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Abstract. We develop a statistical approach for characterizing uncertainty in predictions that
are made with the aid of a computer simulation model. Typically, the computer simulation code
models a physical system and requires a set of inputs—some known and specified, others unknown.
A limited amount of field data from the true physical system is available to inform us about the
unknown inputs and also to inform us about the uncertainty that is associated with a simulation-
based prediction. The approach given here allows for the following:

• uncertainty regarding model inputs (i.e., calibration);
• accounting for uncertainty due to limitations on the number of simulations that can be

carried out;
• discrepancy between the simulation code and the actual physical system;
• uncertainty in the observation process that yields the actual field data on the true physical

system.
The resulting analysis yields predictions and their associated uncertainties while accounting for mul-
tiple sources of uncertainty. We use a Bayesian formulation and rely on Gaussian process models to
model unknown functions of the model inputs. The estimation is carried out using a Markov chain
Monte Carlo method. This methodology is applied to two examples: a charged particle accelerator
and a spot welding process.
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1. Introduction. Currently substantial statistical research is focusing on the
development of methodology for utilizing detailed simulator codes to carry out infer-
ence. Issues such as calibration of simulator input parameters, generation of predic-
tions, and characterization of prediction uncertainty are of particular interest. Simu-
lation of well-understood physical processes is typically based on fundamental physical
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principles. In such problems, the actual amount of observed field data from this pro-
cess is typically very limited. It is the simulator code that contains the structure of
the actual process it’s modeling. Because of this, useful inference is possible even with
only minimal amounts of observed data on the actual physical system. In contrast,
data mining is the opposite extreme—massive amounts of data are used to provide
information on unknown, and often unconsidered, structure.

The first computer experiment ever conducted appears to have been carried out
by Enrico Fermi and colleagues (Strogatz (2003)) in Los Alamos back in 1953. The
experiment simulated vibrations over 64 lattice points on the MANIAC computer, the
top computer of its day. The application of statistical methods to analyses involving
computer simulations began decades later.

To date, much of the statistical methodology relevant to the analysis of computer
simulations can be roughly broken into the following nonexclusive categories.

• Experimental design: determining input settings at which to carry out a se-
quence of simulation designs (McKay, Beckman, and Conover (1979); John-
son, Moore, and Ylvisaker (1990); Mitchell, Moore, and Ylvisaker (1995)).

• Interpolation/emulation: given simulation output at a set of input settings,
estimating the simulation output at a new, untried input setting (Sacks et al.
(1989); Currin et al. (1991); Kennedy and O’Hagan (2001)).

• Uncertainty and sensitivity analysis: determining the variation in simulation
output due to uncertainty or changes in the input settings (Helton (1997);
Saltelli, Chan, and Scott (2000); Oakley and O’Hagan (2002)).

• Calibration: using field observations and simulation runs to estimate simula-
tion model parameters or to update the uncertainty regarding these parame-
ters (Kennedy and O’Hagan (2001); Higdon, Lee, and Holloman (2003)).

• Prediction: using the calibrated simulator to give predictions (with uncer-
tainty bounds) of the actual physical system (Poole and Raftery (2000);
Hegstad and Omre (2001); Kennedy and O’Hagan (2001); Craig et al. (2001);
Bayarri et al. (2002)).

In this paper we outline a general statistical approach for combining scant field
observations with simulator runs to calibrate parameters in the simulator and to
characterize uncertainty in simulator-based predictions. We take a Bayesian approach
that closely follows that of Kennedy and O’Hagan (2001). This approach explicitly
models uncertainty in model inputs, uncertainty due to limited numbers of simulation
runs, and discrepancy between the simulator and the actual physical system. In the
following section, we outline our approach in an incremental fashion, making use of a
simple application. We then consider two applications: a charged particle accelerator
(Qiang et al. (2000)) and a spot welding experiment (Wang and Hayden (1999)).

Our formulation utilizes standard statistical models, including Gaussian process
models (Sacks et al. (1989); Stein (1999)). We use these models here in this paper
because of their convenience, flexibility, and fairly broad generality. However, we
realize that other models may prove more appropriate depending on the application
at hand. It is the general modeling strategy for carrying out inference in applications
involving simulator code that we wish to emphasize here. The resulting posterior
distributions are then explored using a Markov chain Monte Carlo (MCMC) method
(Besag et al. (1995); Gilks, Richardson, and Spiegelhalter (1998); Robert and Casella
(1999)).

2. Statistical formulation. We take η(x, t) to denote simulator output given
input vector (x, t), where x holds observable, and often controllable, inputs and t holds
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additional unobservable calibration and tuning parameters which are required to run
the code. Though there is clearly a distinction between calibration parameters which
have physically interpretable meaning and tuning parameters which may be notional
and of little or no meaning in the physical system, we will take the term calibration
parameters to include both types of parameters throughout this paper. We certainly
admit there will be applications where this distinction will make it necessary to treat
calibration and tuning parameters differently. Examples of this partitioning of the
simulator inputs (x, t) are given in the applications of sections 3 and 4. Ideally, for an
appropriate choice of t = θ, η(x, θ) simulates a physical system ζ(x); note the actual
physical system ζ(x) does not depend on θ.

At various settings for x, observations y are made of the physical system

y(xi) = ζ(xi) + ε(xi), i = 1, . . . , n,

where the ε(xi)’s denote observation error. Often the size and nature of the ε(xi)’s are
sufficiently well characterized that their distribution can be treated as known. We take
y = (y(x1), . . . , y(xn))T to denote the physical observations. Often very multivariate
observations are taken from the system; in this case certain components of each xi

can index the multivariate, observed data so that each y(xi) is still univariate. These
observed data are then modeled statistically using the simulator η(x, θ) at the true
calibration value θ according to

y(xi) = η(xi, θ) + δ(xi) + ε(xi), i = 1, . . . , n,

where the stochastic term δ(xi) accounts for discrepancy between the simulator η(xi, θ)
and reality ζ(xi), and θ denotes the “true,” but unknown, setting for the calibration
inputs t. In some cases, the discrepancy term can be ignored; in other cases, it plays
a crucial role in the analysis.

Depending on the application, one may also wish to treat a fixed set of m simu-
lation runs

η(x∗
j , t

∗
j ), j = 1, . . . ,m,

as data to be used in the analysis. This is typically the case when the computational
demands of the simulation code are so large that only a fairly limited number of runs
can be carried out. In this case, a statistical model for η(x, t) will be required for input
combinations (x, t) for which the simulator has not been run. This will be discussed
in more detail in section 2.2 below. Note that we use t to denote an input setting
for the calibration parameters here. We reserve θ to denote the “best” or “true”
value of the calibration parameters, which is a quantity about which we wish to infer.
The following subsections will step through increasingly more complicated statistical
analyses based on simulation runs and observed field data for which the details of the
statistical modeling and estimation will be described.

2.1. Unlimited simulation runs. We now consider a notional example for
which both x and t are one-dimensional and η(x, t) simulates a physical system
ζ(x) when t is set to the true, but unknown, value of t = θ. We obtain n = 3
field observations at three different values of x as shown in the first plot of Fig-
ure 1. We assume field observations are noisy measurements of the true system
ζ(x), and this observation noise is known to be normal, with a standard deviation
of 0.25.
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Fig. 1. Prior and posterior uncertainty in model predictions. Left: Prior density for θ (light
lines) and the implied simulations η(x, θ) using quantiles of the prior distribution. The black dots
show field observations and the corresponding black lines give 95% uncertainty bounds on the observa-
tions. Right: The darker lines show the updated posterior density for θ and the resulting predictions
are shown for quantiles of the posterior distribution for θ. Lines correspond to 5th, 15th, . . . , 95th
percentiles.

For now we also assume that the simulator sufficiently represents the physical
system so that the model

y(xi) = η(xi, θ) + εi, i = 1, . . . , n,(1)

is appropriate. Because the distribution of the εi’s is assumed to be independently
and identically distributed N(0, .252), the sampling model for y is then

L(y|η(θ)) ∝ exp

{
−1

2
(y − η(θ))TΣ−1

y (y − η(θ))

}
,

where y = (y(x1), . . . , y(xn))T , η(θ) = (η(x1, θ), . . . , η(xn, θ))
T , and the observation

covariance matrix Σy = In.252.
The Bayesian formulation is completed by specifying a prior distribution π(θ) for

the unknown calibration parameter θ. For this example we specify that θ is a priori
N(.5, .252), as shown in the first plot of Figure 1. This prior uncertainty about θ
induces prior uncertainty about the simulator output η(x, θ). The lines in the left-
hand plot of Figure 1 show simulations of η(x, θ) for x ∈ [0, 1] and the prior quantiles
for θ.

The resulting posterior distribution for θ is then given by

π(θ|y) ∝ L(y|η(θ)) × π(θ)(2)

∝ exp

{
−1

2
(y − η(θ))TΣ−1

y (y − η(θ)) − 1

2(.252)
(θ − .5)2

}
.

If η(θ) were a linear map, then π(θ|y) could be obtained analytically. However, since
the simulator is typically nonlinear, (2) usually results in an intractable expression for
the posterior. In this case, a fairly general purpose approach is to generate a sequence
of realizations θ1, . . . , θN from π(θ|y). This could be carried out using importance
sampling (Evans and Swartz (1995)) or an MCMC method (Besag et al. (1995);
Gilks, Richardson, and Spiegelhalter (1998)), which constructs a Markov chain whose
stationary distribution is the posterior distribution.
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A very simple MCMC implementation uses the Metropolis algorithm (Metropolis
et al., 1953) and goes as follows:

1. Initialize θ1 at some value.
2. Given the current realization is θt, generate θ∗ from a symmetric distribution

(i.e., the chance of generating θ∗ given θt is the same as generating θt given
θ∗).

3. Compute the Metropolis acceptance probability

α = min

{
1,

π(θ∗|y)
π(θt|y)

}
.

4. Set

θt+1 =

{
θ∗ with probability α,
θt with probability 1 − α.

5. Iterate over steps 2–4.
This simple but general recipe has a number of features that are worth mentioning.
This approach is applicable even when θ is a high dimensional vector. In this case
components of θ can be updated individually or in larger groupings. The above
MCMC references give details regarding such implementations. In step 3 above, one
only needs to compute ratios of the posterior density. Hence π(θ|y) need only be
specified up to a constant of integration. Often, thousands, or tens of thousands, of
MCMC steps are required to sufficiently sample the posterior distribution. Again,
the previously mentioned references give guidance on selecting the number of MCMC
steps which will be application specific. Since the simulator must be run to compute
the acceptance probability in step 3 above, this recipe above is only practicable if
η(x, θ) can be computed very quickly.

This direct MCMC-based approach has a number of advantages that make it
worth using if it is at all possible. It can readily handle a very large dimensional
θ—see Hegstad and Omre (2001) or Lee et al. (2002), for example. It can also deal
with large numbers of nuisance parameters as well as highly multivariate output. If
a prediction problem has these features, it may well be worth reducing the fidelity in
the simulator in return for gains is simulation speed, the point being that a thorough
exploration of an approximate posterior (which uses a low-fidelity simulator) may give
more information than a very limited exploration of a more accurate posterior (which
uses a high-fidelity simulator). In fact, the linear accelerator application of section 3
makes use of the former approach.

The second plot in Figure 1 shows posterior distribution for θ which was computed
from 5000 MCMC samples using the Metropolis scheme outlined above. Conditioning
on the three noisy field observations leads to reduced uncertainty about θ. The
induced posterior distribution for η(x, θ) also shown in the figure is computed from
the MCMC realizations from π(θ|y).

2.2. Limited simulation runs. Quite often the computational demands of the
simulator make it impossible to use an estimation approach—such as the one outlined
above—that requires vast numbers of simulation runs. In this case, one is limited to
a fixed number of simulation runs,

η(x∗
j , t

∗
j ), j = 1, . . . ,m.

The actual choice of which inputs (x∗
j , t

∗
j ), j = 1, . . . ,m, at which to carry out these
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simulation is an important question, but is not the focus of this paper. We point the
interested reader to the design references at the beginning of this paper.

A statistical analysis requires that we treat η(x, t) as unknown for pairs (x, t) that
are not included in the original set of m simulator runs. If x is a vector in Rp and t a
vector in R�, then the function η(·, ·) maps Rp+� to R. A standard prior model for an
unknown function is a Gaussian process (GP) (O’Hagan (1978); Sacks et al. (1989)).
A mean function µ(x, t) and covariance function Cov((x, t), (x′, t′)) are required to
fully specify a GP prior model for η(x, t). Following Sacks et al. (1989) and Kennedy
and O’Hagan (2001) we typically take µ(x, t) to be a constant and specify a product
correlation of the form

Cov((x, t), (x′, t′)) =
1

λη
exp

{
−

p∑
k=1

βη
k |xik − x′

ik|α −
�∑

k′=1

βη
p+k′ |tik′ − t′ik′ |α

}
,(3)

where the parameter λη controls the reciprocal of the marginal variance of η(·, ·), the
p + 
-vector βη controls the dependence strength in each of the component direc-
tions of x and t, and α controls the smoothness of η(·, ·). A value of α = 2 leads
to a smooth, infinitely differentiable representation for η(·, ·), while taking smaller
values of α gives rougher representations. The simulator output η(x∗

j , t
∗
j ), j =

1, . . . ,m, does not typically give any information about α. Hence we typically fix
α based on prior information regarding η(·, ·) or based on computational consid-
erations. We note that it is often useful to add a white noise component to the
covariance model (3) for numerical stability and/or to account for small numerical
fluctuations in the simulation. For models with random outputs, such as epidemio-
logical or agent-based models, an additional independent error term will be required
in (3) above.

As before, we assume model (1) is appropriate and define the field observa-
tion vector y = (y(x1), . . . , y(xn))T . To hold the simulation outcomes we define
η = (η(x∗

1, t
∗
1), . . . , η(x

∗
m, t∗m))T . Now we define the joint n + m-vector z = (yT , ηT )T

which has associated simulation input values (x1, θ), . . . , (xn, θ) for its first n compo-
nents and (x∗

1, t
∗
1), . . . , (x

∗
m, t∗m) for its final m components. The sampling model, or

likelihood, for the observed data z is then

L(z|θ, µ, λη, β
η,Σy) ∝ |Σz|−

1
2 exp

{
−1

2
(z − µ1n+m)TΣ−1

z (z − µ1n+m)

}
,(4)

where 1n+m is the n + m-vector of 1s,

Σz = Ση +

(
Σy 0
0 0

)
,

Σy is the n × n observation covariance matrix, and elements of Ση are obtained by
applying (3) to each pair of the n + m simulation input points above.

The first plot of Figure 2 shows the same n = 3 field observations as before. But
now we have only m = 20 simulation runs carried out at the (x, t) pairs, marked by the
circle plotting symbols in Figure 2. In this example we standardize the input points
so that they are contained in [0, 1]p+�. Also, d is transformed so that the vector η
has mean 0 and variance 1. This facilitates the prior specification for the parameters
governing the GP model for η(·, ·). Independent prior distributions are then specified
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Fig. 2. Prior and posterior uncertainty in model predictions when the number of model runs is
limited. Left: Model runs have been carried out only at the m = 20 (x∗, t∗) pairs shown by the circle
plotting symbols. As with Figure 1, the prior density for θ and the implied simulations η(x, θ) using
quantiles of the prior distribution are given by the light lines. The black dots show field observations,
and the corresponding black lines give 95% uncertainty bounds on the observations. Inference is
carried out by conditioning on the n = 3 data points as well as the m = 20 model runs. Center:
Selected realizations from the posterior distribution of η(·, ·); the actual model runs are marked by
the circle plotting symbols. Right: The darker lines show the updated posterior density for θ, and
the resulting predictions are shown for quantiles of the posterior distribution for θ. Uncertainty in
the model prediction is due to the spread in the posterior distribution for θ as well as uncertainty in
η(x, θ).

for each of the parameters for η(·, ·):

π(µ) ∝ exp

{
− 1

2v
µ2

}
,

π(λη) ∝ λaη−1
η exp{−bηλη}, λη > 0,

π(βη) ∝
p+�∏
k=1

(1 − e−βη
k )−.5e−βη

k , βη
k > 0.

Because of the standardization, we can simplify the parameterization and MCMC by
fixing µ at 0 (i.e., v = 0) and encouraging λη to be close to 1 by taking aη = bη = 5.
The prior for βη encourages strong dependence in each of the component directions
so that prior realizations for η(·, ·) are generally quite flat. Hence it will be the data
that move the βη

k ’s away from 0 in the posterior.
Conditioning on the augmented observation vector z = (yT , ηT )T results in the

posterior distribution

π(θ, µ, λη, β
η|z) ∝ L(z|θ, µ, λη, β

η,Σy)π(θ)π(µ)π(λη)π(βη),

which we explore using MCMC. Given a realization of the parameters (θ, µ, λη, β
η),

a posterior realization of η(x, t) can be drawn using standard multivariate normal
theory (Rencher (2002)). The second plot of Figure 2 shows posterior realizations of
η(·, ·) over a grid on [0, 1]2. Uncertainty about the function η(·, ·) is larger in regions
where no simulation points (x∗, t∗) are nearby.

The resulting posterior inference for θ and η(x, θ) is summarized in the final plot
of Figure 2. For this simple example, there is very little additional uncertainty that
can be ascribed to the restriction to m = 20 simulation runs; compare Figures 1
and 2. This uncertainty due to limited evaluations of η(x, t) plays a larger role as the
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Fig. 3. Prior uncertainty and posterior decomposition of model terms. Top left: Model runs
have been carried out only at the m = 20 (x, θ) pairs shown by the circle plotting symbols. As
with Figures 1 and 2, the prior density for θ and the implied simulations η(x, θ) using quantiles
of the prior distribution are given by the light lines. The black dots show field observations, and
the corresponding black lines give 95% uncertainty bounds on the observations. Inference is carried
out by conditioning on the n = 3 data points as well as the m = 20 model runs. Top right: The
darker lines show pointwise 5th, 15th, . . . , 95th percentiles for posterior density for η(x, θ). The
same percentiles are also shown for the posterior distribution for θ. Bottom left: Pointwise 90%
posterior credible intervals for the model discrepancy term δ(x). Bottom right: Pointwise 90%
posterior credible intervals for the predictions ζ(x) = η(x, θ) + δ(x). Note that the inclusion of the
model discrepancy term makes the posterior distribution for θ less precise and less interpretable.

dimensions of x and t increase. An application one of the current authors is currently
involved with has m = 400 and 
 = 10. Here, uncertainty due to the limitation on
simulation runs plays a big role. For such problems we are hopeful that sensitivity
analysis, combined with sequential approaches to refine the choice of simulation inputs
to run, will prove effective. In any case, restrictions on the number of simulations that
can be carried out will necessarily limit the number of input dimensions that can be
considered.

2.3. Accounting for model discrepancy. The final alteration to our statis-
tical formulation is motivated by the top left plot of Figure 3. Here the field ob-
servations are inconsistent with the simulations no matter what value of θ is used.
This discrepancy between field observations and simulations is not uncommon in such
applications—the spot weld application in section 4 is one such example. In this case,
the simulator may still be of use in prediction if this discrepancy is fairly systematic so
that changes in the simulation response track changes in the physical system. This is
apparent in the example in Figure 3, where the simulator discrepancy varies smoothly



456 HIGDON, KENNEDY, CAVENDISH, CAFEO, AND RYNE

with input condition x.
To account for this discrepancy, we augment the model formulation with a dis-

crepancy term δ(x) which may vary with controllable input x:

y(xi) = η(xi, θ) + δ(xi) + ε(xi), i = 1, . . . , n.(5)

Here δ(xi) models the difference between the simulator and the physical system ζ(xi)−
η(xi, θ), and as before, θ denotes the true calibration value for t and ε(xi) gives the
observation error for the ith data point.

The modeling for the previously introduced terms remains unchanged. We specify
a GP model for the discrepancy term δ(x) with mean function of 0, and a covariance
function of the form

Cov(x, x′) =
1

λδ
exp

{
−

p∑
k=1

βδ
k|xik − x′

ik|αδ

}
.(6)

The prior specification for the parameters governing the GP model for δ(·) mirrors
the specification for η(·, ·).

π(λδ) ∝ λaδ−1
δ exp{−bδλδ}, λδ > 0,(7)

π(βδ) ∝
p∏

k=1

(1 − e−βδ
k)−.6e−βδ

k , βδ
k > 0.(8)

Here .6 in the prior for βδ gives δ(·) a slightly stronger tendency towards flatness than
η(·, ·).

This gives a likelihood for the joint data vector z of exactly the same form as (4),
but now

Σz = Ση +

(
Σy + Σδ 0

0 0

)
,

where Σy is the n× n observation covariance matrix, elements of Ση are obtained by
applying (3) to each pair of the n+m simulation input points above, and Σδ is an n×n
matrix obtained by applying (6) to each pair of the n input settings xi, i = 1, . . . , n,
that correspond to the observed field data y.

The resulting posterior density now depends on (θ, µ, λη, β
η, λδ, β

δ). As with
η(x, t), posterior realizations can also be produced for η(x, θ), δ(x), and ζ(x) =
η(x, θ)+δ(x). Figure 3 shows posterior means and pointwise credible intervals for each
of these quantities. In this example, posterior realizations of the discrepancy term
δ(x) are quite smooth. Because of this, the field observations predominantly inform
about the level of ζ(x), and the simulations predominantly inform about the shape
of ζ(x). This results in fairly narrow prediction bands for the physical process, even
though the magnitude of the discrepancy is relatively large. Note that this analysis
gives very little information about the calibration parameter θ. Here inclusion of the
discrepancy term makes it very difficult to learn anything about θ.

As regards extrapolation past the range of the data, the amount of trust one puts
in the extrapolated predictions will depend on both the confidence one has in the sim-
ulator and the extendibility of the bias model in this new, untested region. Judgments
regarding the appropriateness of extrapolated predictions will need to be made on a
case-by-case basis. It may be that an alternative model for δ(x) is preferred when ex-
trapolation is necessary, perhaps one that incorporates some physical principles in the
system under study. See Bayarri et al. (2002) for more details regarding extrapolation.
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Finally we note that our choice of an additive decomposition of the data in (5) is
fairly general, but in other circumstances, some other form may be more appropriate.
For example, Kennedy and O’Hagan (2001) use a slightly different form.

3. Charged particle accelerator application. Here we make use of a code
(Dragt et al. (1988); Qiang et al. (2000)) that simulates the beam in a charged particle
accelerator by moving anywhere from thousands to millions of individual particles
along the beamline. This charged particle beam evolves with time as it is influenced by
specifically generated magnetic fields along the beamline and by interactions between
the particles themselves.

We consider a specific application involving a proton beam moving along a linear
path that is influenced by a series of eight pairs of quadrupole magnets as shown in
Figure 4. Each quadrupole magnet takes up .36 meters of length along the beamline
and is separated by .688 meters of drift space. A quadrupole magnet acts on the
particle beam as a lens acts on a beam of light. A focusing quadrupole causes the
beam to converge in the x dimension and to diverge in the y dimension; a defocusing
quadrupole causes the beam to diverge in the x dimension and to converge in the y
dimension. The beamline is 3.38 meters long and is influenced by eight pairs of
equally spaced quadrupole magnets. The first of each pair is a defocusing quadrupole,
represented by the dark shaded region in the beamline plots of Figure 4; the second
is a focusing quadrupole, represented by the light shaded region in the beamline plots
of Figure 4.

Given an initial description of the particles at the beginning of the beamline, the
code then steps the particles along the beamline, taking account of the effects of the
quadrupole magnets and electric forces from the interacting particles. Each particle in
the simulation is initially described by a six-parameter phase space (x, px, y, py, τ, pτ ):
x position; x momentum; y position; y momentum; differential time of flight; and its
conjugate momentum. The x and y beamline plots of Figure 4 show the 5th, 15th,
. . . , and 95th percentiles of the x and y positions of the particles as they’re stepped
along the beamline. This beam is the result of starting with a particular initial beam
configuration. Various plots that describe this initial beam configuration are shown
in the first row of Figure 4. The code also can output the full six-dimensional phase
space description of each particle at various positions along the beamline. Similar
plots are also shown of the phase space at various steps along the beamline.

To investigate the behavior of a beam as it moves along the beamline, wire scan-
ners can be placed at specific locations to collect physical observations pertaining to
the beam. Typically a wire scan collects counts of particle hits which are binned
according to position in either the x or y directions. In the synthetic experiment de-
scribed here, wire scans are carried out at the nine beamline locations given by the
dashed lines in the beamline plots of Figure 4. The resulting wire scans are shown
in the rows labeled “x wire scan” and “y wire scan.” Each scan consists of a count
at each of 256 bins that are equally spaced along a length of .01 meters, extending
±.005 meters from the beam center. The observed counts corresponding to the 1st,
3rd, 5th, 7th, and 9th wire scans in each direction are given in the wire scan plots of
Figure 4.

The goal of the statistical analysis is to combine these 10 wire scans—5 x wire
scans and 5 y wire scans—with computer simulation runs to estimate the initial phase
space configuration of the charged particle beam. In addition, we can compare the
predicted wire scans at the 2nd, 4th, 6th, and 8th wire scan locations to the observed
data that we held back.
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Fig. 4. Simulation of a proton beam through a series of quadrupole magnets. The simulation
involves 100,000 particles, each of which is described by its location and momentum in x and y.
The x and y beamline figures show the progression of particles as they move along the beamline,
which consists of eight pairs of quadrupole magnets denoted by the shaded regions in the beamline
figures. The lines denote the 5th, 15th, . . . , 95th percentiles of position in x and y. The dashed lines
in the beamline figures denote the location of wire scanners which detect the position of the particles
separately for the two dimensions x and y. The wire scan data obtained from the 1st, 3rd, 5th, 7th,
and 9th wire scans are shown in the top and bottom rows labeled x and y wire scans. In addition,
plots of phase space—x vs. the x momentum px, y vs. py—and beam width—x vs. y—are also shown
at the beamline positions corresponding to the odd wire scans.

3.1. Statistical formulation. The above description uses x and y to denote
the horizontal and vertical beam dimensions. In this description of the statistical
modeling, x and y in their standard font carry their original meaning: controllable
input setting and observed field data.

We take x to be three-dimensional with components corresponding to the wire
scan bin (1–256); the beam component dimension (horizontal x or vertical y); and the
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wire scan (1–9). The calibration parameter vector θ holds the phase space description
of the initial beam cloud. In this example, the beam energy does not change with time,
so the τ and pτ components of the phase space are known; it is the remaining four
dimensions of the beam cloud that are parameterized by θ. In this application, it is
expected that the initial x phase space components (x, px) are essentially independent
of the initial y phase space components (y, py) so that the initial four-dimensional cloud
can be represented as two independent two-dimensional clouds. We assume that the
initial phase space for the two beam dimensions can be modeled as bivariate normal
densities with unknown location, standard deviations, and correlation. Hence θ is a
ten-dimensional vector—5 dimensions per phase space cloud.

We construct the field data y by generating x and y wire scans from a single high-
fidelity, 100,000-particle simulation shown in Figure 4. The particles were simulated
from independent bivariate normal distributions for the x and y phase spaces using
a true θ of (µx, µpx , σx, σpx , ρx) = (0, 0, .0015, .002,−.93) and (µy, µpy , σy, σpy , ρy) =
(0, 0, .00086, .0031, .93). Here µ denotes mean, σ denotes standard deviation, and ρ
denotes correlation. The plots in the first column of the figure show features of this
initial beam configuration.

In this analysis we do not model the simulator η(x, t) statistically, but instead
evaluate the simulator as required, as in the example of section 2.1. In order to make
the simulator sufficiently fast we reduce the number of particles to 8000 and minimize
the number of “slices” along the beamline where the simulator accounts for nonlinear
force interactions. The reduced number of particles leads to much noisier simulated
wire scans as compared to those produced by the high-fidelity simulation. To remove
the effect of randomness due to different 8000 particle realizations of the initial beam
configuration as prescribed by θ, an initial 8000 × 4 draw of standard normals is
established. Now for a given θ, this established set of draws is transformed to form
the initial beam. In contrast, the large number of observed counts in the field data
leads to a rather small observation error. This leaves the discrepancy term δ(x) to
account for the differences between the calibrated 8000 particle simulation and the
observed y. We take y(x) and η(x, θ) to be the square root of the wire scan counts
to stabilize the variance and use the GP model for δ(x) with a covariance specified in
(6), but modified to only allow dependence within a wire scan and to include a white
noise component to account for the noise in the 8000 particle simulations. Also, since
the first x and y wire scans are applied directly to the initial beam, only the white
noise component of the discrepancy term is used for the first scan (x3 = 1). The
resulting covariance function for δ(x) is then given by

Cov(x, x′) =
1

λδ1
exp

{
−βδ

1 |x1 − x′
1|αδ

}
1(x2=x′

2,x3=x′
3>1) +

1

λδ2
1(x=x′).

Here 1(·) is the indicator function and we set αδ = 2. The resulting posterior has the
form

π(θ, βδ, λδ1λδ2|y) ∝ |Σδ|−
1
2 exp

{
−1

2
(y − η(θ))TΣ−1

δ (y − η(θ))

}
×π(θ) × π(βδ) × π(λδ1) × π(λδ2),

where Σδ is constructed according to the covariance function above, θ has a vague uni-
form prior (i.e., π(θ) ∝ 1), π(λδ1) and π(λδ2) both follow (7), and π(βδ) is given in (8).

The posterior is explored using MCMC, evaluating η(x, θ) whenever called for in
the Metropolis updating scheme. Figure 5 shows a representation of the x and y ini-
tial phase space distribution—posterior realizations bivariate, two standard deviation
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Fig. 6. Posterior predictions for wire scans 5 and 6. The dark shaded regions show
pointwise 90% credible intervals for the simulator η(x, θ). For wire scan 6, the light shaded
regions show 90% intervals for the prediction ζ(x). The observed wire scans are given by the
black line. The data from scan 6, along with the other even scans, were not used to fit the
model.

elliptical contours of the initial particle distribution in x and y phase space. The highly
parametric representation of this initial phase space distribution results in a rather
narrow range of uncertainty. The posterior distribution for the simulated wire scans
η(x, θ) and predictions ζ(x) = η(x, θ) + δ(x) are shown in Figure 6 for scans 5 and 6,
along with the observed scans. Scan 5 is treated as field data in the analysis. Scan
6 was held out and therefore was not used to calibrate θ or estimate the discrepancy
term δ(x).

4. Spot welding application. In resistance spot welding, two metal sheets are
compressed by water-cooled copper electrodes, under an applied load L. Figure 7 is
a simplified representation of the spot weld process, illustrating some of the essential
features for producing a weld. A direct current of magnitude C is supplied to the
sheets via the two electrodes to create concentrated and localized heating at the
interface where the two sheets have been pressed together by the applied load (this
interface is called the faying surface). The heat produced by the current flow across
the faying surface leads to melting that produces a weld nugget after cooling.
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Fig. 7. Resistance spot welding process.

The resistance offered at the faying surface is particularly critical in determining
the amount of heat generated. Because contact resistance at the faying surface, as a
function of temperature, is poorly understood, a nominal function relating resistivity
to temperature is specified. This function is then typically tuned to the field data.
Here we will focus on a single parameter θ which governs this nominal function.

The physics of the spot weld process are modeled by a coupling of partial differen-
tial equations that govern the heat and electrical conduction with those that govern
temperature dependent, elastic/plastic mechanical deformation (Wang and Hayden
(1999)). Additional details regarding uncertainties in this model can be found in
Bayarri et al. (2002).

We let x hold the three-dimensional inputs: load L; current C; and gauge G,
the thickness of the aluminum sheets being welded together. We take the calibration
parameter θ to be a univariate value that serves as a multiplicative constant in the
notional function that relates contact resistance at the faying surface to temperature.

Field data consist of weld nugget diameters measured for 10 replicates taken at
a 2 × 3 configuration of load by current settings for each of the two gauge settings.
In all, this makes n = 120 field observations y(x). The actual data measurements
are apparent in the figures from this application. Simulation runs were carried out at
m = 47 different (x, t) combinations. The input settings and simulator outcomes are
apparent in Figure 8. This application fits into the specification of section 2.3. The
only slight modification is that we assume Σy = In/λy and use the data to provide
information on λy. We use a gamma prior for λy, which is identical to that of λδ in (7).

The resulting posterior mean estimate for η(·, ·) is shown in Figure 8 for a lattice
of load, current, and gauge values for various values of the calibration parameter t.
The resulting posterior distribution for θ is fairly wide and shows bimodality, with
modes at about 2.7 and 6.4. The posterior mean decomposition for model fit is given
in Figure 9. It gives the posterior mean for η(x, θ), δ(x), and the resulting fit ζ(x).
Finally, Figure 10 shows the same decomposition with 90% posterior credible intervals
as a function of current for load and gauge values where the replicate field data were
observed. As with the example in section 2.3, the magnitude of the discrepancy term
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and are shown in the surface plots for which their value of t was closest.

δ(x) is fairly large. Here, however, posterior realizations of the bias term do not stay
mostly constant over x. Hence the predictions ζ(x) become uncertain for x’s away
from the data. From Figures 9 and 10 it is clear that the sign of the discrepancy
flips for predictions of 1mm and 2mm gauge. This suggests investigating aspects
of the model that deal with thickness of the workpieces being welded. This large
discrepancy, combined with a wide posterior for η(x, θ), leads to a high degree of
uncertainty regarding θ.

5. Discussion. We’ve demonstrated a Bayesian approach for fusing model sim-
ulations and observed field data to carry out model calibration and prediction. Un-
certainties arising from unknown calibration parameters, limited simulation runs, and
discrepancy between simulator and reality are incorporated here. This work is a piece
of the overall verification and validation (V&V) process for simulation models (see
Oberkampf, Trucano, and Hirsch (2003), for example); however, we focus on the ques-
tion of whether or not the simulation model is useful for prediction. Given our focus
on prediction, the usefulness of the simulator is apparent from the reduction in pre-
diction uncertainty it affords when compared to a purely field data–driven analysis.
Another important issue is whether or not including simulator runs in the analysis
improves our ability to extrapolate.

Reality checks are very important in analyses such as these, which build much
structure into models—simulators as well as statistical models—and use compara-
tively small amounts of field data. Comparing predictions to hold out data which
have not been used to estimate model parameters can be very useful. In cases for
which the amount of field data is too scant for such an approach, one needs to be more
careful (see Bayarri and Berger (2000), Robins, van der Vaart, and Ventura (2000),
and accompanying discussion). Also, the investigation of the sensitivity of predictions
to changes in modeling assumptions can be revealing.
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θ of .6.

As mentioned previously, the posterior distribution of the discrepancy term δ(x)
is an indicator of how well the simulator is matching reality. Our experience has been
that the presence of a large discrepancy term makes interpretation of the posterior
distribution for the calibration parameter θ difficult. How this discrepancy term
affects the posterior for θ depends on the prior specification as well as the system
being modeled. For example, Figure 11 shows a contrived example that mirrors
the example in Figure 3, only with a different simulator and field data. Here the
discrepancy term is large in magnitude, but the posterior distribution for θ is nearly
the same as that obtained when the discrepancy is 0.

This basic framework will likely have to be adjusted to deal with highly mul-
tivariate output. We were able to describe the multivariate output of the particle
accelerator simulator under this framework, but other multivariate applications will
likely require reformulating the statistical model. Examples dealing with such data
can be found in Bayarri et al. (2002) and Higdon, Lee, and Holloman (2003).

The statistical modeling of the simulator function η(·, ·) becomes increasingly dif-
ficult as the dimensionality of the input space increases since the limited number of
runs must now cover a high dimensional space. Adaptive design as well as dimen-
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sion reduction strategies have been proposed (Craig et al. (2001)) for dealing with
this issue. As an alternative, it may be wise to develop a faster, more approximate
simulator and use a strategy similar to that of section 2.1 to avoid modeling η(·, ·).
Another promising approach is to replace the simulator altogether with a statistical
model that incorporates key features of the physical process, as in Wikle et al. (2001).
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