of our
GP model for η(x, t). In this section we define the discrepancy
model, which, like the model for η(x, t), is constructed using a
basis representation, placing GP models on the basis weights. It
differs in that the basis weights depend only on input condition
x and that the basis specification for δ(x) is typically nonorthog-
onal and tailored to the application at hand.

For this example consisting of imploding steel cylinders, δ(x)

adjusts the simulated radius over the time × angle grid. This
discrepancy between actual and simulated radius is constructed
as a linear combination of pδ = 24 basis functions that are ref-
erenced by the nη = 20 × 26 grid over time τ and angle φ.
Thus,

δ(x) =
pδ∑

k=1

dk(τ,φ)vk(x) =
pδ∑

k=1

dkvk(x), (7)

where the basis functions dk , k = 1, . . . , pδ , are shown in Fig-
ure 8, and independent GP priors over x are specified for each
weight vk(x).

The basis functions are specified according to what is known
about the actual physical process and potential deficiencies in
the simulator. Here the basis functions are separable normal
kernels that are long in the τ direction and narrow and peri-
odic in the φ direction. This conforms to our expectation that
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Figure 8. Basis kernels dk , k = 1, . . . , pδ . Each kernel is an
nη = 20 × 26 image over time (y axis) and angle (x axis). Note that
the basis elements are periodic over angle φ.

discrepancies—if they exist—should have a strong time per-
sistence, with a much weaker angular persistence. Given our
choice of basis kernel here, the number of bases pδ required
depends on the kernel width in the time and angle directions.
A spacing between kernels of about 1 standard deviation in
the component directions is required to result in a satisfactory
model for δ(x) (Higdon 1998).

The discrepancy basis vectors are divided into F groups
G1, . . . ,GF , with the basis coefficients in each group, vi (x) =
(vi,1(x), . . . , vi,|Gi |(x))T , modeled as independent mean zero-
GP priors

vi (x) ∼ GP
(
0|Gi |, λ

−1
vi I|Gi | ⊗ R((x,x′);ρvi)

)
,

i = 1, . . . ,F,

where λvi is the common marginal precision of each element
in vi (x), ρvi is a px vector controlling the correlation strength
along each component of x, and R((x,x′);ρvi) is the station-
ary Gaussian product correlation model of (2). The F precision
parameters are held in λv , and Fpx spatial correlation parame-
ters are held in ρv . The Gaussian form of the correlation will
enforce a high degree of smoothness for each process vi,j (x) as
a function of x. We feel this is plausible in the cylinder applica-
tion because we expect any discrepancies to change smoothly
with input condition x. Other applications may require an alter-
nate specification. Often, as in this example, it is sufficient to
have common precision and correlation distance parameters for
all basis coefficients; that is, F = 1 and pδ = |G1|.

As with the GP model for the simulator η(x, t), we complete
the discrepancy model formulation by specifying gamma pri-
ors for the precisions λvi and independent beta priors for the
components of ρvi :

π(λvi) ∝ λ
av−1
vi e−bvλvi ,

π(ρvik) ∝ ρ
aρv −1
vik (1 − ρvik)

bρv −1,

i = 1, . . . ,F, k = 1, . . . , px.

In this application, av = 1, bv = .0001, aρv = 1, and bρv = .1.
This results in a rather uninformative prior for the precision λv1.
If the data are uninformative about this parameter, it will tend
to stay at large values that are consistent with a very small dis-
crepancy. Like the prior for ρw , we take aρv = 1 and bρv = .1
to encourage effect sparsity.

2.2.4 Complete Formulation. Given the model specifica-
tions for the simulator η(x, t) and the discrepancy δ(x), we can
now consider the sampling model for the experimentally ob-
served data. We assume the data y(x1), . . . ,y(xn) are collected
for n experiments at input conditions x1, . . . ,xn. For the im-
plosion example, there are n = 3 experiments whose data are
shown in Figure 3. Each y(xi ) is a collection of nyi

measure-
ments over points indexed by time and angle configurations
(τi1, φi1), . . . , (τinyi

, φinyi
). The data for experiment i are mod-

eled as the sum of the simulator output at the best, but unknown,
parameter setting θ and the discrepancy

y(xi ) = η(xi , θ) + δ(xi ) + ei ,

where the observation error vector ei is modeled as N(0nyi
,

(λyWi )
−1). Using the basis representations for the simulator

and the discrepancies, this becomes

y(xi ) = Kiw(xi , θ) + Div(xi ) + ei .

Because the time × angle support of each y(xi ) varies with ex-
periment and is not necessarily contained in the support of the
simulation output, the basis vectors in Ki may have to be inter-
polated over time and angle from Kη. Because the simulation
output over time and angle is quite dense, this interpolation is
straightforward. The discrepancy basis matrix Di is determined
by the functional form given in (7)—the jk element of Di is
given by Di,jk = dk(τij , φij ).

Taking all of the experiments together, the sampling model
is ny variate normal, where ny = ny1 + · · · + nyn is the to-
tal number of experimental data points. We define y (e) to
be the ny vector from concatenation of the y(xi )’s (ei ’s),
v = vec([v(x1); . . . ;v(xn)]T ), and u(θ) = vec([w(x1, θ); . . . ;
w(xn, θ)]T ). The sampling model for the entire experimental
dataset can be written as

y ∼ N
(
0ny ,B diag(�v,�u)BT + (λyWy)

−1),
where Wy = diag(W1, . . . ,Wn), B = [diag(D1, . . . ,Dn);
diag(K1, . . . ,Kn)]diag(PT

D,PT
K), and PD and PK are permu-

tation matrices whose rows are given by PD(j + n(i − 1); ·) =
eT
(j−1)pδ+i , i = 1, . . . , pδ; j = 1, . . . , n, and PK(j + n(i −

1); ·) = eT
(j−1)pη+i , i = 1, . . . , pη; j = 1, . . . , n. Note that per-

mutations are required for specifying B because the basis
weight components have been separated in the definitions of
v and u(θ). The covariance matrix �v = diag(λ−1

vi I|Gi | ⊗
R(x;ρvi); i = 1, . . . ,F ), where R(x;ρvi) is the n × n corre-
lation matrix resulting from applying (2) to each pair of exper-
imental input settings, and �u = diag(λ−1

wi R((x, θ);ρwi); i =
1, . . . , pη), where R((x, θ);ρwi) is the n×n correlation matrix
resulting from applying (1) to each pair of experimental input
settings [correlations depend only on the x dimensions as t = θ
is common to all elements of u(θ)]. A �(ay, by) prior is spec-
ified for the observational error precision λy . The observation
precision Wy is often fairly well known in practice. Hence, we
use an informative prior for λy that encourages its value to be
near 1. In the implosion example we set ay = by = 5.

It is now possible to specify the joint sampling model of
the observables y and η. The (n(pδ + pη) + mpη) vector z =
(vT ,uT (θ),wT )T has prior distribution

z ∼ N

⎛

⎝0n(pδ+pη)+mpη,�z =
⎛

⎝
�v 0 0
0 �u �u,w

0 �T
u,w �w

⎞

⎠

⎞

⎠ ,
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where �v , �u, and �w have been defined previously and
�u,w = diag(λ−1

wi R((x, θ), (x∗, t∗);ρwi); i = 1, . . . , pη), where
R((x, θ), (x∗, t∗);ρwi) denotes the n×m cross-correlation ma-
trix for the GP modeling the simulator output obtained by ap-
plying (1) to the n experimental settings (x1, θ), . . . , (xn, θ)

crossed with the m simulator input settings (x∗
1, t∗1), . . . , (x∗

m,

t∗m). Because
(

y
η

)
=

(
B 0
0 K

)
z +

(
e
ε

)
, (8)

and the error terms are multivariate normal, the joint sampling
distribution of y and η is also multivariate normal.

Compiling the developments beginning in Section 2.2.2, the
posterior distribution of the calibration and statistical model pa-
rameters has the form

π(λη,λw,ρw,λy,λv,ρv, θ |y,η)

∝ L(y,η|λη,λw,ρw,λy,λv,ρv, θ) × λ
aη−1
η e−bηλη

×
pη∏

i=1

λ
aw−1
wi e−bwλwi

×
pη∏

i=1

px+pt∏

k=1

ρ
aρw −1
wik (1 − ρwik)

bρw −1 × λ
ay−1
y e−byλy

×
F∏

i=1

λ
av−1
vi e−bvλvi

×
F∏

i=1

px∏

k=1

ρ
aρv −1
vik (1 − ρvik)

bρv −1 × π(θ), (9)

where L(y,η|·) denotes the multivariate normal sampling dis-
tribution of y and η and π(θ) denotes the prior distribution
for θ , which is typically uniform on a pt -dimensional rectan-
gle.

Computation of L(y,η|·) is cumbersome given the large
amount of functional experimental data and simulator output
typically available for analysis. The following result can be
used to substantially reduce the burden of this computation:

Result 1. Suppose β ∼ N(0,�β) and ε ∼ N(0,�ε), where
β and ε are independent. Let ω = Cβ + ε, where C has full
column rank. Then

L(ω)

∝ |�ε|−1/2|CT �−1
ε C|−1/2

× exp

[
−1

2
ωT

(
�−1

ε − �−1
ε C(CT �−1

ε C)−1CT �−1
ε

)
ω

]

× L(β̂),

where β̂ = (CT �−1
ε C)−1CT �−1

ε ω.

This result holds in slightly altered form if C is not of full
column rank: Set C = C̃L, where C̃ contains a basis for the
column space of C and L is of full row rank. The result applies
to ω = C̃β̃ + ε for β̃ = Lβ regardless of the basis chosen for
C̃. Alternatively, if C is not of full column rank, CT �−1

ε C may
be replaced by CT �−1

ε C + rI, where r is a small ridge.

Applying Result 1 to (8), we obtain

L(y,η|·)

∝ λ
m(nη−pη)/2
η exp

[
−1

2
ληη

T
(
I − K(KT K)−1KT

)
η

]

× λ
(ny−rank(B))/2
y

× exp

[
−1

2
λyyT

(
Wy − WyB(BT WyB)−1BT Wy

)
y
]

× L(̂z|·), (10)

where ẑ = vec([(BT WyB)−1BT Wyy; (KT K)−1KT η]) and
L(̂z|·) is computed from

ẑ ∼ N

(
0,�ẑ = �z +

(
(λyBT WyB)−1 0

0
0 0 (ληKT K)−1

))
.

The possibility that B may not be full rank in some applications
is accounted for in (10); in this event, the matrix inverses are
handled by reduction to full rank or by including a ridge as
described before. Incorporation of these results in (9) gives an
equivalent expression for the full posterior distribution

π(λη,λw,ρw,λy,λv,ρv, θ |y,η)

∝ |�ẑ|−1/2 exp

[
−1

2
ẑT �−1

ẑ ẑ
]

× λ
a′
η−1

η e−b′
ηλη

×
pη∏

i=1

λ
aw−1
wi e−bwλwi

×
pη∏

i=1

px+pt∏

k=1

ρ
aρw −1
wik (1 − ρwik)

bρw −1 × λ
a′
y−1

y e−b′
yλy

×
F∏

i=1

λ
av−1
vi e−bvλvi

×
F∏

i=1

px∏

k=1

ρ
aρv −1
vik (1 − ρvik)

bρv −1 × π(θ), (11)

where

a′
η = aη + m(nη − pη)

2
,

a′
y = ay + ny − rank(B)

2
,

b′
η = bη + 1

2
ηT

(
I − K(KT K)−1KT

)
η,

b′
y = by + 1

2
yT

(
Wy − WyB(BT WyB)−1BT Wy

)
y.

The required matrix inversion is reduced to order n(pδ +pη)+
mpη in (11) from order (ny +mnη) in (9)—particularly efficient
when nη and ny are large.

Realizations from the posterior distribution are produced us-
ing standard, single-site MCMC. Metropolis updates (Metropo-
lis et al. 1953) are used for the components of ρw , ρv , and
θ with a uniform proposal distribution centered at the current
value of the parameter. The precision parameters λη, λw , λy ,
and λv are sampled using Hastings (1970) updates. Here the
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Figure 9. Estimated posterior distribution of the calibration para-
meters (θ1, θ2), which correspond to the detonation energy of the ex-
plosive and the yield stress of steel, respectively. The true values from
which the data were generated are θ = (.5, .5), given by the + symbol.

proposals are uniform draws, centered at the current parameter
values, with a width that is proportional to the current parame-
ter value. Note that we bound the proposal width by not letting
it get below .5.

In a given application, the candidate proposal width can be
tuned for optimal performance. However, because of the way
the data have been standardized, we have found that a width
of .2 for the Metropolis updates, and a width of .3 times the cur-
rent parameter value (or .5, whichever is larger) for the Hastings
updates, works quite well over a fairly wide range of applica-
tions. This has been an important consideration in the develop-
ment of general software to carry out such analyses.

The resulting posterior distribution estimate for (θ1, θ2) in the
cylinder application is shown in Figure 9 on the standardized
C = [0,1]2 scale. This covers the true values of θ = (.5, .5)

from which the synthetic data were generated.

2.2.5 Posterior Prediction. Given posterior realizations
from (11), predictions of the calibrated simulator η(x∗, θ) and
discrepancy term δ(x∗) can be generated at any input setting x∗.
Predictions of system behavior ζ (x∗) = η(x∗, θ) + δ(x∗) fol-
low. Because η(x∗, θ) = Kw(x∗, θ) and δ(x∗) = Dv(x∗), we
need only produce draws w(x∗, θ) and v(x∗) given a posterior
draw of the parameter vector (λη,λw,ρw,λy,λv,ρv, θ). The
following result provides a roadmap for generating the neces-
sary realizations:

Result 2. Suppose ε ∼ N(0,�ε) and assume that
(

β

b∗
)

∼ N

((
0
0

)
,

(
�β �β,b∗

�T
β,b∗ �b∗

))
,

where (β,b∗) and ε are independent. Let ω = Cβ +ε, where C
has full column rank. The conditional distributions π(b∗|ω) and
π(b∗|̂β) are equivalent, where β̂ = (CT �−1

ε C)−1CT �−1
ε ω.

If C is not full rank, Result 2 holds with the same modifi-
cations discussed subsequent to the statement of Result 1. Re-
sult 2 indicates that realizations of basis coefficient vectors can
be drawn conditional on the reduced data ẑ rather than the full
data y and η, resulting in computational cost savings.

These predictions can be produced from standard GP theory.
Conditional on the parameter vector (λη,λw,ρw,λy,λv,ρv, θ),
the reduced data ẑ, along with the predictions w(x∗, θ) and
v(x∗), have the joint distribution

( ẑ
v(x∗)

w(x∗, θ)

)

∼ N

⎛

⎝
(0

0
0

)
,

⎛

⎝
�ẑ �ẑ,v∗

�v∗ ,̂z diag(λ−1
vi I|Gi |; i = 1, . . . ,F )

�w∗ ,̂z 0

�ẑ,w∗
0

diag (λ−1
wi ; i = 1, . . . , pη)

))
,

where �ẑ,v∗ has nonzero elements due to the correlation be-
tween v and v(x∗), and �ẑ,w∗ has nonzero elements due to
the correlation between (u(θ),w) and w(x∗, θ). The exact con-
struction of the matrices �ẑ,v∗ and �ẑ,w∗ is analogous to the
construction of �u,w in Section 2.2.4. Generating simultane-
ous draws of v(x∗) and w(x∗, θ) given ẑ is then straightforward
using conditional normal rules (Santner et al. 2003).

The posterior mean estimates for η(x∗, θ), δ(x∗), and their
sum, ζ (x∗), are shown in Figure 10 for the three input condi-
tions x∗ corresponding to the amount of HE used in each of the
three cylinder experiments. Also shown are the experimental
data records from each of the experiments. Note that the dis-
crepancy term picks up a consistent signal across experiments
that varies with time and angle, even though the simulator can-
not give variation by angle φ.

Figure 11 shows the prediction uncertainty for the inner ra-
dius at the photograph times of the three experiments. The fig-
ure gives pointwise 90% credible intervals for the inner radius.
Here the prediction for each experiment uses only the data from
the other two experiments, making these holdout predictions.

Posterior predictions of the process η(·, ·) can be made at
any input setting (x∗, t∗). The GP theory required is anal-

Figure 10. Posterior mean estimates for η(x∗, θ), δ(x∗), and their
sum, ζ (x∗), at the three input conditions corresponding to each of the
three experiments. The experimental observations are given by the dots
in the figures showing the posterior means for η(x∗, θ) and ζ (x∗).
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Figure 11. Holdout prediction uncertainty for the inner radius at the
photograph times for each experiment. The lines show simultaneous
90% credible intervals; the experimental data are given by the dots.

ogous to the complete formulation given previously. Condi-
tional on the parameter vector (λη,λw,ρw), the reduced data
ŵ = (KT K)−1KT η and the predictions w(x∗, t∗) have the joint
distribution
(

ŵ
w(x∗, t∗)

)

∼ N

((
0
0

)
,

(
�ŵ �ŵ,w∗

�w∗,ŵ diag(λ−1
wi ; i = 1, . . . , pη)

))
.

Figure 12 shows posterior means for the simulator response
η(·, ·) of the cylinder application, where each of the three inputs
were varied over their prior range of [0,1], whereas the other
two inputs were held at their nominal setting of .5. The posterior
mean response surfaces convey an idea of how the different pa-
rameters affect the highly multivariate simulation output. Other
marginal functionals of the simulation response can also be cal-
culated such as sensitivity indicies or estimates of the Sobol’
decomposition (Sacks et al. 1989; Oakley and O’Hagan 2004).

3. APPLICATION TO HE CYLINDER EXPERIMENTS

3.1 Experimental Setup

Analysis of experiments often requires that the simulator ac-
curately model a number of different physical phenomena. This

Figure 12. Posterior mean simulator predictions (radius as a func-
tion of time) varying one input, holding others at their nominal values
of .5. Darker lines correspond to higher input values.

is the case with the previous implosion application, which in-
volves imparting energy deposited by an explosive, as well as
modeling the deformation of the steel cylinder. The added diffi-
culty of modeling integrated physics effects makes it beneficial
to consider additional experiments that better isolate the physi-
cal process of interest. The HE cylinder experiment, considered
in this section, more cleanly isolates the effects of HE detona-
tion.

The cylinder test has become a standard experiment per-
formed on various types of HE at LANL. The standard version
of this experiment—depicted in Figure 13—consists of a thin-
walled cylinder of copper surrounding a solid cylinder of the
HE of interest. One end of the HE cylinder is initiated with a
plane-wave lens; the detonation proceeds down the cylinder of
HE, expanding the copper tube via work done by the rapidly
increasing pressure from the HE. As the detonation progresses,
the copper cylinder eventually fails.

Diagnostics on this experiment generally include a streak
camera to record the expansion of the cylinder and pin wires at
regular intervals along the length of the copper cylinder. Each
pin wire shorts as the detonation wave reaches its location,
sending a signal that indicates time of arrival of the detona-
tion wave. From these arrival times, the detonation velocity of
the experiment can be determined with relatively high accuracy.
Note the use of copper in this experiment is necessary to con-
tain the HE as it detonates. Because copper is a well controlled
and understood material, its presence will not greatly affect our
ability to simulate the experiment.

Details of the experiments are as follows: The HE diameter
is 1 inch; the copper thickness is .1 inch; the cylinder length is
30 cm; the slit location is 19 cm down from where the cylinder
is detonated—by this distance, the detonation wave is essen-
tially in steady state. Prior to the experiment, the initial density
of the HE cylinder is measured.

Figure 13. HE cylinder experiment. The HE cylinder is initiated
with a plane detonation wave, which begins to expand the surround-
ing copper cylinder as the detonation progresses. This detonation wave
moves down the cylinder. Pin wires detect the arrival time of the deto-
nation along the wave, while the streak camera captures the expansion
of the detonation wave at a single location on the cylinder.
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3.2 Simulations

Simulations of HE detonation typically involve two major
components—the burn, in which the HE rapidly changes phase,
from solid to gas; and the equation of state (EOS) for the re-
sulting gas products, which dictates how this gas works on the
materials it is pushing against. The detonation velocity, deter-
mined by the pin wires, is used to prescribe the burn component
of the simulation, moving the planar detonation wave down the
cylinder. This empirical approach for modeling the burn accu-
rately captures the detonation for this type of experiment. It is
the parameters controlling the EOS of the gaseous HE products
that are of interest here.

The EOS describes the state of thermodynamic equilibrium
for a fluid (the HE gas products, in this case) at each point in
space and time in terms of pressure, internal energy, density, en-
tropy, and temperature. Thermodynamic considerations allow
the EOS to be described by only two of these parameters. In
this case, the EOS is determined by a system of equations, giv-
ing pressure as a function of density and internal energy.

The HE EOS function is controlled by an eight-dimensional
parameter vector t. The first component t1 modifies the energy
imparted by the detonation; the second modifies the Gruneisen
gamma parameter. The remaining six parameters modify the
isentrope lines of the EOS function (pressure–density contours
corresponding to constant entropy).

Thus, we have nine inputs of interest to the simulation model.
The first, x1, is the initial density of the HE sample, which is
measured prior to the experiment. The remaining pt = 8 para-
meters describe the HE EOS. Prior ranges were determined for
each of these input settings. They have been standardized so
that the nominal setting is .5, the minimum is 0, and the maxi-
mum is 1. A 128-run OA-based LH design was constructed over
this px +pt = 9-dimensional input space, giving the simulation
output shown by the lines in Figure 14. Of the 128 simulation
runs, all but two of them ran to completion. Hence, the analysis
will be based on the 126 runs that were completed.

3.3 Experimental Observations

The top row of Figure 20 shows the experimental data de-
rived from the streak camera from four different HE cylinder
experiments. The same adjustment of subtracting out the aver-
age simulation is also applied to the data. For comparison, the

(a) (b)

Figure 14. One hundred twenty-six simulated displacement curves
for the HE cylinder experiment. (a) Simulated displacement of the
cylinder where time = 0 corresponds to the arrival of the detonation
wave at the camera slit. (b) The residual displacement of the cylinder
after subtracting out the pointwise mean of the simulations.

mean-centered simulations are also given by the gray lines. The
cylinder expansion is recorded as time–displacement pairs for
both the left and right sides of the cylinder as seen by the streak
record. The measured density (in standardized units) for each of
the HE cylinders is .15, .15, .33, and .56 for experiments 1–4,
respectively.

The data errors primarily come from four different sources:
determination of the zero-displacement level, causing a random
shift in the entire data trace; slight tilting of the cylinder rel-
ative to the camera in the experimental setup; replicate varia-
tion due to subtle differences in materials used in the various
experiments—modeled as time-correlated Gaussian errors; and
jitter due to the resolution of the film. After substantial discus-
sion with subject-matter experts, we decided to model the pre-
cision of a given trace �, which indexes side (right or left) as
well as experiment, as

W� = (σ 2
0 11T + σ 2

t τ �τ
T
� + σ 2

a R� + σ 2
j I)−1,

where 1 denotes the vector of 1’s and τ � denotes the times cor-
responding to trace �. The variances σ 2

0 , σ 2
t , σ 2

a , and σ 2
j and

correlation matrix R� have been elicited from experts. For ex-
periment 3, only a single trace was obtained, resulting in a much
larger uncertainty for the tilt in that experiment. Thus, the value
of σt was altered accordingly for that experiment. Note that the
model allows for a parameter λy to scale the complete data pre-
cision matrix Wy . Because of the ringing effects in the displace-
ment observations at early times, we take only the data between
2.5 μs and 12.0 μs.

3.4 Analysis and Results

We model the simulation output using a principal-component
basis (Fig. 15) derived from the 126 simulations over times
ranging from 0 to 12 μs. The first two components account
for over 99.9% of the variation. Hence, we are satisfied that
the choice of pη = 2 will give us sufficient accuracy for model-
ing the simulation output. Eight basis functions (also shown in
Fig. 15) are used to determine the discrepancy δ(x1) as a func-
tion of time for each side of the cylinder expansion seen in the
streak record. This allows for a smooth discrepancy over time
in the simulated streak. The kernel width was chosen so that
the resulting discrepancy term might be able to pick up genuine
features of the expansion that the simulation model may not be
able to account for, without picking up noise artifacts.

We first consider the fit to the simulation output and then look
at the inference using the experimental data as well. Boxplots of

(a) (b)

Figure 15. Principal-component basis (a) and the kernel-based dis-
crepancy basis (b). The discrepancy uses independent copies of the
kernel basis shown in (b) for the left and right streaks. Here pη = 2
and pδ = 2 · 8.
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Figure 16. Boxplots of the marginal posterior distribution for each
ρwik .

the marginal posterior distributions for the ρwik’s, which gov-
ern the GP model for the simulator response, are shown in Fig-
ure 16. In addition, Figure 17 shows the posterior mean of the
simulator output η(x1, t) as one of the inputs is varied while the
remaining inputs are held at their nominal value of .5. No effect
for t2 (Gruneisen gamma) is apparent in the one-dimensional
effects of Figure 17. This is because the marginal effect of t2
is nearly 0. From Figure 18, which shows the posterior mean
surface for w1(x1, t), it is clear that this parameter modifies the
effect of t1 in the first PC; it is also clear that this effect, when
averaged over t1, or evaluated at t1 = .5, is 0.

The simulation output is most strongly influenced by the den-
sity (x1) and three of the eight HE parameters (t1, t2, and t3). In
addition, t5 and t7 have a very slight effect. Because the simula-
tion output is nearly insensitive to parameters t4, t6, and t8, we
should expect the posterior distributions for these calibration
parameters to be close to their uniform priors. It is tempting
to conclude these parameters are unimportant for modeling this
process. But one has to interpret carefully because the simulator
is not reality.

The MCMC output resulting from sampling the posterior dis-
tribution of the full model (11) allows us to construct posterior
realizations for the calibration parameters θ , the discrepancy

Figure 17. Estimated sensitivities of the simulator output from
varying a single input while keeping the remaining eight inputs at their
nominal value. The line shading corresponds to the input setting: light
corresponds to low values; dark corresponds to high values.

Figure 18. Posterior mean surface for w1(x1, t), where t1 and t2
vary across their prior ranges, while all other inputs are held at their
nominal values of .5. This surface shows a clear interaction between
the two inputs.

process δ(x1), and predictions of the cylinder expansion at gen-
eral input condition x1. The estimated two-dimensional mar-
ginal posterior distributions for θ are shown in Figure 19. The
lines show estimated 90% HPD (high posterior distribution) re-
gions for each margin. Recall the prior is uniform for each com-
ponent of θ . Not surprisingly, the most constrained parameter is
θ1, the one that showed the strongest influence on the simulator
output.

Figure 20 gives the posterior decomposition of the fitted
value for the physical system ζ (x1) at x1’s corresponding to the
four experiments. The uncertainty in the posterior for η(x1, θ)

is primarily due to uncertainty in θ ; the uncertainty from the GP
model for estimating η(x1, t) in this example is negligible.

The posterior discrepancy is shown in the middle rows of
Figure 20. Because two of the experiments are at the exact
same condition x1 and the expansion streaks are recorded on
two sides for three of the four experiments, the analysis has in-
formation to separate inadequacy of the simulation model from

Figure 19. Two-dimensional marginals for the posterior distribu-
tion of the eight EOS parameters. The solid line gives the estimated
90% HPD region. The plotting regions correspond to the prior range
of [0,1] for each standardized parameter.
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Figure 20. Posterior decomposition of the model fit for the cylin-
der expansion for each experiment. Top row: pointwise 90% credi-
ble intervals for the calibrated simulator η(x1, θ). Middle rows: point-
wise 90% credible intervals for the discrepancy terms corresponding
to the right and left camera streaks δR(x1) and δL(x1). Bottom row:
pointwise 90% credible intervals for prediction of the physical sys-
tem ζ (x1) = η(x1, θ) + δ(x1) (solid lines) and for a new experiment
ζ (x1) + e (dashed lines). Also shown in the top and bottom rows are
the data from the streak camera from each of the experiments. The gray
lines show the 126 simulated traces.

replicate variation. The curve of the fitted discrepancies high-
lights a consistent feature of the recorded streaks that is not ex-
plained by the model, which gives much straighter streaks, re-
gardless of the parameter setting. The exact cause of this curved
discrepancy is believed to be due to insufficient flexibility in the
EOS model.

Posterior predictions for the cylinder expansion ζ (x1) are
given in the bottom row of Figure 20 for each of the experi-
mental conditions. The curve in these predictions, due to the
discrepancy model, more closely matches the experimental data
as compared to those of the calibrated simulator only given in
the top row.

The eventual goal is to combine separate effects tests like
these HE cylinder experiments with integrated effects tests like
the implosion experiments of Section 1.1 to better constrain
unknown calibration parameters and to improve prediction un-
certainty in other integrated effects tests. It is in this context
that we can judge the worth of this experiment. For example,
the constraints on detonation energy obtained from this cylin-
der experiment might have helped us tease out the offsetting
effects of detonation energy and yield stress of steel in the im-
plosion application. Also, how much one should worry about
detected inadequacy in a simulation model can be evaluated in
a similar light. For example, if the discrepancy observed in the
HE cylinder experiments causes concern in our ability to ade-
quately model an implosion, then perhaps more effort on im-
proved EOS models is called for, rather than more experiments.

4. DISCUSSION

The modeling approach described in this article has proven
quite useful in a number of applications at LANL. Applica-
tion areas include shock physics, materials science, engineer-
ing, cosmology, and particle physics.

The success of this approach depends, in large part, on
whether or not the simulator can be efficiently represented with
the GP model on the basis weights wi(x, t), i = 1, . . . , pη . This
is generally the case for highly forced systems—such as an
implosion—which are dominated by a small number of modes
of action. This is apparent in the principal-component decom-
position, which partitions nearly all of the variance in the first
few components. These systems also tend to exhibit smooth de-
pendence on the input settings. In contrast, more chaotic sys-
tems seem to be far less amenable to a low-dimensional de-
scription such as the PC-basis representations used here. Also,
system sensitivity to even small input perturbations can look al-
most random, making it difficult to construct a statistical model
to predict at untried input settings. We, therefore, expect that an
alternative approach is required for representing the simulator
of a less forced, more chaotic system.

Finally, we note that the basic framework described here does
lead to issues that require careful consideration. The first is the
interplay between the discrepancy term δ(x) and the calibration
parameters θ ; this is noted in the discussion of Kennedy and
O’Hagan (2001), as well as in a number of other articles (Hig-
don et al. 2004; Loeppky, Bingham, Sacks, and Welch 2005;
Bayarri et al. 2007). The basic point here is that if substantial
discrepancy is present, then its form will affect the posterior
distribution of the calibration parameters. The second is the
issue of extrapolating outside the range of experimental data.
The quality of such extrapolative predictions depends largely
on the trust one has for the discrepancy term δ(x)—is what is
learned about the discrepancy term at tried experimental condi-
tions x1, . . . ,xn applicable to a new, possibly far away, condi-
tion x∗? Third, and last, we note that applications involving a
number of related simulation models require additional model-
ing considerations to account for the relationship between the
various simulation models. See Kennedy and O’Hagan (2000)
and Goldstein and Rougier (2005) for examples.

[Received September 2005. Revised March 2005.]
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