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Summary. We provide more detail of the mathematical development involved in the Bayesian
calibration methods of Kennedy and O’Hagan (2000), and we present a further example using
data from a simulated accident assessment exercise.

1. Introduction

We assume the reader is already familiar with the concepts and notation of Kennedy and
O’Hagan (2000). We begin by deriving the posterior distribution of the calibration param-
eters in Section 2. In Section 3 we discuss the estimation of hyperparameters involved in
the model. Section 4 deals with details on calibration, calibrated prediction and calibrated
uncertainty analysis. In Section 5 we investigate the sensitivity of our results to some of
the model assumptions. Computational issues are discussed in Section 6, and in Section 7
we describe an example.

2. Posterior distribution

Following on from Kennedy and O’Hagan (2000), Section 4.4, we derive the posterior dis-
tribution of the parameters 6,3 and ¢. The full data vector d is normally distributed
given (0,3, ¢), and this will yield the likelihood function. To express its mean vector and
variance matrix we require some more notation.

We denote the set of points at which the code outputs y are available by D; =
{(z7,t1),...,(xx,tn)}. Similarly, we denote the set of points for the observations z of
the real process by Dy = {x1,...,x,}. Augmenting each of these points by the calibra-
tion parameters 0, we define D5(0) = {(x1,0),...,(xn,0)}. If we now let H;(D;) denote
the matrix with rows hyi(z],t1)7,..., hi(z%,tN)T, the expectation of y is H1(D1)3;. In
analogous notation, the expectation of z is pH{(D2(0))3, + H2(D2)8,. Hence

_ H, (D) 0
H(0) = <pH1(D2(0)) Hz(Dz)) '

where

To express the variance matrix of d, define V;(D1) to be the matrix with (j,j') element
ai((z,t5), (x5, t51)), so that this is the variance matrix of y. Define V'1(D2(8)) and V2(D>)
similarly, and let C (D1, D(@)) be the matrix with (g, i) element ¢ ((z7,¢;), (x;,6)). Then

_ _ Vi(Dy) C1(D1,D5(0))"
var(d | 0,8, ¢) = Va(6) = <pcl(D1,D2<0)) AL + 9V (Do(8)) + Vz(D2))
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where I,, is the n X n identity matrix.
With prior distribution

(0,8, ¢) o< p(0)p(¢) 1)

we now obtain the full joint posterior distribution

p(0,8,0|d) o pO)p(e)|Va(6) '/
x exp[—1{(d — ma(8))TV 4(8) 7 (d — m4())}]. (2)

Note that we have explicitly shown dependence on 8 but m4(8) also depends on 3 and p,
while V' 4(6) depends on all of ¢.
We can complete the square for 3 in the exponent of (2) to find

B|6,0,d~N(B6), W ()),
where

B(6) = W(0)H(6)TV 4(0)'d,
W () = (H(6)TV4(0)" H(6))™",

and both depend on ¢ as well as 8. Then integrating 3 out from (2) yields

p0.0|d) o pO)p(d)|Va(®) /W (B)/?
x exp[—1{(d — H(0)3(9))"V4(6) " (d — H(6)3(9))}]. 3)

3. Estimating hyperparameters

A fully Bayesian analysis would now integrate out the hyperparameters ¢ as well to leave
the posterior distribution p(@ | d) of the calibration parameters. However, it is clear that
(3) is a highly intractable function of ¢. Even with the most parsimonious parametrisation
of ¢1((-,-), (-,-)) and e¢a(+,-), to integrate over ¢ numerically would entail at least a six
dimensional quadrature. Since much of the methodology that we develop herein may be
rather computationally intensive even conditional on fixed values of ¢, the full Bayesian
analysis will not typically be practical. It is important to note also that it will generally not
be possible to integrate (3) with respect to ¢ if p(¢) is improper. To adopt a fully Bayesian
analysis will therefore demand full and careful consideration of prior information regarding
the hyperparameters.

We propose instead to derive plausible estimates of the components of ¢ and then to
act as if these were fixed. Thus, for inference about @ we will use its conditional posterior
given the estimated values of ¢.

We propose estimating the hyperparameters in two stages. In the first stage we use
just the code output data y to estimate the hyperparameters 1, of ¢1((+,-), (+,-)). There
is some information about 1y, in the observational data z, but (a) z depends also on the
other hyperparameters and (b) the number n of observations in z will typically be very
much smaller than the number N of output values in y. Therefore very little is lost by this
simplification. In the second stage we use z to estimate p, A and the hyperparameters 1,
of ¢a(+, ), having now fixed %),. Details of these two stages are as follows.

In stage 1, we estimate 1p; by maximising p(1p, | y). (Alternative estimates might
be used. For instance, with weak prior information one might use standard geostatistical



Supplementary details on Bayesian Calibration of Computer Models 3

variogram estimates—see Cressie, 1991.) We have y | B, %, ~ N(H(D1)B,,V1(D1))
and integrate 3, from the joint distribution p(3;, 1, | y) to obtain

Py |y) o |Vi(Dy)|72p(hy)|Wi(Dy)[/?
exp{—1(y — H1(D1)B,)"V1(D1)"(y — H1(D1)B3,)} (4)

where

B, =W (D1)H(D,) V(D) 1y,
Wi (D1) = (H(Dy)"V(Dy) "Hy(Dy)) "

Note that [‘]1 is not the same as the first part of B, since B3 depends on z as well as y. If
c1((+,+), (+,-)) is parametrised in terms of a variance hyperparameter o? via

ci(,) = o%r(,) (5)

and if 02 has a conjugate inverse-gamma prior (or the standard ‘noninformative’ prior) its
mode can be found in (4) analytically. We could even integrate o? out before maximising
with respect to the other components of 1, but in practice this would make negligible
difference to subsequent analysis. Because of the dependence of z on ¥, we still could not
integrate o7 out of (3) analytically.

In stage 2, we wish ideally to estimate p, A and v, by maximising p(p, A, ¥ | d, ).
To obtain this density, we can first write

p(ﬂmﬂ; Aa¢2 | d,’l/h) O(p(la27p7A7’l/J2)p(z | y)ﬂ?)d))i (6)

since y is independent of the second stage hyperparameters.

We cannot obtain the distribution of [z | Y, 35, @] analytically, but starting with [z |
Y, Bs, ¢, 0], which is normally distributed, we can obtain expressions for its mean vector
and variance matrix as follows. The ith element of the mean vector is

E(zi | 9,82, ) / E(zi | 9, Bar ¢, 0)p(0) dO

~

— a8+ | [ s, 0)70(0) 0] B,
+o | [ @i 0)72(0) 8| V(D) - HDOB). (1)

where the jth element of t(z;, 0) is c1((x;,0), (¢}, ¢;)), for j =1,...,N.
The covariance matrix is V' = A + V5(D3) + p?C, where the (i, j) element of C is

[ covtntas,0)n(a;.0) | y,6)p(6) 6 = [ ca((25,6), (25, 0))p(6) dB
—tr V1(D1)_1/t(a:j,O)t(wi,B)Tp(H) d0}
1(D1)/hl(a:j,B)hl(wi,O)Tp(B) dO}

{DOH: (D)TV(D1) [ te, 00k (@1,0)7p(0) a0}
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—ir {VA(D) L DOWA(DY) [ e, 0)t(z 0" 3(6) do
+tr{V1(Dl)_IHI(Dl)Wl(Dl)Hl(Dl)TVl(Dl)1 /t(wj,e)t(a:,»,e)Tp(a) dO}.

We then approximate [z | Y, 85, @] by a normal distribution with the above moments for
the purpose of estimating p, A and ,. To simplify the notation we write the mean vector as
H,(D2)B, + pf)(D2), where 7)(D3) is the vector with elements E(n(z;, 0) | y),i=1,...,n.
We can now integrate out 3, from (6) to obtain the approximation

P A s [ dipy) o plp X, o) | V]2 W'/
x exp{—4(z — H2(D2)B, — pit(D2))" V! (z — H2(D1)B, — pit(Ds))},
where
By = Wy H,(D2)V (2 — piy(D2)),
W, = (H(D2)"V 1 Hy(Dy)) .

The integrals in these expressions can be evaluated analytically for certain combinations
of the functions h, (x, 0), p(0) and c1((-,8),(-,0)). In particular, we can derive results as
follows when @ ~ N(mg,Vy), c1((z,t),(z',t')) = o? exp{—(z — ') T Q. (x — ') — (t —
t)TQ,(t — t')} and the elements of hy(x, @) are such that the expectation of the product
of any pair can be found with respect to an arbitrary multivariate normal distribution for
6. The appropriateness of such specifications as practical model choices is discussed in
Kennedy and O’Hagan (2000), Section 5.2.

Note that €2, and €2; are arbitrary functions of ¥;: we consider simple specifications of

these, and of ¢1((, ), (+,-)) generally, in our examples. The general closed form expressions
for the integrals are as follows. To calculate (7) we have

/h1(mi, 6)"p(6) df = Eo{hi(x;,0)}",

where Eg is expectation with respect N(myg, V), and the jth element of [ t(x;,8)p(6)d0
is

/cl((wi70)7 (@;",t;))p(0)d0 = oF|I+2V Q| /% exp{—(m; — ;") Qy (a; — ;)}
x exp{—(my — ;)T 2V, + Q;1) " (mg — t;)}.
The kth column of [ hy(z;,0)t(z;,0)Tp(0) dO is

U%|I + 2V99w|_1/2 exp{—(wi — mk*)Tﬂw (mz - wk*)}
x exp{—(mg —tx)" 2V + Q; 1) 7 (mg — 1)} Eg (1 (23, 0)),

where the expectation Eg is with respect to the normal distribution N (V™' 4+29Q;) = (Vy~ 'my+
2Qty), (Vo' +29;)71). The (k,I) element of [t(z;,0)t(x;,0)Tp(0)d6 is

oI + 4V Q|72 exp{—(x; — 1) Qo (x; — ™) — (@i — %) T Qu (s — 27°)}

T —1y !
tp +1 Q t, +1
Xexp{—%(tk—tl)TQt(tk—tz)—%(ma— k2 l) <V6+ 1 ) (mo— k2 l)}
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and finally
[ (s O0ha(a:,6)7(6) d6 = Eo(h (x5, O)ha :,6)").

4. Calibration

Having estimated the hyperparameters ¢p we now condition on these, so that we regard the
posterior distribution of the calibration parameters to be

p(8 | ¢,d) o |Va(8)| /> |W(8)['/2 expl—2{d— H(B)B(6)} "V o(8 )‘l{d—H(B)B(O)}]p(?))-

8
We can use this to make inference about 6, although its intractability means that numerical
methods must be used.

In practice, we will not generally be interested in inference about @ as such. The purpose
of calibration is to use the calibrated model for predicting the real process. We can think
of calibration as a preliminary to addressing the other statistical problems of interpolation,
sensitivity analysis and uncertainty analysis. Thus, the problem of predicting the true
process z(x) at some specified variable inputs @ can be seen as interpolating the function
z(+), and is dealt with in Section 4.1. Uncertainty analysis is addressed in Section 4.2. We
do not explicitly deal with sensitivity analysis in this paper: appropriate techniques are
outlined in O’Hagan et al. (1999).

4.1. Calibrated prediction

The posterior distribution of z(-) conditional on the estimated hyperparameters ¢ and the
calibration parameters 6 is a Gaussian process. Its mean function is given by

2) | 0,6,d) = h(z,0)TB(6) + tx,0)TVa(0) " (d— HOBO),  (9)
where
w0 = ("hi)
and
@00 = oy, (ol (3 + V(e D))

Its covariance function is given by

cov(z(z),z(z') | 0, 9,d) = p’c1((, ), (x',0)) + ca(x, ')
~t(z,0)"Va(8) 't(z',0)
+(h(z,0) — H(0)"V () 't(x,0))" W(6)(h(z',0) — H()"V4(6)'t(z',0)).

By combining this distribution with the posterior distribution (8) of 6, we can make infer-
ences about z(x), again using numerlcal computatlon methods. For instance to estimate
z(x) we might use its posterior mean E(z | @, d) (for the estimated values of ¢), obtained
by integrating (9) with respect to (8).
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4.2. Calibrated uncertainty analysis

Now suppose that we wish to predict the real process in the context where one or more of the
variable inputs is subject to parametric variability, as discussed in Kennedy and O’Hagan
(2000), Section 2.1. The problem of uncertainty analysis is to study the (extra) uncertainty
in model outputs induced by this parametric variability. Although uncertainty analysis for
computer codes is typically formulated in this way, i.e. with concern for uncertainty in the
code outputs, in the present context the larger challenge is to study uncertainty in the real
process 2(-).

We therefore consider the random variable z2(X), where the variable inputs X are now
random, having a distribution G x (). (In practice, only a subset of the variable inputs will
be subject to parametric variability, so G x (-) will be degenerate in the other dimensions.)
The task of uncertainty analysis is now to make inference about the distribution of z(X).
In particular, we wish to make inference about properties of this distribution such as the
mean K = E {z )} = [y 2(x) dG x (x), the variance L = var x {2(X)} = K> — K?,
where Ky = f » 2(x)? dG x (x), or the value at some point g of the distribution function
F(g) = Px{z(X ) g g} = fz(w)gg dG x (). Inference about these or other summaries of
the distribution of z(X) may be derived from the posterior distribution of z(-).

For instance, the posterior mean of K (given the estimated hyperparameters) is

B |¢a) = [ |[ BG@|0.6.ad0x@)| a6
- /e [R(6)7B(6) + £O) V() (d ~ H(0)B(8))] dG*(8), (10)
where G*(0) is the posterior distribution of 8 so that dG*(0) = p(0 | ¢,d)do, h(0) =
S h(x,0)dG x (x) and £(0) = [, t(z,0) dG x (x).

These integrals can be evaluated analytically for suitable choices of dG x (-), hi(-,-),
ha(-), c1((+,-), (+,-)) and ca(-,-). In particular, if G x is taken to be N(m,, V) and

cl((w7t)7 (mlatl)) = U%clz(w7wl)cw(t7tl) (11)
= olexp{—(z — ') Q. (x — x')}exp{—(t — t)TQ(t — ')}, (12)
eo(z,2') = ofexp{—(z—2)"Q(z—2)} (13)

then £(0)T = (£,(0)7,%5(0)7) where £;(0)T has ith element
11(0); = po?|T+2V Q.| Y2 exp{—(0—t;)TQ,(0—t;)— (x} —m,) T 2V .+ 1) Lz} =)}

(14)
fori=1,...,N, and £5(8)7 has ith element

1200); = pPPol|I+2V, Q. 2 exp{—(z; —m,) 2V, + Q) (x; — m,)}
+03|I + 2V, Q|7 /% exp{—(z; —m w)T(2Vz+ﬂ’;’1)‘1(wi—mz)} (15)

fori=1,...,n. Also

A — E {hl( 70)}
h(6) = (pEf({hQ(fv)} )

where the expectations are with respect to the N(m, V) distribution for X.
The integration with respect to @ in (10) must be performed numerically. By similar
expansions, following Haylock and O’Hagan (1996), we can evaluate var(K | 0,¢0,d), E(L |
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0,¢,d) and var(L | 0, ¢, d). Numerical integration with respect to (8) then yields var(K |
¢,d), E(L | ¢,d) or var(L | ¢,d). The approach of Oakley and O’Hagan (1998) can be
used to obtain posterior moments of the distribution function F(-).

It is equally straightforward to work in terms of an uncertainty analysis of the code
output 5(x, 8), with respect to either or both of parametric variability in @ and parametric
uncertainty (after calibration) in 6.

5. Computation

The main computational issues concern the need for numerical integration with respect to
the posterior distribution G* of 8, and the need to invert the matrix V 4(8) for each 6 value
in that numerical integration.

If the code 7)(+, ) is complex and computer-intensive, we will expect the number N of code
evaluations available to be relatively small (and we expect n to be smaller still). Then the
inversion of the (N + n) x (N 4 n) matrix V4(0) may not be a serious problem. However,
for a simpler code we may expect to be able to make larger numbers of runs to obtain
more information about 7(-,-). Then N is potentially very large. In this case considerable
computational savings are achieved by the code design D; having a Cartesian product
form. Suppose first that D, is the Cartesian product of an n,-point variable input design
{z1,...,2}_ } and an ns-point calibration input design {ti,...,%,, }, with points arranged
row-wise so that Dy = {(z],t1),...,(x},_ ,t1),---, (], tn,),- .., (2} ,tn,)}. Then, using
the fact that ¢;((-,), (-,-)) has the separable form (11) we find that V1(D;) = 0?2 A; ® A,
where A; and A, are correlation matrices for the calibration inputs and variable inputs
respectively. Then Vi(D1)™' = o72A;' @ A" and |V1(D1)| = o2™" | Ay |Ay|™.
We thereby need only work with matrices of dimensions n; X ny and n, X n,, instead of
N x N where N = ngn,. If the calibration input and/or variable input designs are also
Cartesian products in the individual inputs we obtain considerable further simplification.
Other Kronecker product forms arise for C1 (D1, D2(8)) and for various derived matrices.
These, combined with standard results for partitioned matrices, allow efficient computation
even when the number of code evaluations is extremely large. Another device that might
be considered for computation with large correlation matrices is the local computation
approach; Vecchia (1988). However, it is not clear how that idea could be usefully applied
in the more complex framework of calibration.

Turning now to the question of numerical integration with respect to 6, in our examples
we use the iterative Gauss-Hermite quadrature method of Naylor and Smith (1982). This
approach is realistic because the dimensionality of @ is relatively low, so that quadrature is
feasible, and because the code is relatively simple, so that we can afford to use Cartesian
product rules and iteration. With more expensive codes or in somewhat higher dimen-
sional @ space it becomes important to use more efficient quadrature designs (for references
see Evans and Schwartz, 1995). For high-dimensional @, it may become necessary to use
simulation methods of integration: we have not explored this yet.

6. Sensitivity to modelling assumptions in the Tomsk example

An analysis of the Tomsk data is described in Kennedy and O’Hagan (2000), in which
we made various modelling choices, particularly in relation to the correlation function.
These assumptions will not be appropriate for all applications. We now examine how some
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alternative plausible modelling assumptions affect inferences in the case of the 25-point
Tomsk data.

The original model described in Kennedy and O’Hagan (2000) (Strategy 2) will be
referred to as M1. Three alternative models are outlined below. In M2 we relax the
assumption that the hyperparameters are fixed, in M3 we use an alternative functional
form for the correlation function, and in M4 we consider the isotropic form of the gaussian
correlation function.

M2: Integration with respect to the roughness parameters. It was suggested in Section
3 that fixing hyperparameters at the posterior modal values, rather than treating them as
uncertain, is an acceptable simplification of the model. It is often the case in models of
this kind that inferences (especially posterior variances) are sensitive to the choice of the
roughness parameters in the correlation function. In an attempt to take more account of
the uncertainty about these parameters, we used a simple numerical method to integrate
over wy,ws in calculating the posterior predictive means and variances. These represent the
roughness parameters in our non-isotropic product of 1-dimensional correlation functions.
We assumed a weak but proper prior for w;,ws, to ensure that the integrals we are approxi-
mating are proper. The remaining hyperparameters p, A, and o2 were fixed at their original
posterior modal values. A 25-point Gauss-Hermite integration rule was used (Naylor and
Smith, 1982), based on a product of univariate 5-point Gauss-Hermite rules. Although, as
was pointed out in Section 3, the posterior distribution is strictly improper when we use
improper priors for these hyperparameters, this computation is intended only to show the
likely effect of integrating with respect to the hyperparameters if proper but relatively flat
prior distributions were used.

M3: Isotropic Matérn correlation. The exponential form of the correlation function
is appropriate if the inadequacy function is analytic, and therefore may not be the best
for modelling physical systems. We carried out an analysis identical to the one described
above but using the isotropic Matérn correlation function suggested by Handcock and Wallis
(1994), with hyperparameters v > 0 and a > 0. This function has the form

(at)” Ky (at)

t) = 16
t) = Ty (16)
where T' is a Gamma function and K, is a modified Bessel function (Abramowitz and
Stegun 1965, pp. 374-379). The form (16) represents a much wider class of correlations
than the simpler gaussian form. We estimate the hyperparameters (v, a) in the same way
as before. Using the noninformative prior p(¢) oc 02, the posterior mode estimates are

(6%,7,a) = (0.242,3.875,0.217). The implied correlation function is plotted in Figure 1.

MJ: Isotropic gaussian correlation function. The final model variation considered uses
the isotropic gaussian correlation function

c(z,z') = exp(—blz — '|?).

This is equivalent to assuming that w; = ws in M1. The estimated values of these parameters
under M1 differ by a factor of 20. Under M4 we might therefore expect to see quite different
inferences than we obtained with M1 if there is sensitivity to these roughness parameters.
This function is plotted in Figure 1 with b estimated by its posterior mode.

We now consider the effects of using each of these models. The absolute errors of
prediction based on M4 are shown in Figure 2. Very similar patterns of errors are seen
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Fig. 1. Matérn correlation function (dashed line) and exponential correlation function (solid line)
with hyperparameters estimated from the data

with each of the model variations M1-M4. The errors are greatest in the South-West region
close to the source of the release, and also on the north side of the plume. The Q-Q
plots of the residuals for each of the model variations are shown in Figure 3. The extreme
negative residuals seen in the Q-Q plots, which indicate a bad fit of the model, correspond to
an overestimation of deposition close to the source. In this particular application, however,
inference about deposition in regions further from the source are much more important. The
errors in prediction further North are accompanied by larger variances, and the standardised
residuals in this region are approximately N (0,1).

The RMSE obtained using the modified predictions from M2 is 0.35, which is slightly
better than the 0.36 achieved when the w parameters are assumed to be known. Such a mod-
est improvement does not justify the additional computation required, which is substantial
even for a crude 2-dimensional integration.

While taking into account hyperparameter uncertainty appears to give modest improve-
ments in RMSE, as does the assumption of isotropy, the standardised residuals look similar
in each case. In particular, for the Tomsk dataset, the difference between the use of gaussian
or Matérn class appears to be negligible. This will not always be the case, of course. With
additional data points it may be possible to estimate more appropriate hyperparameters
for the Matérn correlation function. Also, model inadequacy corrections do appear to be
smooth in this problem.

In short, we conclude that (a) any improvement due to integrating with respect to the
hyperparameters, as opposed to maximising, is likely to be small, and (b) the effect of using
alternative covariance structures is also small. However, we do not propose that any of these
models fits perfectly. Figure 2 and the Q-Q plots suggest that the true deposition surface
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Fig. 2. Absolute errors of prediction based on model M4 (dark regions correspond to the largest
errors), and the 25 design points
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exhibits local features that we are failing to predict. In some sense, all of the models have
predictive distributions with tails that are too thin. This is an area for ongoing investigation,
but is likely to be application-specific.

7. EXAMPLE: EXERCISE DATA

7.1. Data and model

The data for our second example comes from a recent exercise carried out at the NRPB
in which an accidental release was simulated. We should stress that although the data are
not real, they are realistic. They were not simply simulated from the plume model, but
deliberately incorporated unexpected features designed to test NRPB’s procedures thor-
oughly. Figure 4 shows the 112 log-deposition measurements of I-131 which were supplied
to NRPB during the course of the exercise. The contours represent an interpolation of the
log-deposition using Splus. The first 20 observations notified to NRPB in the exercise are
marked ‘D’, and these comprise our calibration data. Notice that these are not particularly
well placed. Four of these data are the furthest points from the area of greatest radiation
deposition, and an area of high deposition in the West is not represented in these data.
This is not unusual, and in practice one must use whatever early data are available, but it
means that we cannot expect to predict the actual deposition pattern accurately from these
data.

The wind direction changed twice while material was still being released from the source.
For the code 7(-), we use a sum of logarithms from 3 Gaussian plume models, each with an
unknown source term but known duration and wind direction. The deposition velocity was
fixed at 0.001, which is the default value for deposition of iodine particles. The variable
inputs x represent the position of a point relative to the source of the release and the wind
direction of the first plume. 8 is a vector of three log source terms, one for each of the wind
phases. The data comprise (x1, 21),. - ., (€20, 220), where x; is the variable input of the ith
measurement and z; is the corresponding measurement.

In the Tomsk example of Kennedy and O’Hagan (2000), the code was treated as a
known function. Although the code used here is also cheap, we now treat the code as an
expensive function in order to demonstrate the full analysis in which both the code and
the model inadequacy are modelled as Gaussian processes. For the code design we take
the coordinates from the first 20 physical data sites and form the cartesian product with
a 4-point latin hypercube design in the 3-dimensional 8-space, giving a total of 80 code
points. In the absence of real prior information, the prior mean was chosen to minimise the
mean squared error between the code and the physical observations. The best-fitting value
is 8" = (35.7,20.8,21.2). Traditional calibration would use the code with the input vector
assumed to be fixed at this value. The root mean squared prediction error (RMSE) based
on the remaining 92 observations is 3.28. Prior variances of 5 were used to represent weak
prior information, so that the prior is @ ~ N(8*,5I). Although we could be accused of
cheating by using the data to choose the prior mean, the effect on the analysis is minimal
due to the large prior variances. In a truly real scenario, prior estimates would be elicited
from radiation experts before any measurements are taken.

7.2. Results
Using the calibrated prediction method we obtain RMSE=2.45. Interpolation of the physical
data alone using a Gaussian process model produces RMSE=2.88. This corresponds to
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Fig. 4. Measurements of I-131 log-deposition, with contour lines at 12 (solid line), 10 (— — —)
and 8 (—-—)

reducing the typical prediction error of concentration from a factor of exp(2.88) = 17.8 to
exp(2.45) = 11.6. The errors are very large, due mainly to the poor data quality, but again
the improvement is worthwhile. The quantile plots based on these prediction strategies are
shown in Figure 5. These plots illustrate how the simple data interpolation underestimates
the variance and overestimates deposition generally.
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