
Biometrika (2000), 87, 1, pp. 1–13

© 2000 Biometrika Trust

Printed in Great Britain

Predicting the output from a complex computer code when fast
approximations are available

B M. C. KENNEDY  A. O’HAGAN

Department of Probability and Statistics, University of SheYeld, SheYeld, S3 7RH, U.K.

m.c.kennedy@sheffield.ac.uk a.ohagan@sheffield.ac.uk

S

We consider prediction and uncertainty analysis for complex computer codes which
can be run at different levels of sophistication. In particular, we wish to improve efficiency
by combining expensive runs of the most complex versions of the code with relatively
cheap runs from one or more simpler approximations. A Bayesian approach is described
in which prior beliefs about the codes are represented in terms of Gaussian processes. An
example is presented using two versions of an oil reservoir simulator.

Some key words: Bayesian uncertainty analysis; Computer experiment; Gaussian process; Multi-level code.

1. C 

Complex mathematical models, implemented in large computer codes, have been used
to study real systems in many areas of scientific research (Sacks et al., 1989), usually
because physical experimentation is too costly and sometimes impossible, as in the case
of large environmental systems. A ‘computer experiment’ involves running the code with
various input values for the purpose of learning something about the real system.

Often a simulator can be run at different levels of complexity, with versions ranging
from the most sophisticated high level code to the most basic. For example, in § 4 we
consider two codes which simulate oil pressure at a well of a hydrocarbon reservoir. Both
codes use finite element analysis, in which the rocks comprising the reservoir are rep-
resented by small interacting grid blocks. The flow of oil within the reservoir can be
simulated by considering the interaction between the blocks. The two codes differ in the
resolution of the grid, so that we have a very accurate, slow version using many small
blocks and a crude approximation using large blocks which runs much faster.

Alternatively, a mathematical model could be expanded to include more of the scientific
laws underlying the physical processes. Simple, fast versions of the code may well include
the most important features, and are useful for preliminary investigations. In real-time
applications the number of runs from a high level simulator may be limited by expense.
Then there is a need to trade-off the complexity of the expensive code with the availability
of the simpler approximations.

The purpose of the current paper is to explore ways in which runs from several levels
of a code can be used to make inference about the output from the most complex code.
We may also have uncertainty about values for the input parameters which apply in any
given application. Uncertainty analysis of computer codes describes how this uncertainty
on the inputs affects our uncertainty about the output.

2 M. C. K  A. O’H

In principle a complex code will approximate reality better than a simple code, but in
extreme cases a single run of a complex code may take a number of days, even on a
powerful computer. For example, the oil reservoir simulator used by Craig et al. (1996)
using a large finite element grid can take between one and three days to produce a single
output. Another potential problem with complex codes is the need to specify large numbers
of parameters, which can be difficult to identify from physical data and often impossible
to measure directly.

Young, Parkinson & Lees (1996) give more detailed criticisms of the way in which
complex simulators are used, and suggest simpler models that are derived using physical
data. The codes we consider are deterministic; that is, running the code with the same
inputs always produces identical outputs, and we have no observation error.

The structure of the paper is as follows. In § 2 we describe a Bayesian analysis of multi-
level codes using an autoregressive model. Bayesian uncertainty analysis is introduced in
§ 3, and we illustrate the use of the autoregressive model and the associated uncertainty
analysis in § 4, using data from an oil reservoir simulator. In § 5 we consider an alternative
model for a series of computer codes of increasing complexity, and we conclude with some
discussion in § 6.

2. B    

2·1. General assumptions

For our analysis we make the following assumptions.
(i) Different levels of the same code are correlated in some way. Extra complexity is

usually achieved by expanding simple models, so that each level of code should share
some basic features.

(ii) The codes have a degree of smoothness, in the sense that the output values for
similar inputs are reasonably close. If the codes are extremely rough, then individual runs
can only provide information about the output in a small surrounding neighbourhood,
and the advantage of the Bayesian model is minimal.

(iii) Prior beliefs about each level of the code can be modelled using a Gaussian process.
(iv) Each code output is scalar. Computer codes often produce multivariate time series

outputs, and in principle the methods we present would generalise quite easily if multivari-
ate normality could be assumed for these outputs. We will consider only the univariate
case in the current paper.

Suppose we have s levels of code z1 (.), . . . , zs(.). We model the output y from the tth
level code as y=z

t
(x), where z

t
(.) is a random function indexed by a p-dimensional input

vector x. For any given input x
i
we can run the code to observe data y

i
=z

t
(x
i
). The

number of available runs will be limited by time and computer resources, so for large
regions of the input space z

t
(x) will be unknown. The degree to which z

t
(x) is unknown

depends on the position of x in relation to the tried input points, and also on the smooth-
ness properties of z

t
(x).

Prediction of z
t
(.), or of functionals of z

t
(.), is therefore a problem of statistical inference.

Statistical analysis of functions has been studied before from both non-Bayesian and
Bayesian perspectives; Diaconis (1988) and O’Hagan (1992) provide useful reviews. In
common with many of these techniques, we use a Gaussian process to model the code
output. The use of such models for the analysis of computer code outputs has a substantial
literature. An important review of early work in the field is given by Sacks et al. (1989).

3Complex computer codes

Some more recent references from the same research group are Morris, Mitchell &
Ylvisaker (1993), Welch et al. (1992) and Aslett et al. (1998).

In Bayesian statistics, the use of Gaussian processes to model unknown functions dates
back to Kimeldorf & Wahba (1970), Blight & Ott (1975) and O’Hagan (1978). Neal
(1999) is a recent general review, and O’Hagan, Kennedy & Oakley (1999) reviews a body
of work related to the present paper.

2·2. An autoregressive model

For each t=1, . . . , s, we let D
t

be the design set consisting of the n
t

points
x(t)
1
, . . . , x(t)

n
t

. The output data are written zT= (zT
1
, . . . , zT

s
), where zT

t
= (z

t
(x(t)
1

), . . . , z
t
(x(t)
n
t

))
is the vector of outputs for the level t code. These data are observed without error, since
the codes are deterministic. The object of inference is [z

s
(.) |z], the top level code con-

ditional on all the code data.
Consider the following assumption about two levels of code z

t
(.) and z

t−1
(.), where z

t
(.)

is the higher level code:

cov{z
t
(x), z

t−1
(x∞) |z

t−1
(x)}=0 (1)

for all x∞Nx. This is a kind of Markov property: given the nearest point z
t−1

(x), we can
learn no more about z

t
(x) from any other run z

t−1
(x∞) for x∞Nx.

We now introduce an autoregressive model which has the properties described above.
Indeed, it is shown in the University of Nottingham technical report, ‘A Markov property
for covariance structures’ by A. O’Hagan, that the assumption (1), together with station-
arity of z

t
(x) over the x space for each t, implies precisely this model. We assume that

z
t
(x)=r

t−1
z
t−1

(x)+d
t
(x) (t=2, . . . , s), (2)

where r
t−1

is a kind of regression parameter and d
t
(.) is independent of z

t−1
(.), . . . , z1(.).

A similar Markov property is proposed in Currin et al. (1991), but they assume stationarity
both in x and in t. Their assumption is stronger and leads to a Kronecker product form
for the joint covariance structure, known in the geostatistics literature as separability. The
assumption is too strong for multi-level codes, where we wish to allow different levels to
have different correlation structures. Further details are given in the technical report of
O’Hagan.

Conditional on hyperparameters b
t
and s2

t
, we model d

t
(.) as a stationary Gaussian

process with mean h(.)Tb
t
, where h(.) is a vector of q regression functions, and covariance

function c
t
(x, x∞)=cov{d

t
(x) , d

t
(x∞)}. Conditional on b1 and s2

1
, the simplest code z1 (.) is

also assumed to have a stationary Gaussian process independent of the d
t
(.). For each of

the covariance functions we assume the exponential form

c
t
(x, x∞)=s2

t
exp{−b

t
(x−x∞)T(x−x∞)}, (3)

where b
t
is a roughness parameter. The use of (3) represents a belief that the code has a

high degree of smoothness, in particular that it is infinitely differentiable, and is isotropic.
Various other forms have been suggested in the computer experiments literature; see for
example Sacks et al. (1989) or Currin et al. (1991). Isotropy could be relaxed by using
instead of (3) a product of correlations, in which each term in the product has a different
roughness b

ti
, and our results would generalise easily in this case. However, we have

generally found the form (3) to provide good results, and the additional b
ti

parameters
are difficult to estimate using the available data. Finally we assume independent non-
informative priors p(b

t
, s2

t
, b
t
)3b−1

t
s−2
t

for each b
t
, s2

t
and b

t
. It would be relatively

4 M. C. K  A. O’H

straightforward to incorporate proper prior distributions for these hyperparameters, but
in practice we do not expect useful prior information about them to be available.

For each level t, we select design points D
t
such that D

t
kD

t−1
. The conditional indepen-

dence of each d
t
(.) then implies that level t data depend on z1 , . . . , zt−1 through z

t−1
alone.

This property is useful for estimation of the model parameters for each code level. More
details are given below. The notation A

t
(D
k
, D

l
) is used for the matrix of correlations

between points in D
k
and D

l
, with i, j element

A
t
(x(k)
i

, x(l)
j

)=exp{−b
t
(x(k)
i
−x(l)

j
)T(x(k)

i
−x(l)

j
)}

for all x(k)
i
µD

k
and x(l)

j
µD

l
. We will use A

t
(D
k
) as a shorthand for A

t
(D
k
, D

k
).

2·3. Posterior distribution for a code with two levels

To simplify the exposition we first describe the analysis of a code which has only two
levels, s=2, corresponding to a fast simulator z1 (.) and a slow simulator z2(.). We let b=
(b1 , b2) and w= (s2

1
, s2

2
, b1 , b2 , r1). The Gaussian process models together with (2) imply

that [z2(x), z2 (x∞), z |b, w] is multivariate normal. Standard results for normal distributions
can then be used to show that [z2(.) | z, w], after integrating out b analytically, is a Gaussian
process with mean function

m∞(x)=h∞(x)Tb@+t(x)TV −1(z−Hb@), (4)

where

h∞(x)T=(r1h(x)T, h(x)T), H=A h(x(1)
1

)T 0

e e
h(x(1)

n
1

)T 0

r
1
h(x(2)

1
)T h(x(2)

1
)T

e e
r
1
h(x(2)

n
2

)T h(x(2)
n
2

)T
B ,

b@= (b@
1
, b@

2
)T= (HTV −1H)−1HTV −1z, (5)

t(x)T=cov{z
2
(x), zT}= (r

1
s2
1
A
1
({x}, D

1
), r2

1
s2
1
A
1
({x}, D

2
)+s2

2
A
2
({x}, D

2
)), (6)

and the data covariance matrix V may be expressed in block form as

V=A s2
1
A
1
(D
1
) r

1
s2
1
A
1
(D
1
, D

2
)

r
1
s2
1
A
1
(D
2
, D

1
) r2

1
s2
1
A
1
(D
2
)+s2

2
A
2
(D
2
)B .

The posterior mean of b is b@ . The covariance function for [z2(x) | z, w] can be written

c∞(x, x∞)=c(x, x∞)−t(x)TV −1t(x)

+ (h∞(x)−t(x)TV −1H)T(HTV −1H)−1(h∞(x)−t(x)TV −1H), (7)

where c(x, x∞)=c2 (x, x∞)+r2
1
c
1
(x, x∞). The posterior mean function (4) is a cheap approxi-

mation for the expensive top level code, and can be used to predict the code output at
untried inputs. Provided we make enough runs of the slow code, (4) should be more
accurate than runs of the fast code. The posterior covariance function (7) with x=x∞ can
be used to measure the uncertainty on the prediction of z(x).

5Complex computer codes

2·4. Estimating the model hyperparameters

The covariance structure of the data is simplified as a result of our choice of design
points and the Markov property. The parameters b are estimated by their posterior mean
(5). The distribution of the data conditional on w can be written as the product

p(z |w)=p(z
2
|z
1
, r

1
, b
2
, s2

2
)p(z

1
|b
1
, s2

1
). (8)

From the independence condition we can estimate the parameters (r
1
, b
2
, s2

2
) indepen-

dently of (b
1
, s2

1
), by maximising each term in the product (8). Each of these has a normal

form, and it can easily be shown that we should minimise

log |A
1
(D
1
) |+n

1
log s2

1
+ (z

1
−b@

1
1
n
1

)T{s2
1
A
1
(D
1
)}−1(z

1
−b@

1
1
n
1

)

to choose b
1
, s2

1
. For the second level of code, b2 , s2

2
, b2 and r1 are estimated using z2

and z1 , since the Markov property implies that the parameters depend only on these data.
We define d2=z2−r1z1(D2), where z1 (D2) denotes the vector of outputs from z1 (.) at
points in D2 . Then b2 , s2

2
and r1 are chosen to minimise

log |A2 (D2) |+n2 log s2
2
+ (d2−b@

2
1
n
2

)T{s2
2
A2(D2)}−1(d2−b@21n

2

). (9)

Once these parameter values have been found we assume they are fixed.

2·5. Extending the model for s code levels

When there are more than two levels of code data, the normality of z
s
(.), conditional

on all the hyperparameters and the observed runs, still holds. The mean and variance can
easily be calculated from (2). The expressions in § 2·3 apply, but with different forms for
V, t(x), h∞(x), H and c(x, x∞). To simplify the notation, we define

Pj
i
=a

j

n=i
r
n
.

The V matrix will have s blocks. The (1, 1) block is simply V (1,1)=s2
1
A
1
(D
1
). For k>1

the (k, k) block is

V (k,k)=s2
k
A
k
(D
k
)+r2

k−1
s2
k−1

A
k−1

(D
k
)+r2

k−1
r2
k−2

s2
k−2

A
k−2

(D
k
)

+ . . .+ (Pk−1
1

)2s2
1
A
1
(D
k
),

and for k<l the off-diagonal (k, l) block is given by

V (k,l)=Pl−1
k

s2
k
A
k
(D
k
, D

l
)+r

k−1
Pl−1
k−1

s2
k−1

A
k−1

(D
k
, D

l
)+Pk−1

k−2
Pl−1
k−2

s2
k−2

A
k−2

(D
k
, D

l
)

+ . . .+Pk−1
2

Pl−1
2

s2
2
A
2
(D
k
, D

l
)+Pk−1

1
Pl−1
1

s2
1
A
1
(D
k
, D

l
).

The t(x) vector can be written as t(x)T= (t
1
(x)T, . . . , t

s
(x)T), where, for i=2, . . . , s, t

i
(x) is

constructed using the relation

t
i
(x)=r

i−1
t∞
i−1

(x)+Ps
i
A
i
(x, D

i
) (10)

and t
1
(x)=Ps

1
s2
1
A
1
(x, D

1
). Here t∞

i−1
(x) is used to denote the subset of elements from

t
i−1

(x) corresponding to the elements of D
i−1

that are also in D
i
. For h(x)=1, we have

6 M. C. K  A. O’H

h∞(x)T= (Ps−1
1

, Ps−1
2

, . . . , r
s−1

, 1), and the H matrix is lower diagonal, given by

H=A 1
n
1r

1
1
n
2

1
n
2

0

r
1
r
2
1
n
3

r
2
1
n
3

1
n
3

P3
1
1
n
4

r
2
r
3
1
n
4

r
3
1
n
4

1
n
4e

Ps−1
1

1
n
s

. . . r
s−2

r
s−1

1
n
s

r
s−1

1
n
s

1
n
s

B .
We also have

c(x, x∞)=c
s
(x, x∞)+r2

s−1
c
s−1

(x, x∞)+r2
s−1

r2
s−2

c
s−2

(x, x∞)+ . . .+(Ps−1
1

)2c
1
(x, x∞).

For estimating the hyperparameters of the Bayesian model, the generalisation from (9) is
straightforward.

3. U 

Typically, the code will be used to predict the real phenomenon in a situation where
some or all of the inputs are unknown. In general, suppose that the model input is a
random vector X, with probability distribution G. The input may involve unknown physi-
cal constants or the result of another process, for example. Uncertainty analysis is a way
of measuring how uncertainty in the outputs is induced by this uncertainty in the inputs.

The distribution of z2 (X), resulting from the uncertainty about X, is known as the
uncertainty distribution. The conventional approach to uncertainty analysis uses a Monte
Carlo technique: first a random sample of inputs is generated from G, and then the top
level code z2(.) is evaluated at each of these inputs, yielding a sample from the uncertainty
distribution. Various summaries of the uncertainty distribution can then be estimated from
this sample. Accurate results using this method may require a very large number of runs,
since Monte Carlo makes inefficient use of the data. When z2(.) is very expensive to run,
the number of runs will be limited, resulting in poor Monte Carlo estimates.

Using the Bayesian approach, we hope to achieve accurate results from a relatively
small number of code runs. For a single level code, this objective was achieved by Haylock
& O’Hagan (1996). We now generalise these results, to take into account data from several
levels of code.

It is important to note that we assume the Gaussian process model for z2(.) after the
parameters have been transformed, such that G(x)~N(0, I).

Let K and L denote the mean and variance of z2(X), respectively, so that

K= P
X

z2 (x) dG(x)

and L=K2−K2, where

K2=E
X
{z2 (x)2}= P

X

z2 (x)2 dG(x).

After observing the code values, inferences about K and L are derived from the posterior
distribution we have for z2 (x). This technique is similar to performing Bayesian quadrature
(O’Hagan, 1991). Details are given in the Appendix.

7Complex computer codes

4. H  

We consider part of the dataset used by Craig et al. (1996), which consists of outputs
from a code used to simulate the oil production and pressure at three wells in a hydro-
carbon reservoir, based on a finite element analysis. The reservoir is split into five regions,
each with different characteristics. The code takes as inputs the porosity and permeability
of the rock in each of the five regions, and produces as output a number of time series
giving various measures of production for each of the three wells. The simulator can be
run at different levels of complexity by altering the resolution of the finite element grid.
The particular outputs we consider are well pressure readings from a particular well at a
single time-point, using two codes z1 (.) and z2(.). The relatively simple code z1(.) has a
coarse finite element grid for the simulation process. This is a fast approximation to the
more complex z2 (.), which uses a fine grid. Craig et al. (1996) use the fast simulator to
formulate prior beliefs about the reservoir, as part of a more general procedure that also
incorporates prior beliefs elicited from experts. A Latin hypercube design of 180 points
was generated in the 10-dimensional input space, and both simulators were run for each
of these input configurations.

In the following experiments, a subset of the output values were used as data, and the
remainder were used to assess the accuracy of the interpolator by comparing it with the
known true output values from the slow simulator at these points. From the 180 design
points we select a subset of 45 by removing 135 points one at a time by repeating the
following simple algorithm.

A
Step 1. Calculate the distance between each possible pair of points left in the design.
Step 2. Select the pair for which the distance is smallest, and remove the point that is

further, of these two, from the centre of the design region.

The resulting 45-point design is well spaced in the input space, and we used this as our
fast-code design. Starting with this design, we repeated the above procedure to select a
subset of 7 points at which to observe the slow code. The 135 points that were not used
to estimate z1 (.) were used to measure the prediction accuracy by calculating the root
mean squared error, . We first compared r@ 1z@1(.)+d@2 (.) with the actual computer
experiment z1 (.) to see if the estimated inadequacy process d@2 (.) gives any improvement,
and obtained =32·3 and =266·5. In this case we see that estimating model
inadequacy results in more accurate prediction if higher level code data are available. The
predicted values are plotted against the corresponding actual values in Fig. 1, for both
prediction strategies. Also note that calculation of r@1z@1(x)+d@2 (x) will typically be much
cheaper than for z1(x). Even better accuracy can be achieved if we use r@1z1 (.)+d@2(.),
which gives =29·9.

It is clear from Fig. 1 that there is a negative correlation between the fast code and the
model inadequacy correction. Each slow-code value is overpredicted by the fast code, with
the largest overpredictions occurring for large slow-code values. The inclusion of r1 ,
estimated as 0·71, is therefore important for this particular dataset. If r1=1 is fixed, for
example, then we obtain =52·4 and =50·8 using z@1(.)+d@2 (.) and z1(.)+d@2(.),
respectively.

One could argue that we should simply interpolate the runs of the more complex code
z2(.) and ignore z1 (.). If many runs of z2(.) are available, then this approach will give
accurate predictions without any runs from faster versions of the code. In the example
presented above, Bayesian interpolation of the seven slow-code runs gives =51·3,

8 M. C. K  A. O’H

A
ct

u
a
l
v
a
lu

es

2400

2200

2000

1800

1600

1600 1800 2000 2200 2400

Predicted values

Fig. 1: Hydrocarbon reservoir example. Predicted and
actual values of z2 (.) using r1z@1 (.)+d@2 (.), shown by

crosses, and the fast code z1 (.), circular points.

which is better than the fast-code prediction alone, but not as good as the corrected
predictors. It is interesting to consider how many more runs of the slow-code predictor
would be necessary in order for this interpolator to compete with the adjusted predictor
r@1z1 (.)+d@2(.). We constructed a series of Bayesian interpolators, using slow-code designs
with 8, . . . , 15 points, and calculated  for each design set. With 15 points we achieved
=29·2, which is slightly smaller than the =29·9 achieved using r@1z1(.)+d@2 (.),
but the cost of an additional 8 runs of the expensive slow code would be too high in this
particular application.

As part of the investigation of Craig et al. (1996), geology experts were consulted and
values were elicited for the mean and 95% probability bounds on each of the 10 input
parameters. A multivariate normal distribution was fitted to the elicited prior information,
to give X~N(0, 0·0651I10) for the input parameters. The uncertainty analysis results are
summarised by the values E(K | z)=1777, var (K | z)=1315, E(L | z)=6770 and var (L | z)=
2294008. For comparison, the most accurate estimates of K and L we can obtain, together
with the corresponding variances, are those found using a standard Bayesian uncertainty
analysis on z2(.) with all 180 runs of the slow code. This resulted in E(K |z)=1747·96,
var(K |z)=118·12, E(L |z)=5427 and var(L | z)=305739. The variances are smaller in this
case, as expected, but the results from the autoregressive model are reasonably good
considering they use only 7 runs of the slow code and 45 runs of the fast code.

5. A     - 

The autoregressive model of § 2 assumes that z
t
(.) and z

t−1
(.) are related through the

regression parameter r
t−1

. A more structured way of dealing with dependence between
multi-level codes is to imagine that each code level is a particular case of a larger single
code, which includes a complexity parameter t. This might arise if the physical process in
question is simulated using a finite element technique, where the complexity and speed
vary depending on the resolution of the element grid.

We suppose that z(x, t) is a collection of computer codes, ranging from the simplest
z(x, 0)=z0 , to the most accurate simulator of reality z(x, 1)=z(x). Somewhere between
these extremes we may be able to run various levels of the simulator, corresponding to

9Complex computer codes

t=t1 , . . . , ts , where 0<t1< . . .<t
s
∏1. We write t=(t1 , . . . , ts). We wish to make infer-

ence about z(. , t
s
), based on data from runs of the code at lower levels. In any given

example, we will assume without loss of generality that t
s
=1, and we use the shorthand

d=(x−x∞)T(x−x∞).
Our new model assumes that

z(x, t)=z0+ P t
0

f
d
(x, t) dt

for 0<t<1, where the function f
d
(x, t) is a Gaussian process with mean b

d
and covariance

function s2
d
exp(−ktd), and k is a positive constant. Finally we assume that f

d
(x, t) and

f
d
(x, t∞) are independent for tNt∞. Our covariance function corresponds to a prior belief

that the code becomes rougher as the complexity increases.
The prior mean of z(x, t) is z0+b

d
t and the prior covariance is

cov{z(x, t), z(x∞, t)}=s2
d P t

0
exp(−ktd) dt=

s2
d

kd
{1−exp(−kdt)}. (11)

The more general covariance function, for comparing codes of different levels, is given by

cov{z(x, t), z(x∞, t∞)}=
s2
d

kd
{1−exp(−kdt*)},

where t*=min (t, t∞).
If we make the change of variable u2=kt, we can write the correlation function for

z(. , t) as

c(d)= P2
−2

exp(−u2d) dF(u), (12)

where dF is the probability measure

dF(u)=q2u/(kt) for 0∏u∏√(kt),

0 otherwise.

Writing c(d) in this form shows that it is a valid correlation function, using a result of
Schoenberg (1938), see Matérn (1986, p. 17), which states that the class of continuous
isotropic correlation functions valid in any dimension is the class of probability mixtures
of Gaussian-type correlations of the form (12). This c(d) function tends to 0 much more
slowly than the exponential form (3), implying that distant points are more correlated
under this model than they would be under the autoregressive model.

The model described above has 4+s parameters z0 , b
d
, t1 , . . . , ts , s2

d
and k, each of

which needs to be estimated in some way. We adopt a simple strategy based on the
variogram, as used in the classical kriging theory, popular in geostatistics. Specifically, we
use the robust variogram estimator of Cressie & Hawkins (1980) to fit the parameters of
the covariance function (11).

The prior distribution of z(x, t) can be expressed as

10 M. C. K  A. O’H

z(x, t), z(x∞, t∞) |z0 , b
d
, s2

d
, k

~N Az012+b
d A tt∞B , s2

d
t* A 1

1−exp (−kdt*)

kdt*

1−exp(−kdt*)

kdt*
1 BB ,

where t*=min (t, t∞). The posterior distribution of z(. , t
s
) is

z(. , t
s
) | z0 , b

d
, s2

d
, k, t, d~N(m∞

s
(.), v∞

s
(. , .)),

where

m∞
s
(x)=z0+b

d
t
s
+t

s
(x)TV −1(d−m

d
),

t
s
(x)T=cov{z(x, t

s
), d}=s2

d
(t1A1 (x, D1), . . . , tsAs

(x, D
s
)),

v∞
s
(x, x∞)=

s2
d

kd
{1−exp(−kt

s
d)}−t

s
(x)TV −1t

s
(x∞),

mT
d
=z01Tn

1
+...+n

s

+b
d
(t11Tn

1

. . . t
s
1T
n
s

),

V=s2
d At1A1(D1 , D1) . . . t1A1(D1 , Ds

)

e e
t1A1 (Ds

, D1) . . . t
s
A
s
(D
s
, D

s
)B .

The (i, j) element of A
h
(D
l
, D

m
) is

(kt
h
dx(l)

i
−x(m)

j
d)−1{1−exp(−kt

h
dx(l)

i
−x(m)

j
d)}, (13)

where x(l)
i

is the ith element of D
l

and dx(l)
i
−x(m)

j
d is (x(l)

i
−x(m)

j
)T(x(l)

i
−x(m)

j
). When

x(l)
i
=x(m)

j
, (13) reduces to 1. Note that random observation error on z(x∞, t

s
) can be included

by adding lI to the (s, s) block of V, where l is the Gaussian error variance. This would
be appropriate if we were observing data from the real physical system and modelling it
as the highest level code z(x∞, t

s
).

Uncertainty analysis for z(X, t
s
) is not as tractable as the corresponding analysis using

the autoregressive model, because of the less tractable form for the correlation function
c(.). However, it is possible by using various approximations. The details are beyond the
scope of this paper.

Example. For a univariate input x, we now present the analysis of a simulated three-
level code which has the kind of behaviour described above, in which the roughness
increases as more complexity is added. It should be noted that we do not use the model
to generate the code data. First, we generate a ‘true’ function y(x) as a realisation of
a rough Gaussian process with mean m(x)=0·2x−0·07x2 and covariance function
c(x, x∞)=4 exp{−200(x−x∞)2}. From this, we simulate a vector of 101 points yT=
(y(0), y(0·01), . . . , y(1)). We then define y*(x)=E{y(x) |y} and we let z(x, t

3
)=y*(x).

We now create the lower-level codes z(x, t
s
) for s=1, 2. For given s, we evaluate

yT
s
= (y*{1/(3×2s)}, y*{2/(3×2s)}, . . . , y*{1−1/(3×2s)}),

and define z(x, t
s
) to be the posterior mean if we model these data as a Gaussian process

with mean b and covariance s2 exp{−2(x−x∞)2} and assume a small observation error.
The resulting simulated three-level code is plotted in Fig. 2.

11Complex computer codes

C
o
d
e

o
u
tp

u
ts

2

0

_2

_4

0·0 0·2 0·4 0·6 0·8 1·0

x

Fig. 2: Example. Simulated code with three levels:
z(x, t1), dotted line, z(x, t2), dashed line, and z(x, t3),

solid line.

The data consist of runs from each of the 3 levels at 15 design points 0, 1
14

, 2
14

, . . . , 1.
Analysis of the three level data using the cumulative roughness model produces parameter
estimates k=3·41, t=(0·25, 0·63, 1) and s2

d
=38·1. We obtain =1·19. For compari-

son, using the autoregressive model of § 2·1 with the same data gives =1·44, and, if
we do not include any runs of the fast codes but simply interpolate the top level data with
a Bayesian smoother, we obtain =1·54. For this example the use of information
from the fast codes results in improved prediction of the top level code, particularly if we
use the cumulative roughness model.

6. D

The Bayesian methods of prediction and uncertainty analysis presented here can be
adapted and applied to a wide range of multi-level computer codes. The ability to combine
information from runs of the code at different levels is particularly useful when the slowest
code is very expensive to run, as in the case of the oil reservoir example. Each run of the
slow code in this case can take a number of days. Craig et al. (1996) estimate that about
36 runs of the fast code can be made in the time taken for a single run of the slow code,
so that our 45 fast-code runs are worth 1·25 slow runs. It was shown in § 4 that using the
Bayesian autoregression model and this extra ‘1·25 runs’ gives a value for  that is
equivalent to using an additional 8 slow runs and the usual Bayesian model.

We have also shown how the uncertainty analysis techniques of Haylock & O’Hagan
(1996) can be combined with the multi-level code model. Unfortunately the code is too
expensive to obtain any true values with which to compare our uncertainty analysis
estimates in § 4, although the uncertainty analysis results using the method of Haylock &
O’Hagan (1996), based on 180 runs of the slow code, are consistent with our method.

We have demonstrated the use of two quite different models to deal with multi-level
codes, corresponding to different prior beliefs about the way in which the levels are
correlated. The choice of model will be specific to the application, and the cumulative
roughness model might be modified to deal with a range of beliefs about the nature of
z(. , t) as more complexity is added.

There are a number of ways in which we might extend the methods presented here. We

12 M. C. K  A. O’H

have assumed that the autoregression parameters r
i
and the covariance parameters are

fixed. This is common when analysing computer experiments. However, in a context where
each run of the code is very expensive it is acceptable to use computationally intensive
methods, such as Markov chain Monte Carlo, to analyse the outputs using a full Bayesian
model. This would allow expert prior knowledge to be included in the analysis. In the
case where many levels are included, it may be difficult to obtain prior information. More
work is needed to find ways of estimating the autoregression parameters r

i
and the

parameters of the d
t
(.) functions, particularly for larger values of t, where data is rela-

tively sparse.
Much of the computer experiments literature addresses the problem of choosing good

design points. We have used design sets for the different levels such that D
t
kD

t−1
. In

some ways this seems sensible. We effectively observe the difference between z
t
(.) and

z
t−1

(.) at each point in D
t
, and this strategy should be more robust to misspecification of

the covariance parameters of d
t
(.). If this condition were relaxed the analysis would still

be tractable, and we might want to investigate alternative strategies.

A

This research has been supported by the Engineering and Physical Sciences Research
Council, with an additional financial contribution from the National Radiological
Protection Board. We would like to thank Peter Craig, Michael Goldstein and their
colleagues at the University of Durham and Scientific Software Intercomp for providing
us with the data for the oil reservoir example of § 4, and also to thank the editor and
referees who suggested improvements to earlier versions of the paper.

A

Uncertainty analysis

Let K denote the mean of z2 (X), given by

K= P
X

z2 (x) dG(x).

Conditioning on the hyperparameters w, we have K |w, z~N(KC , W), where

KC = P
X

m∞(x) dG(x)=hb@+TV −1(z−HbA),

W= P
X
P
X

c∞(x, x∞) dG(x) dG(x∞)

=U−T V −1T T+ (h−T V −1H)(HTV −1H)−1(h−TV −1H)T,

h= P
X

h∞(x)T dG(x), T= P
X

t(x)T dG(x), U= P
X
P
X

c(x, x∞) dG(x) dG(x∞).

In our examples we will assume that h(x)= (1), in which case the h vector is simply (r1 , 1). Closed
forms for T and U are obtained by completing the square in the integrands to leave standard
forms. Using (6) we can write T= (T (1), T (2)), where the ith element of T (1) is

T (1)
i
=r1s2

1
(1+2b1)−p/2 exp A− b1x(1)Ti

x(1)
i

1+2b1 B (i=1, . . . , n1),

13Complex computer codes

and the ith element of T (2) is

T (2)
i
=r2

1
s2
1
(1+2b1)−p/2 exp A− b1x(1)Ti

x(1)
i

1+2b1
B

+s2
2
(1+2b2)−p/2 exp A− b2x(2)Ti

x(2)
i

1+2b2
B (i=1, . . . , n2).

The U integral reduces to r2
1
s2
1
(1+4b1)−p/2+s2

2
(1+4b2)−p/2. The distribution of the variance L

given w, z cannot be found in closed form. It is nevertheless possible to derive expressions for
E(L |w, z) and var (L |w, z), following the approach of Haylock & O’Hagan (1996). Details are
available from the authors.

R

A, R., B, R. J., D, S. G., S, J. & W, W. J. (1998). Circuit optimization via sequential
computer experiments. Design of an output buffer. Appl. Statist. 47, 31–48.

B, B. J. N. & O, L. (1975). A Bayesian approach to model inadequacy for polynomial regression.
Biometrika 62, 79–88.

C, P. S., G, M., S, A. H. & S, J. A. (1996). Bayes linear strategies for matching
hydrocarbon reservoir history. In Bayesian Statistics 5, Ed. J. M. Bernardo, J. O. Berger, A. P. Dawid and
A. F. M. Smith, pp. 69–95. Oxford University Press.

C, N. & H, D. M. (1980). Robust estimation of the variogram, I. J. Int. Assoc. Math. Geol.
12, 115–25.

C, C., M, T., M, M. & Y, D. (1991). Bayesian prediction of deterministic functions,
with applications to the design and analysis of computer experiments. J. Am. Statist. Assoc. 86, 953–63.

D, P. (1988). Bayesian numerical analysis. In Statistical Decision T heory and Related T opics IV, Ed.
S. S. Gupta and J. Berger, pp. 163–75. New York: Springer.

H, R. & O’H, A. (1996). On inference for outputs of computationally expensive algorithms with
uncertainty on the inputs. In Bayesian Statistics 5, Ed. J. M. Bernardo, J. O. Berger, A. P. Dawid and
A. F. M. Smith, pp. 629–37. Oxford University Press.

K, G. S. & W, G. (1970). A correspondence between Bayesian estimation on stochastic processes
and smoothing by splines. Ann. Math. Statist. 41, 495–502.

M, B. (1986). Spatial Variation, 2nd ed., Lecture Notes in Statistics Vol. 36. New York: Springer-Verlag.
M, M. D., M, T. J. & Y, D. (1993). Bayesian design and analysis of computer experi-

ments: use of derivatives in surface prediction. T echnometrics 35, 243–55.
N, R. M. (1999). Regression and classification using Gaussian process priors (with Discussion). In Bayesian

Statistics 6, Ed. J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, pp. 475–501. Oxford
University Press.

O’H, A. (1978). Curve fitting and optimal design for prediction (with Discussion). J. R. Statist. Soc. B
40, 1–42.

O’H, A. (1991). Bayes-Hermite quadrature. J. Statist. Plan. Infer. 29, 245–60.
O’H, A. (1992). Some Bayesian numerical analysis (with Discussion). In Bayesian Statistics 4, Ed. J. M.

Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, pp. 345–63. Oxford University Press.
O’H, A., K, M. C. & O, J. E. (1999). Uncertainty analysis and other inference tools for

complex computer codes (with Discussion). In Bayesian Statistics 6, Ed. J. M. Bernardo, J. O. Berger, A. P.
Dawid and A. F. M. Smith, pp. 503–24. Oxford University Press.

S, J., W, W. J., M, T. J. & W, H. P. (1989). Design and analysis of computer experiments
(with Discussion). Statist. Sci. 4, 409–35.

S, I. J. (1938). Metric spaces and completely monotone functions. Ann. Math. 39, 811–41.
W, W. J., B, R. J., S, J., W, H. P., M, T. J. & M, M. D. (1992). Screening,

predicting, and computer experiments. T echnometrics 34, 15–25.
Y, P., P, S. & L, M. (1996). Simplicity out of complexity in environmental modelling:

Occam’s razor revisited. J. Appl. Statist. 23, 165–210.

[Received September 1998. Revised June 1999]

