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Design and Analysis of Computer
Experiments

Jerome Sacks, William J. Welch, Toby J. Mitchell and Henry P. Wynn

Abstract. Many scientific phenomena are now investigated by complex
computer models or codes. A computer experiment is a number of runs of
the code with various inputs. A feature of many computer experiments is
that the output is deterministic—rerunning the code with the same inputs
gives identical observations. Often, the codes are computationally expensive
to run, and a common objective of an experiment is to fit a cheaper predictor
of the output to the data. Our approach is to model the deterministic output
as the realization of a stochastic process, thereby providing a statistical
basis for designing experiments (choosing the inputs) for efficient predic-
tion. With this model, estimates of uncertainty of predictions are also
available. Recent work in this area is reviewed, a number of applications
are discussed, and we demonstrate our methodology with an example.
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1. INTRODUCTION

Computer modeling is having a profound effect on
scientific research. Many processes are so complex
that physical experimentation is too time consuming
or too expensive; or, as in the case of weather model-
ing, physical experiments may simply be impossible.
As a result, experimenters have increasingly turned to
mathematical models to simulate these complex sys-
tems. Advances in computational power have allowed
both greater complexity and more extensive use of
such models. Virtually every area of science and tech-
nology is affected. Our direct experience has been with
applications in combustion, VLSI-circuit design, con-
trolled-nuclear-fusion devices, plant ecology, and
thermal-energy storage, but this is only a small
sample.
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Computer models (or codes) often have high-
dimensional inputs, which can be scalars or functions.
The output may also be multivariate. In particular, it
is common for the output to be a time-dependent
function from which a number of summary responses
are extracted. For simplicity here, we shall assume
that interest is focused on a relatively small set of
scalar inputs, x, and on a single scalar response, y.
Making a number of runs at various input configura-
tions is what we call a computer experiment. The
design problem is the choice of inputs for efficient
analysis of the data.

The computer models we address in this article are
deterministic; replicate observations from running the

‘code with the same inputs will be identical. It is this

lack of random error that makes computer experi-
ments different from physical experiments, calling for
distinct techniques.

In the next section we describe some applications.
An understanding of the scientific background and
objectives will be helpful in Section 3 where the role
of statistics in modeling deterministic systems is dis-
cussed. This organization also parallels our research
program, which has largely responded to a number of
examples. Our statistical model, adopted from kriging
in the spatial statistics literature and described in
Section 4, treats the response as if it were a realization
of a stochastic process. This provides a statistical basis
for computing an efficient predictor of the response



410 J. SACKS, W. J. WELCH, T. J. MITCHELL AND H. P. WYNN

at untried inputs and allows estimates of uncertainty
of predictions. Within this framework, Section 5 dis-
cusses design criteria and algorithms for construction
of designs. Applying these methods to an electronic-
circuit simulator in Section 6 demonstrates what is
already possible. On the other hand, one of the pur-
poses of this paper is to highlight open problems and
questions. Some of these are discussed and summa-
rized in Section 7.

2. EXAMPLES AND OBJECTIVES

Kee, Grear, Smooke and Miller (1985) described a
fluid-dynamics model for flames which solves a com-
plex set of partial differential equations. In an ongoing
study with M. Frenklach and H. Wang, the input
vector is taken to be five rate constants controlling
five of the chemical reactions, and the response is the
flame velocity. The numerous other inputs to the code
are set at standard values based on knowledge of the
chemistry. The ultimate objective here is to tune the
computer model, that is find rate constants yielding a
flame velocity that matches physical data. A physical
analog of this experiment is impossible, because the
rate constants are indeed constants and cannot be
manipulated in reality. The need for careful design of
the inputs is underlined by the fact that a single run
of the code takes up to 20 minutes on a Cray X-MP.

Following Frenklach and Rabinowitz’s work, Sacks,
Schiller and Welch (1989) discussed examples of
methane combustion based on the solution of a large
system of (ordinary) differential equations arising
from chemical kinetics. Although the objective is sim-
ilar to that of the above flame example, the system of
equations is simpler and the numerical complexity is
less, allowing statistical design and analysis for a
larger set of inputs.

Another important application area is quality im-
provement of integrated circuits. This can involve
simulation of both the manufacturing process and the
circuit. For example, Nassif, Strojwas and Director
(1984) described the FABRICS II simulator and ap-
plied it to the processing of a ring oscillator. In these
applications, the inputs are circuit parameters such as
nominal transistor sizes and/or process parameters
such as reagent doses, and the response might be a
circuit delay time. Often, process variability is incor-
porated in these models by Monte Carlo sampling of
a noise distribution (e.g., Singhal and Pinel, 1981).
Conditional on the noise inputs, however, the simu-
lator is deterministic. The usual objective is to find
settings of the engineering or process parameters that
make the response insensitive to noise, as emphasized
in recent years by Taguchi (1986) and others.

Following Taguchi, the input variables x can often
be divided into control factors x.., and noise factors

Xnoise- 111 & circuit-simulator example studied by Welch,
Yu, Kang and Sacks (1988), the control factors were
transistor dimensions and the noise factors corre-
sponded to manufacturing-process variability. The re-
sponse y was a measure of the asynchronization of
two clocks, ideally zero. Generally, given a loss func-
tion L(y), a “parameter design” problem can be for-
malized as minimizing expected loss

j L [y (xcon ’ xnoise) ] d F (xnoise)

OVer Xcon. Here I'(xpoise) 1s an assumed distribution of
the noises. In the example, L(y) was y? and T' was
approximated by a uniform distribution on five noise
combinations to represent typical and extreme noise
conditions.

Another example is a thermal-energy storage model,
TWOLAYER, created by A. Solomon and colleagues
at Oak Ridge National Laboratory. This simulates
heat transfer into and out of a wall containing two
layers of phase-change materials. Currin, Mitchell,
Morris and Ylvisaker (1988) described a simple exper-
iment with melting temperature and layer thickness
as inputs. The response was a heat-storage-utility
index, and the main objective was to determine con-
figurations of the input parameters yielding high val-
ues of the index. The computational time for a single
run, normally several minutes on a Cray X-MP, was
reduced by Currin, Mitchell, Morris and Ylvisaker
(1988) for the purposes of their experiment by requir-
ing only a coarse solution to the differential equations
of the computer model.

These examples illustrate that the computer ex-
perimenter, like the physical experimenter, can
have many purposes in mind. We see three primary
objectives:

e Predict the response at untried inputs.
e Optimize a functional of the response.
e Tune the computer code to physical data.

These objectives prompt basic statistical questions:

o The design problem: At which input “sites” S =
{s1, -+, 8.} should data y(s,), ---, ¥(s,) be col-
lected?

e The analysis problem: How should the data be used
to meet the objective?

In this article we concentrate on the prediction
objective, as it is plausibly the most basic. If a suffi-
ciently precise predictor can be found, the experimen-
ter then has a cheap surrogate for the simulator.
“What if ” questions can be explored, optimization can
be performed on the predictor, etc.

3. THE ROLE OF STATISTICS

These deterministic computer experiments differ
substantially from the physical experiments per-
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formed by agricultural and biological scientists of the
early 20th century. Their experiments had substantial
random error due to variability in the experimental
units. Relatively simple models were often successful.
The remarkable methodology for design of experi-
ments introduced by Fisher (1935) and the associated
analysis of variance is a systematic way of separating
important treatment effects from the background
noise (as well as from each other). Fisher’s stress on
blocking, replication and randomization in these ex-
periments reduced the effect of random error, provided
valid estimates of uncertainty, and preserved the sim-
plicity of the models.

The above deterministic examples also differ from
codes in the simulation literature (e.g., Kleijnen,
1987), which incorporate substantial random error
through random number generators. It has been nat-
ural, therefore, to design and analyze such stochastic
simulation experiments using standard techniques for
physical experiments.

Apparently, McKay, Conover and Beckman (1979)
were the first to explicitly consider experimental de-
sign for deterministic computer codes. They intro-
duced Latin hypercube sampling, an extension of
stratified sampling which ensures that each of the
input variables has all portions of its range repre-
sented. Latin hypercubes are computationally cheap
to generate and can cope with many input variables.
These designs are aimed at an objective different from
those we discussed in Section 2: namely, how a known
distribution of the inputs propagates through to the
output distribution. (Of course, conditional on the
inputs, the output is still deterministic.) For this pur-
pose, Iman and Helton (1988) compared Latin hyper-
cube sampling with Monte Carlo sampling of a
response surface replacement for the computer model.
The response surface was fitted by least squares to
data from a fractional-factorial design. They found in
a number of examples that the response surface could
not adequately represent the complex output of the
computer code but could be useful for ranking the
importance of the input variables. Because Latin hy-
percube sampling exercises the code over the entire
range of each input variable, it can also be a systematic
way of discovering scientifically surprising behavior,
as noted in Iman and Helton (1988).

In the absence of independent random errors, the
rationale for least-squares fitting of a response surface
is not clear. Of course, least squares can be viewed as
curve fitting and not necessarily employing or relying
on the assumption that the departures (differences
between the response and the regression model) be-
have like white noise. The usual problem of choosing
the regression model is compounded if the response is
complex. Moreover, the fit will not generally interpo-
late the observed data (where the function is known

exactly) unless there are as many estimable coeffi-
cients in the regression as there are runs.

Despite some similarities to physical experiments,
then, the lack of random (or replication) error leads
to important distinctions. In deterministic computer
experiments:

e The adequacy of a response-surface model fitted
to the observed data is determined solely by sys-
tematic bias.

o The absence of random error allows the complex-
ity of the computer model to emerge.

¢ Usual measures of uncertainty derived from least-
squares residuals have no obvious statistical
meaning. Though deterministic measures of un-
certainty are available (e.g., max|y(x) — y(x)|
over x and a class of y’s), they may be very difficult
to compute.

¢ Classical notions of experimental unit, blocking,
replication and randomization are irrelevant.

While the pioneering work of Box and Draper
(1959) has relevance to the first of these points, it is
unclear that current methodologies for the design and
analysis of physical experiments [e.g., Box and
Draper, 1987; Box, Hunter and Hunter, 1978; Fisher
(1935); and Kiefer (1985)] are ideal for complex, de-
terministic computer models. Lest the reader wonder
whether statistics has any role here, we assert that:

¢ The selection of inputs at which to run a computer
code is still an experimental design problem.

o Statistical principles and attitudes to data analy-
sis are helpful however the data are generated.

e There is uncertainty associated with predictions
from fitted models, and the quantification of un-
certainty is a statistical problem.

e Modeling a computer code as if it were a realiza-
tion of a stochastic process, the approach taken
below, gives a basis for the quantification of un-
certainty and a statistical framework for design
and analysis.

4. MODELING AND PREDICTION

This section discusses models for computer experi-
ments and efficient prediction. Experimental design
for this predictor is the subject of the next section.

The model we adopt here treats the deterministic
response y(x) as a realization of a random function
(stochastic process), Y (x), that includes a regression
model,

k
(1 Y(x) = _21 Bifi (x) + Z(x).
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The random process Z(-) is assumed to have mean
zero and covariance

V(w, x) = ¢?R(w, x)

between Z (w) and Z (x), where o2 is the process vari-
ance and R(w, x) is the correlation. One rationale is
that departures of the complex response from the
simple regression model, though deterministic, may
resemble a sample path of a (suitably chosen) sto-
chastic process Z(-). Alternatively, Y(-) in (1) may
be regarded as a Bayesian prior on the true response
functions, with the 8’s either specified a priori or given
a prior distribution.

The use of a stochastic process as a prior on a class
of functions has a long history. Diaconis (1988) gave
an interesting account of early uses (back to H.
Poincaré in the 19th century) in one-dimensional in-
terpolation and integration. Suldin (1959, 1960) used
Brownian motion and integrals of Brownian motion
to develop quadrature formulas in one dimension.
Sacks and Ylvisaker (1970) independently considered
the same problem for a wider class of processes, and
the Brownian motion model has re-emerged in Smale
(1985). Corresponding efforts in d dimensions began
in Ylvisaker (1975). See Ylvisaker (1987) for a more
recent discussion. Sacks and Ylvisaker (1985) used
models of the form (1) with added independent meas-
urement error for one-dimensional (physical) experi-
mental design and analysis. Sacks, Schiller and Welch
(1989) employed such models (without measurement
error) for prediction in computer experiments with
multi-dimensional inputs.

One method of analysis for such models is known
as kriging (Matheron, 1963). Given a design S =
{31, T Sn} and data Ys = {y(sl), ) y(sn)},’ consider
the linear predictor

y(x) =c’(x)ys

of y(x) at an untried x. Taking a classical frequentist
stance, we can replace ys by the corresponding random

quantity Y, = [Y(s1), - -+, Y(s,)], treat y(x) as ran-

dom, and compute the mean squared error of this
predictor averaged over the random process. The best
~ linear unbiased predictor (BLUP) is obtained by
choosing the n X 1 vector c¢(x) to minimize

(2) MSE[y(x)] = E[¢’(x)Ys — Y(x)]
subject to the unbiasedness constraint
(3) Elc’(x)Ys] = E[Y(x)].

Alternatively, a Bayesian approach would predict
y(x) by

(4) ¥ (x) = E[Y(x) | ys],

the posterior mean. The frequentist and Bayesian
viewpoints will generally lead to different methods

and results, except in the special case of a Gaussian
process for Z(-) and improper uniform priors on the
B’s. It is an old result that the BLUP in the Gaussian
case is the limit of the Bayes predictor as the prior
variances on the (3’s tend to infinity (e.g., Parzen,
1963, Section 6).

Kimeldorf and Wahba (1970) investigated classes
of prior processes for which the Bayes estimate (4) is
a smoothing spline. Blight and Ott (1975) used a
stochastic process as a Bayesian prior on the departure
function for one-dimensional x. Steinberg (1985) and
Young (1977) mitigated the effects of model in-
adequacy by representing y(x) as a polynomial of
arbitrarily-high or infinite degree and assigning a
Bayesian prior to the coefficients. O’Hagan (1978,
Section 3) formulated a general Bayesian approach,
in which the prior on y(x) is a general multidi-
mensional Gaussian process. For a more detailed
discussion of the Bayesian viewpoint applied to
computer experiments see Currin, Mitchell, Morris
and Ylvisaker (1988).

In this article, we shall focus mainly on the kriging
predictor, partly for ties with methodology in use in
other areas and partly to simplify the exposition.
Moreover, the use of Gaussian spatial processes pro-
vides a bridge to the Bayesian viewpoint. Where the
Bayesian view provides additional insight, however, it
will be mentioned.

To give some technical details connected with im-
plementing the BLUP of the response at an untried
input we use the notation

f(x) =[fx), -, fl®)]
for the k functions in the regression,
f ,(31)
f'(sn)
for the n X k expanded design matrix,

R={R(s;, )}, l<si=n;1=<j=n,

F=

for the n X n matrix of stochastic-process correlations
between Z’s at the design sites, and

r(x) = [R(Sl, x)3 DY R(sn’ x)]/

for the vector of correlations between the Z’s at the
design sites and an untried input x. With these defi-
nitions, the MSE (2) is

5) o[1 + ¢’(x)Re(x) — 2¢’(x)r(x)],
and the unbiasedness constraint (3) is F''c(x) = f(x).
Introducing Lagrange multipliers A(x) for the con-

strained minimization of the MSE, the coefficient c(x)
of the BLUP must satisfy

0 F'\[Ax)) _ [f(x)
© (F R)(c(x))‘(r(x))'
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Then, by inverting the partitioned matrix, the BLUP
can be written as

) $(x) = f'(x)B.+ r' (xR (Ys — FB),

where 3 = (F’R™'F)"'F’R™'Y is the usual generalized
least-squares estimate of 3. Under the model, the two
terms on the right of (7) are uncorrelated, and the
second can be interpreted as a smooth of the residuals.
Therefore, the fit can be viewed as two stages: obtain
the generalized least-squares predictor and then inter-
polate the residuals as if there were no regression
model. '

A convenient representation for the MSE (2) is
obtained by substituting (6) in (5) to give

MSE[y(x)]

(8) A\
_ 02[1 — (f'(x) r'(x))<[°7 1;) (’; 8)]

Equations (7) and (8) are also the limiting posterior
mean and variance of Y(x) when a diffuse prior is
placed on the 3’s.

Of course, the correlation R (w, x) has to be specified
to compute any of these quantities. It-should reflect
the characteristics of the output of the computer code.
For a smooth response a covariance function with
some derivatives would be preferred, whereas an ir-
regular response might call for a function with no
derivatives.

A natural class is the stationary family R(w, x) =
R(w — x), presuming that any anticipated nonstation-
ary behavior can be modeled via the regression com-
ponent. Within this family we restrict attention to
correlations R(w, x) = []R; (w; — x;), which are prod-
ucts of one-dimensional correlations. Of special inter-
est to us are those of the form

9) R(w, x) = [] exp(—6;| w; — x;|7),

where 0 < p = 2. (We can also permit p to vary
with j.) The case p = 1 is the product of Ornstein-
Uhlenbeck processes; these are continuous but other-
wise not very smooth. The case p = 2 gives a process
with infinitely differentiable paths (mean square
sense) and is useful when the response is analytic.

An alternative correlation function, related to
(9) with p = 1, is the product of linear correlation
functions,

(10) R(w, x) = TI(1 — 6;| w; — x;|)+.

The predicted response v (x) using this correlation is
a linear spline. From a one-dimensional correlation
function R;(x;, w;), a smoothed correlation can be
obtained by integrating,

Rj(ll)j, xj) = f f Rj (u, U) du dv.

Such correlations are not stationary. However, as
shown by Mitchell, Morris and Ylvisaker (1988), sta-
tionary versions can be produced by a modified tech-
nique. In particular, the cubic correlation on the unit
cube

(11) [I[1 — g (w; — x)* + bj|w; — %7,

for certain choices of a; and b;, is the stationary ver-
sion of integrating (10) and produces cubic spline
predictors.

The product form of the correlations is especially
convenient for some of our computations. This rules
out correlations like

(12) R(w, x) = exp(—0||w — x|),

where || - || is Euclidean distance in d dimensions, but
we are optimistic that the product families already
provide enough flexibility for adequate prediction in
most cases.

Given the family of correlations, there still remains
the question of selecting or estimating the parameters
of the family [6; and p in (9) say]. In Currin, Mitchell,
Morris and Ylvisaker (1988) and Sacks, Schiller and
Welch (1989), we have found that cross validation
and maximum likelihood estimation (MLE) are use-
ful at the analysis stage (i.e., after data have been col-
lected) and in data-adaptive sequential design (see
Section 5).

Assuming a Gaussian process, the likelihood is a
function of the 8’s in the regression model, the process
variance o2, and the correlation parameters. Given the
correlation parameters, the MLE of the B’s is the
generalized least-squares estimate, and the MLE
of o2 is

#* == (s = FAYR™(ys — FB).

With these definitions of 3 and 2, the problem is to
minimize (det R)*"52%, which is a function of only the
correlation parameters and the data.

5. EXPERIMENTAL DESIGN

5.1. Introduction

The design of deterministic computer experiments
has been partly addressed in the literature. For ex-
ample, Sacks and Ylvisaker (1984, 1985), Welch
(1983) and references mentioned therein have consid-
ered nonparametric systematic departures from
regression models. Random error is also included, but
the resulting sampling-variance contribution to mean
squared error can be set to zero, and these approaches
have helped shape our formulation. For the most part,
however, the designs used for fitting predictors have
been those developed for physical experiments. Such
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designs typically have appealing features of symmetry
and are often optimal in one or more senses in settings
which include random noise. Their appropriateness
for computer experiments, however, is by no means
clear. Latin hypercube sampling, discussed in Sec-
tion 3, is aimed at objectives different from those we
have in mind.

There has also been some work in design for nu-
merical integration, where function evaluations can
be viewed as a computationally cheap computer ex-
periment. Much is known about design for one-
dimensional quadrature. In particular, Sacks and
Ylvisaker (1970) constructed good designs (finite n)
from asymptotically (n — ) optimal designs. These
methods, however, do not carry over to d > 1 dimen-
sions (see Ylvisaker, 1975). Similarly, in the numerical
analysis literature (Davis and Rabinowitz, 1984) re-
sults for d = 1 offer little guide to d > 1.

5.2. Design Criteria

For a fixed number of runs, n, and for specified
correlation structure R, we need a criterion for choos-
ing a design that predicts the response well at untried
inputs in the experimental region 2°. Here, we con-
sider functionals of the MSE matrix or kernel

M = {E[Y(w) — yw)][Y(x) — y(x)1}

for all w and x in #°. The diagonal elements are the
MSE[y(x)] given in (8). In the Bayes case when the
B’s in (1) are known constants, M is just the posterior
covariance matrix of the process. When the 3’s have
prior variances that tend to infinity, M is the limiting
posterior covariance matrix of Y(-). We now list var-
ious criteria based on M.

Integrated Mean Squared Error (IMSE). The IMSE
criterion chooses the design S to minimize

L MSE[y(x)]¢(x)dx

for a given weight function ¢ (x). From (8) the IMSE
can be written as

-1
2l 0 F’
o { 1 trace[( F R

ff (x) flx)r'(x)
f <r(x)f’(x) r(x)r'(x))""")dx}}'
These integrals simplify to products of one-dimen-
sional integrals if £ is rectangular and the elements
of f(x) and r(x) are products of functions of a single
input factor. Thus, polynoniial regression models and
product correlations can be numerically convenient.
The IMSE criterion is essentially the trace of M
(suitably normalized). We assume that ¢(x) is uni-
form, though other weights cause no real difficulty.

(13)

This criterion has proved to be effective in terms of
actual squared error of prediction in test examples
reported by Sacks, Schiller and Welch (1989).

Maximum Mean Squared Error (MMSE). Instead
of integrating the MSE of prediction, MMSE is a
minimax criterion which chooses the design to mini-
mize

max MSE[y(x)].
xEZL

Sacks and Schiller (1988) compared IMSE and MMSE
for discrete regions. For continuous regions, however,
this criterion is computationally complex. It involves
a d-dimensional optimization of a function with nu-
merous local optima at every iteration of a given
design-optimization algorithm.

Entropy. A criterion advanced by Lindley (1956) in
his work on Bayesian design is the minimization of
the expected posterior entropy. Shewry and Wynn
(1987, 1988) applied it to spatial sampling, and Currin,
Mitchell, Morris and Ylvisaker (1988) applied it to
the design of computer experiments. It quantifies the
“amount of information” in an experiment. In the
present setting, if the experimental region 2 is dis-
crete, the entropy criterion chooses the design S to
minimize E (—log g), where g is the conditional density
of Y(-) on § = 2 — S given Ys. Using a classical
decomposition of entropy, Shewry and Wynn (1987)
showed that minimizing the expected posterior en-
tropy on S is equivalent to maximizing the prior
entropy on S. When Y(-) is Gaussian, this is the same
as choosing S to maximize the determinant of Vg, the
covariance matrix for Y(-) on S. Straightforward al-
gebra also shows that, in the limiting Bayes case as
the prior variances of the 8’s tend to infinity, max-
imization of det Vs is equivalent to maximizing
det R - det(F’R™'F). If the 3’s are regarded as fixed
(as in Currin, Mitchell, Morris and Ylvisaker, 1988,
for the case of a constant prior mean), the last deter-
minant disappears and the entropy criterion reduces
to maximization of det R.

5.3. Algorithms

There is no way to implement the ideas set forth
above without a method of constructing designs. The
utility of D-optimal designs for standard analysis of
variance and regression problems with independent
experimental errors has only been realized by the
development of accessible algorithms (Fedorov, 1972;
Mitchell 1974; Welch, 1985; and Wynn, 1970).

Because standard designs can be inefficient or even
inappropriate for deterministic computer codes, the
need for computer software is even greater. Of course,
efficiency has to be weighed against computational
cost and convenience. Computer models like the flame
code in Section 2, which themselves are expensive to
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run on supercomputers, justify the cost of supercom-
puting in constructing good designs. It is these models
we have in mind here. Less effort would be warranted
to design for a code that runs on a workstation, say,
and so there is also a need for cheap, less sophisticated
algorithms.

We now describe some of the algorithms we have
used. They can be classified as single-stage methods,
sequential methods without adaption to the data, and
sequential methods with adaption.

Single-stage design fixes n in advance, and all n
design sites are simultaneously optimized according
to one (or perhaps a combination) of the above criteria.
In addition to standard optimization routines, such as
quasi-Newton, a number of exchange algorithms have
been tried, primarily when the experimental region is
a large, finite grid. At each iteration, an exchange
replaces a site in the design by a site that improves
the criterion. Currin, Mitchell, Morris and Ylvisaker
(1988) adapted Mitchell’s (1974) DETMAX excursion
algorithm for the entropy criterion. The exchange
algorithms used by Shewry and Wynn (1987) ex-
change sites by adding a random candidate site to the
design and deleting the worst site. When the design is
close to a (possibly local) optimum, the random can-
didates are restricted to neighborhoods of the current
sites. A simulated annealing algorithm was found use-
ful by Sacks and Schiller (1988) in problems with a
small, finite experimental region. For larger problems,
the time taken for the annealing process to converge
to the optimum was far too long. Simulated annealing
algorithms typically require many exchanges and are
therefore feasible only when exchanges are cheap.
Unfortunately, in our context each exchange may
require substantial linear algebra. For continuous re-
gions, we currently prefer standard optimization rou-
tines, at least for n X d < 100.

Sequentially designing one site at a time reduces
the computational burden from a single n X d-dimen-
sional optimization to a sequence of d-dimensional
optimizations. Unlike physical experiments, sequen-
tial schemes for computer experiments are no more
difficult to organize than a single stage. The design

.can also adapt to information gathered about the
regression model and R (w, x). Furthermore, there is
the option of allowing n to be determined as data
accumulate, stopping the algorithm as soon as there
is sufficient information. Fully sequential design is,
therefore, the most natural for computer experiments;
unfortunately, it is also the most difficult to treat
theoretically.

A sequential design algorithm devised for the IMSE
criterion, though ad hoc, avoids some pitfalls (see
Section 7) encountered in using simple one step look
ahead schemes. It starts by dividing the experimental
region into a number of subregions or boxes. Each

new point is added by computing the contribution
to the current IMSE from each box, finding the box
with the largest contribution, and adding a point in
that box that most reduces the contribution in that
box. The example of the next section exercises this
algorithm.

6. CIRCUIT-SIMULATOR EXAMPLE

To illustrate what is already possible, we take a
circuit-simulator code similar to that considered by
Welch, Yu, Kang and Sacks (1988) and mentioned in
Section 2, but differing in the circuit topology. Again,
the response is a clock asynchronization or “skew,”
and we consider six transistor widths as inputs. To
avoid getting sidetracked by issues specific to quality
control, we do not consider the noise factors here
(they are kept fixed at average levels), nor do we
perform any circuit-design optimization. We only con-
sider the problem of predicting the clock skew as a
function of the six input widths.

The experimental region of interest for the six
widths is rectangular, which we transform to the unit
cube [—Y%, %]°. We assume the model

(14) Y(x) =8 + Z(x),

where Z(-) has a correlation function given by (9).
This model is selected for various reasons. The regres-
sion component includes only the constant 8 partly
because our previous experience in other examples has
indicated that this simplification does not affect pre-
dictive performance. Moreover, engineering experi-
ence does not suggest strong trend over the region of
interest. The circuit-simulator clock skew is believed
to behave smoothly as a function of the transistor
widths; by putting p = 2 in (9), a smooth correlation
function for Z(-) is obtained. (This initial major as-
sumption of smoothness is revised later by estimating
p.) A similar model also gives good predictions when
applied to the data in Welch, Yu, Kang and Sacks
(1988).

Partly based on our experience with the earlier
problem, we allow a total of 32 runs of the simulator
for the experimental design. Choosing a single-stage
design would mean specifying 6, - --, 6 and carry-
ing out a 192-variable (6 X 32) optimization of the
design-point coordinates. T'o reduce the computational
burden and to allow adjustment of the model in mid-
stream, we select a first-stage design of 16 points by
setting 0, = ... = fs = 2 for efficiency-robustness in
the sense of Sacks, Schiller and Welch (1989) (de-
scribed further in Section 7). Optimizing the IMSE
over 6 X 16 = 96 coordinates using a quasi-Newton
library routine takes about 11 minutes on a Cray
X-MP. The design, given in the first 16 rows of
Table 1, is probably only locally optimal. The
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TABLE 1
Experimental design and clock skews for the
circuit-simulator example

Run Experimental design Skew
1 0.21 —0.26 0.23 —0.21 —0.17 —0.27 -0.972
2 -0.19 0.18 0.22 021 0.25 0.28 —0.620
3 —-0.19 —0.08 —0.28 —0.28 —0.25 —0.18 -0.711
4 0.19 —0.25 0.28 0.28 —0.06 0.19 —1.040
5 -0.28 025 -0.22 —0.21 0.17 0.19 -0.532
6 -0.22 021 0.17 0.16 —0.22 —0.22 —-0.799
7 -0.22 —-0.12 0.27 -0.25 0.23 —0.11 —0.940
8 0.11 0.23 —0.27 0.24 —-0.13 0.22 —0.416
9 —0.19 —0.19 —0.19 0.24 022 —0.17 -0.500
10 0.17 0.21 0.19 —0.24 —-0.20 0.19 -1.293
11 —0.26 —0.24 0.01 0.01 —0.24 0.26 —1.152
12 0.18 0.25 —0.21 —0.21 0.16 —0.28 —0.161
13 0.28 0.18 0.21 0.20 0.25 —0.18 —0.496
14 0.27 —-0.18 —0.23 0.21 —0.26 —0.20 —0.612
15 —0.01 0.00 0.00 0.00 0.00 0.01 —0.604
16 0.22 —0.22 —0.17 —-0.16 0.21 0.22 -0.897
17 0.10 —0.30 —0.32 —0.38 0.33 —0.30 —0.342
18 001 031 035 045 —0.36 0.41 -1.199
19 —-0.32 045 —047 0.44 0.36 —0.28 —0.083
20 -0.27 037 0.33 -0.33 0.37 0.30 —1.048
21 —0.41 0.38 —0.32 —0.29 —0.47 0.37 —1.088
22 0.14 038 0.36 —0.40 —0.46 —0.49 —0.804
23 —-0.15 —0.30 —0.28 0.28 0.29 0.26 —0.444
24 —0.24 —0.36 0.38 0.30 0.35 —0.37 -0.799
25 —0.46 —0.39 0.29 —0.37 —0.46 0.34 —1.918
26 0.17 0.36 —0.26 0.29 —0.41 —0.40 —0.535
27 0.23 —0.20 0.26 0.34 —0.45 —0.27 —1.242
28 0.31 —0.32 —0.25 —0.31 —0.19 0.29 -1.129
29 —0.01 -0.33 0.34 —0.43 0.47 0.37 —1.214
30 0.20 —0.37 —0.36 0.46 —0.45 0.39 —1.049
31 0.21 031 0.32 —0.20 0.45 —0.46 -0.135
32 -0.21 029 —-0.27 0.20 0.40 041 —0.256

projection onto two of the six input coordinates in
Figure 1 shows that the design is well away from the
boundary, very likely a feature of the IMSE criterion
with the constant regression model.

With the data from running the simulator at these
16 points, the MLE of p is 2 (the upper constraint)
and those of 6,, - - -, 6 are .00, .39, .42, .53, 1.97 and
.46. These values are now used in the generation of
the second-stage design by the sequential strategy
outlined in Section 5. The experimental region is
broken into 32 boxes by dividing each of the last five
input ranges in half. The first variable is not used to
define these boxes as 8, = 0, suggesting that the
response is fairly constant (highly correlated) over
this factor, though it is still included in the second-
stage design. The second set of 16 points, generated
one at a time, is given in the second half of Table 1.
These points are less concentrated in the center of the
design region than the first-stage design, about which
we have some misgivings. The MLE of p recomputed
from all 32 observations is 1.54, indicating a less-
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F1G. 1. Projection of the experimental design onto the coordinates
of two input variables.

smooth surface than initially thought. The MLEs of
b1, ---, 06 are .00, .06, .19, .34, .14 and .32, again
suggesting that the first factor is irrelevant.

To investigate the effectiveness of the BLUP based
on this design, we can compare the true responses
from the simulator at 100 random points ry, - - -, rigo
in the experimental region with predictions from the
BLUP. (We chose a computationally cheap circuit-
simulator code to allow this evaluation.) One summary
statistic is the empirical integrated squared error

1
100
which equals (.122)? (relative to a data range of about

2). The maximum absolute discrepancy between the
true clock skew and the BLUP over these 100 points

Sy ) =yl

- is .458. For comparison, a quadratic response surface

with 28 unknown coefficients fitted by least squares
to the data from our design gives an empirical inte-
grated squared error of (.674)? and a maximum abso-
lute error of 1.71. This illustrates the potential danger
in extrapolating polynomial models, but part of the
poor performance may be due to our design, which is
not intended for this sort of analysis.

It is also interesting to see whether the MSE (8) of
the BLUP is a meaningful indicator of uncertainty in
prediction. From the MSEs at the 100 random points
(again based on the 32-point MLEs), one can compute
standardized residuals [y (r;) — 3 (r;)]/{MSE [ (r;)]}*/2.
The Q-@ plot in Figure 2 shows that these standard-
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FI1G. 3. Predicted clock skew plotted against true clock skew at 100 random sites.

ized residuals are approximately standard normal,
suggesting a central-limit-theorem effect. Also, the
slope of the plot is fairly close to 1, indicating that the
MSEs do, indeed, provide a valid estimate of error in
this example. The plot of y(r;) against y(r;) in Fig-
ure 3 also shows that the poorest predictions tend to

be where there are large negative skews. Possibly,
the computer code is erratic at such extreme clock
skews and harder to predict.

For insight into the relative effects of the six inputs,
the response can be decomposed into an average, main
effects for each input, two-input interactions and



418 J. SACKS, W. J. WELCH, T. J. MITCHELL AND H. P. WYNN

higher-order interactions. Define the average of y(x)
over the experimental region by

po = f y(x) hl=]1 dxp,

the main effect of input x; (averaged over the other
inputs) by

pilx;) = fy(x) IT dx,. — po,

h#i

the interaction effect of x; and x; by

i (xi, %) = fy(x) IT dxn — i) — pi(x) — po,
h#i,j

and so on for higher-order interactions. These effects
are estimated by replacing y(x) by 7 (x). In the current
example, visual inspection of the estimated effects up
to two-input interactions suggests that the average,
the main effects for factors 2-6, and the interaction
of x, and x¢ are the important effects. The predictor

fo + fia(x2) + -+ + fie(x6) + frae(Xa, Xe)

gives an empirical squared error of (.128)2, supporting
this interpretation.

Using a different design criterion (entropy), algo-
rithm (adaptation of DETMAX), and correlation
function [(9) with p = 1 at the first stage and (11) at
the second stage], Currin, Mitchell, Morris and
Ylvisaker (1988) arrived at a design concentrated
on the boundary of the experimental region. When
used to predict at the same 100 random points, they
reported an empirical integrated squared error of
(.163)? and maximum absolute error of .369 over the
same 100 random points. Thus, the predictions from
this alternative approach are worse on average than
the design produced by the IMSE criterion, but the
maximum error is better.

7. DISCUSSION

We now summarize a number of open statistical
> problems that we have discussed only briefly so far
and some alternative approaches.

7.1. Simulator Complexity

Almost all of the simulation codes we have worked
with are differential-equations solvers. Many of the
numerical and other difficulties we have encountered
with these codes have implications for the statistical
design and analysis.

e A single run of thé code may be computationally
expensive, for example the 20-minute run time

for the flame code (see Section 2), obviously call-
ing for efficient design and analysis.

e The coarse solution to the TWOLAYER code (see
Section 2) is a step-like function that may not
mirror important features of the accurate solu-
tion. An accurate solution is expensive.

e The mathematical model itself may be a poor
approximation to reality. For example, the simple,
deterministic function used by Taguchi (1986,
Chapter 6) for parameter design of a Wheatstone
bridge generates negative electrical resistances
over part of the region of experimentation. Such
aberrant data are misleading and can degrade the
analysis. In complex settings, computer-model de-
ficiencies are not so easy to identify. In this article
we have largely ignored the problem of validating
codes against reality. Rather we have focused on
prediction of the computer code itself. Of course,
a predicted response that is surprising may help
to identify defects in the code.

e The inputs may be of high dimension. This inter-
acts with the first difficulty. If the data are expen-
sive, scientists and statisticians are fully aware of
the difficulty in obtaining adequate information
about many factors, and screening to reduce di-
mension is necessary. Thus, expensive data (few
runs) and low dimension go together. Cheap data,
however, allow many runs, so many factors can
be investigated and often are.

7.2. Estimation of Model Parameters

Because the correlation matrix of the data, R, is
n X n, the maximum-likelihood computations outlined
in Section 4 can be formidable. Vecchia (1988) ap-
proximated the likelihood by writing it as a product
of conditional densities and conditioning on only a
small number of nearest sites. The approximation
is cheaper to compute but may retain most of the
information.

Properties of the MLE are not well understood and
are under study. Mardia and Marshall’s (1984) asymp-
totic results on consistency are not applicable if the
region for x is bounded. Their Monte Carlo studies of
small-sample behavior indicated substantial variabil-
ity in the estimates. The validities of the BLUP and
measures of uncertainty calculated by substituting
MLE:s of the correlation parameters therefore appear
questionable, but our experience is that even crude
MLEs can lead to useful predictions and quantifica-
tion of uncertainty. Stein (1988) showed that under
special circumstances the BLUP can be not only
consistent but asymptotically efficient even when
the correlation function is misspecified, provided the
misspecification leads to a “compatible” Gaussian
measure.
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7.3. Design Algorithms

All algorithms we have tried for single-stage design
are impeded by a number of computational obstacles.

e The optimization is over n X d design-site coor-
dinates. Though symmetries in the optimal de-
signs are sometimes present, we have not found
ways to exploit them to reduce the dimension of
the optimization. Since there can be numerous
local optima, several tries are necessary.

¢ Evaluating a “trial” design at each iteration of an
optimization algorithm typically involves the so-
lution of a set of at least n linear equations, for
example (13) to compute the IMSE. (The vecto-
rizing architectures of computers like the Cray X-
MP we have used are ideal for this type of linear
algebra, however.)

e The correlation matrix R in (13) (and in other
criteria) can be poorly conditioned, and naive
rules for cheaply updating the solution from one
iteration to the next may lead to numerical errors.
For a given correlation function, the conditioning
of R becomes worse as n increases.

Thus, the design criteria of Section 5.2 require partic-
ularly careful numerical analysis. The computation of
D-optimal or other efficient designs for experiments
with independent errors shares some of these difficul-
ties, but to a far lesser degree.

As discussed in Section 5.3, sequential design is
computationally cheaper and allows adaption to the
data. Simple (myopic) sequential strategies of adding
the next point to minimize the value of the new design
criterion do not work well, however, at least for the
IMSE and MMSE criteria. There is a tendency for
design sites to eventually “pile up.” This may seem
counter-intuitive but consider the following example.
With the MMSE criterion, take d = 1 and 2 = [,
4]. Suppose model (1) has no regression component,
and let Z () have correlation function exp[—(w — x)?].
Let the first site, s,, be placed at zero. If the second
site, s, is to the left of zero, a straightforward calcu-
lation of MSE[ ¥ (x)] from (8) shows that the maxi-
mum MSE [y(x)] occurs at x = ¥, and the maximum
decreases as s, tends to zero. Exact replication does
not occur—the limiting design enables y(0) and y’(0)
to be evaluated—Dbut this is inefficient relative to the
best two-site design. In several dimensions, we have
observed that the first few design sites do not pile up
in this way, but the same phenomenon eventually
occurs. This is not a problem for the entropy criterion,
because it places each new design site where the
current MSE[y(x)] is maximized, thereby avoiding
‘the neighborhoods of existing design sites.

We described in Section 5.3 a modified sequential
algorithm for the IMSE criterion which overcomes

this problem by dividing the experimental region. To
test the efficiency and running time of this algorithm,
we constructed various designs with 9 <= n < 25,
p=1.6or2in correlation (9),d =2, 3, or 4 dimensions,
and constant (8) or first order (8, + Y, x;8;) regres-
sions. The sequential algorithm required only about
20-30% of the CPU time of a full optimization of all
n design sites. Further computational gains would be
possible by updating, rather than recomputing, the
IMSE as each new site is introduced. Clearly, any
sequential scheme without adaption to the data has to
be less efficient than an optimal one-stage scheme.
Nonetheless, some comparisons show that the effi-
ciency of the designs constructed by the sequential
algorithm just described ranges from 40-90%. The
lower efficiencies tend to arise when small IMSEs are
compared; that is, when n is large, d is small and the
regression has just the constant term. Adapting the
correlation structure to the data (e.g., by MLE) could
lead to sequential methods which outperform one-
stage algorithms, especially if the data indicate that
some inputs are more important than others.

7.4. Efficiency-Robustness of Designs

Assumptions have to be made about the model for
Y(-) and the design criterion. It is natural to ask a
number of questions about the efficiency of a design
if assumptions change.

e How sensitive are optimal designs to the choice of
correlation structure?

o What effect does the regression part of the model
have on design?

e How do designs chosen by one criterion perform
with respect to other criteria?

o Are there sub-optimal designs which are robust to
choice of criterion?

o How important is optimality in this setting?

® Are there cheap-to-construct alternatives that per-

- form reasonably well?

Answers to these questions are limited to a large
extent because of the difficulty in computing optimal
designs; at the moment we can only refer to some
fragmentary, anecdotal results.

Sacks, Schiller and Welch (1989) investigated the
effect of the correlation function on the efficiency of
the design and predictor. Their study was limited to
the effect of the correlation parameter § within the
family (9) with p = 2. They computed IMSE-optimal
designs for various values of 6. For a given “true” 6,
the efficiency of one of these designs, S, relative to
the optimal design S, was defined to be IMSE(S,)/
IMSE(S), and there will be some worst-case value of
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6, which minimizes this efficiency. The design that
maximizes the worst-case efficiency was deemed to be
robust to 6. A further complication is that when eval-
uating IMSE(S), the BLUP can be based on the true
6 or that assumed when generating the design. If the
data will be extensive enough to estimate the correla-
tion structure, the true # may be appropriate, other-
wise the assumed 6 is retained at the prediction stage.
Sacks, Schiller and Welch (1989) considered both
cases. Typically, designs for “moderately small” 0 re-
sulted. This approach requires computing a number
of optimal designs and is limited to problems with
n X d < 100, say. For larger problems these efficiency-
robust designs can be used, however, to start a se-
quential scheme.

Currin, Mitchell, Morris and Ylvisaker (1988) im-
plicitly considered robustness of efficiency of the en-
tropy criterion to the correlation structure, although
they made no study. In several examples, they de-
signed using (9) with p = 1 and 6 very large. The
intuition was that this prior represents hard-to-pre-
dict (low correlation) functions, whereas any reason-
able design would deal adequately with easier
functions. [There is a connection between designs
produced by the entropy criterion as correlations be-
come smaller and those from maximizing the mini-
mum distance between the design sites (Johnson,
Moore and Ylvisaker, 1988).] A measure of efficiency
based on differences in MSEs would lead to a choice
of a low-correlation prior, whereas the contrary find-
ings of Sacks, Schiller and Welch (1989) were based
on relative efficiency.

Sacks and Schiller (1988) investigated the effect of
qualitatively different correlation functions—(9) with
p = 2 versus (12)—on robustness of efficiency. They
used MMSE as the criterion, had no regression model
and designed on a grid. The 0’s of the two correlation
functions were chosen to match correlations between
Z’s at nearest neighbor grid points. This study showed
that designs optimal by the MMSE criterion for one
correlation were over 80% efficiency for the other (the
entries in their Table 3.1 need to be re-ordered).
In contrast, we have found that, in predicting two-
_dimensional integrals, good designs for correlation (9)
with p = 1 behave poorly in terms of relative efficiency
when p = 2.

Whether or not a design has robustness of efficiency
with respect to alternative correlation functions, the
properties of the BLUP will be seriously affected. In
particular, higher correlations dramatically increase
the apparent precision of prediction. Fortunately, us-
ing the data to estimate correlation parameters may

lead to effective prediction and reliable estimates of -

uncertainty (as in the example of Section 6).
The role of the regression model is not yet clear,
but it seems to be less important than in design for

traditional models with “white noise” errors. System-
atic departure from the regression model just becomes
part of Z(-), and the BLUP is always an interpolator.
In the circuit-simulator experiment, for example, our
regression model included only a constant term, yet
the predictor appears to follow the true surface, which
is clearly not constant, reasonably well. In Example 2
of Sacks, Schiller and Welch (1989) a special class of
designs was employed for a methane-combustion code,
and it was noted that the effect of the regression
model was negligible at the prediction stage. The
BLUP was able to adapt to the absence or presence of
regression terms: a smaller regression model is com-
pensated for by a covariance function with larger
estimated correlations. This phenomenon has some
theoretical justification in ongoing work with Y. B.
Lim and W. J. Studden on the asymptotic behavior of
designs and predictors as the correlation gets large in
(9) withp = 2.

Sacks and Schiller (1988) found that the entropy
and MMSE criteria produce very different designs.
The example of Section 6 indicates strong differences
between designs from the entropy and IMSE criteria.
The entropy criterion tends to push the design sites
away from one another, so for small n the optimal
design lies on the boundary of the experimental region.
As n increases, some interior sites appear—the higher
the dimension, the larger n has to be for this to occur.
Attraction to the boundary seems not to be a feature
of the IMSE and MMSE criteria. In fact, the first 16
runs in Table 1, chosen nonsequentially by IMSE, are
well in from the boundary. These remarks are con-
cerned only with the appearance of the designs; we
know of no comprehensive investigations of efficiency
robustness with respect to the entropy, IMSE, and
MMSE criteria. It may turn out that new criteria
are necessary, possibly incorporating robustness
explicitly.

7.5. Some Alternative Approaches

There are some close connections between the ex-
perimental designs produced by the IMSE criterion
and previous approaches aimed at minimizing the
impact of systematic error in physical experiments.
The primary design criterion of Box and Draper (1959,
1963) is also an integrated mean squared error, in-
cluding components from squared bias and error var-
iance. The variance component turned out to be
unimportant for design in the sense that “all-bias”
designs that minimize the bias component do fairly
well even when the variance component is substantial.
Despite modeling the systematic departures by higher-
order polynomials rather than a stochastic process,
these all-bias designs are qualitatively similar to those
from our use of the IMSE criterion, with design points
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away from the boundaries of the region of interest. It
is plausible that they may be competitive for computer
experiments, but the numerical burdens are again
extensive. :

We have some doubts about transferring least-
squares fitting of response surfaces to computer ex-
periments, however. Comparisons can be made by
computing the root average squared error or maximum
absolute error from test data. In the circuit-simulator
example of Section 6, the least-squares quadratic fit
is only about 18% and 27% efficient by these criteria
relative to the fit from model (14). In this comparison
the design constructed for the IMSE criterion was
used for both fits. Sacks, Schiller and Welch (1989)
reported an example where the least-squares fit to
data from a standard factorial design with design
points at the boundary of the region of interest had
similarly low efficiency.

Our methods are interpolation schemes and could
be compared to methods in the numerical analysis
literature. The correlation functions (10) and (11) lead
to linear and cubic splines. In one dimension, the
correlation (9) with p = 2 is related to Lagrangian
interpolation when 6 is small. There is little informa-
tion in the literature about the construction of good
designs for higher-dimensional interpolation.

In the presence of systematic rather than random
error, a good experimental design tends to fill out the
design space rather than being concentrated on the
boundary. Low-discrepancy sequences such as Halton
(1960) sequences for numerical integration of non-
smooth functions have this “space filling” property
(as do Latin hypercube designs). Also, the use made
of discrepancy criteria and error bounds based on
maximum or average bias are closer in spirit to the
approach of this paper than to the randomization
bounds of classical Monte Carlo (see Niederreiter,
1978). The efficiencies of these easy-to-generate de-
signs for the objective of prediction should be inves-
tigated, especially for very large experimental designs,
where criterion optimization may be infeasible.

7.6. Kriging and Spatial Design

In the kriging and spatial statistics literature, the
random process Z(-) is often modeled using the var-
iogram E[Z(w) — Z(x)]? rather than the covariance
function. Analogous computational formulas for the
BLUP, etc. follow. The variogram permits a wider
class of processes, but we are not certain that the
added flexibility is needed in our applications. Esti-
mation of the variogram has been studied by several
authors; see Cressie (1988) for a recent review.

The data to which spatial methods are applied usu-
ally have a two- or three-dimensional x space. They
sometimes appear to have measurement error or may
be more erratic than responses from computer codes.

Geostatistical models used often incorporate a so-
called “nugget effect” for erratic local behavior. While
we have not addressed such models, it is worth
noting that correlation functions of the form (9) with
0 < p = 1 may be useful for modeling such erratic
data.

It is not obvious that methods of estimating the
variogram extend well from low-dimensional spatial
coordinates to the typically high-dimensional inputs
of computer experiments. Similarly, results like those
in Yfantis, Flatman and Behar (1987) on the proper-
ties of regular-grid designs, while interesting for two-
dimensional x, are not apparently relevant for com-
puter experiments.

Though we have stressed that deterministic obser-
vations are the unique feature of computer experi-
ments, the methodology can be extended to settings
where systematic and random error are both impor-
tant. The covariance function can be adapted so that
Var[Y(x)] = o2 + ¢Z, where o2 is the variance of the
measurement error. (In kriging applications, this can
be difficult to distinguish from the nugget effect.)
Thus, these approaches should also be useful for phys-
ical experiments.

8. CONCLUSIONS

Many scientists feel that statistics is irrelevant to
their problems, even for physical experimentation.
Their experiments, they claim, have little random
variation but are plagued by possibly large systematic
biases. These criticisms are not unfounded. There is
little easily implemented methodology that addresses
systematic error, and the reality might appear even
starker for computer experiments with no measure-
ment error. Predictions are nonetheless made with
uncertainty, a statistical problem. The stochastic
models we have applied to computer experiments
quantify uncertainty about the response where it is
unobserved and provide a framework for efficient de-
sign and analysis, which has been useful in a number
of applications.
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Comment

Max D. Morris

The authors have provided an interesting and read-
able account of a statistical approach to the problem
of approximating an unknown, deterministic com-
puter model. The approximation of unknown func-
tions, of at least a few arguments, has received
considerable attention in other specialty areas of
mathematics, but is relatively new to statistics. A
statistical approach brings a unique potential for deal-
ing with uncertainty in the problem. In particular, it
can lead to measures of quality for each prediction,
and a structure on which to base the design of efficient
experiments. Techniques which are relevant for ap-
proximating computer models are particularly timely,
because the scientific and technical professions are
quickly becoming reliant upon these as research tools,
and this manuscript reports some of the first serious
efforts to make statistics relevant to these activities.

THE CLASSICAL APPROACH

At the end of Section 3, the authors give their basic
argument for treating this problem statistically:
“Modeling a computer code as if it were a realization
of a stochastic process . .. gives a basis for the quan-
tification of uncertainty . . .” Following this, Section 4
outlines their strategy which seems clearly classical
(as opposed to Bayesian) in form; it is what a classical
statistician would do if the computer model actually
had been generated as a realization of the stochastic
process. While this strategy does provide a mathe-
matical structure for dealing with uncertainty, classi-
cal statisticians who like to motivate their analyses
with fictional accounts of random sampling and hy-
pothetical replays of an experiment may find this an
uncomfortable setting. After all, unless one random-
izes the experimental design, there will not be a cred-
ible frequentist probability structure in this problem.

Max D. Morris is a Research Staff Member, Mathe-
matical Sciences Section, Oak Ridge National Labora-
tory, P.O. Box 2009, Oak Ridge, Tennessee 37831-8083.

Statistical Design and Linear Models (J. N. Srivastava, ed.)
593-607. North-Holland, Amsterdam.

YLVISAKER, D. (1987). Prediction and design. Ann. Statist. 15
1-19.

YOUNG, A. S. (1977). A Bayesian approach to prediction using
polynomials. Biometrika 64 309-317.

(My own usual preference for classical procedures is
heavily dependent on credible frequentist models. In
this problem, the Bayesian approach seems somewhat
more direct to me.)

A classical statistician, in order to proceed, will need
to be more pragmatic, by saying that a credible fre-
quentist model is unnecessary so long as the method
works. The first test of whether the method works is
whether it produces good approximations to computer
models. These authors, and others they have refer-
enced, have assembled a body of evidence that indi-
cates that this and similar methods have the potential
to produce good approximations. The second test,
which should be of particular concern to statisticians,
is whether it produces good (useful, dependable, mean-
ingful?) measures of uncertainty. Passing this second
test will be important if we are to take seriously any
claims of quantified prediction uncertainty or design
optimality. It is encouraging that the mean square
errors of prediction calculated in the example of
Section 6 seem to behave as we would hope.

CHOICE OF CORRELATION FUNCTION

As the authors point out in Section 4, the hopes of
the pragmatic classical statistician will be pinned on
the supposition that the computational model “though

_ deterministic, may resemble a sample path of a (suit-

ably chosen) stochastic process ...” So, choosing a
suitable stochastic process, presumably one for which
y would be a “typical” realization, becomes an issue.
This is particularly true for preliminary design pur-
poses (before data are taken from which a correlation
structure can be estimated). Some guidelines for this
selection process are well-known; the authors note
that p = 2 processes produce smoother realizations
than p = 1 processes. Also, a tentative value of § must
be chosen for preliminary design purposes; the authors
use 6 = 2 in the example of Section 6.

When selecting a process in several dimensions,
some attention should probably be paid to the degree
of interaction among inputs for typical realizations.
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The following may be useful in thinking about what
the product correlation form of equation (9) and a
particular value of # imply about these interactions.
Using the unit cube design space [—Y, +Y2]¢, suppose
we set all but two inputs (say inputs 1 and 2) to
arbitrary constant values, and denote by Y., Y.,
Y_., and Y__ the process at (x;, x2) = (+%, +%),
(+%, =), (—%, +%), and (—Y4, —%), respectively. Let
W, and W_ be the effects of the second input at the
high and low values of the first input, respectively:

W+ = Y++ - Y+_
W— = Y—+ - Y__

If the process is stationary, i.e., the linear model piece
of equation (1) is omitted except for an intercept, with
Corr(Y,., Y,.) = Corr(Y,_, Y__) = e”? = p, then
E(W,) = E(W_) = 0, and Corr(W,, W_) is also p.
When W, and W_ are of different sign, increasing
input 2 increases the response at one level of input 1
and decreases it at the other, a two-factor interaction
generally considered to be rather serious and hoped to
be rather rare in most modeling contexts. § values of
5.0, 0.5 and 0.05, lead to p values of 0.01, 0.61, and
0.95, which are associated with “prior probabilities” of
about 0.50, 0.30, and 0.10, respectively, that two inputs
will have this kind of interaction on any such square
region in the design space. By itself this seems to
suggest that, unless fairly complex interaction pat-
terns are expected in y, small values of § (perhaps %2
or less) are reasonable. When the linear model portion
of the authors’ equation (1) is included, weaker cor-
relations can be used without implying a prior pref-
erence for these effect-reversing interactions.

Of course, other issues must also be addressed in
choosing preliminary correlation values for design
purposes. In particular, using the relatively small val-
ues of f suggested above may lead to stronger-than-
desirable correlations in each dimension individually.
Sacks, Schiller and Welch (1989) suggested picking a
preliminary 6 value based on robustness considera-
tions, while Currin, Mitchell, Morris and Ylvisaker
(1988) conservatively chose a weak correlation to limit
the inference which could be drawn at one site from

-data observed nearby. Knowing how to pick a corre-
lation structure, and when to change it, will be criti-
cally important steps in hardening this methodology
for general use.

OPTIMAL DESIGN

In Section 7.4, the authors pose a number of impor-
tant questions including: “How important is optimal-
ity in this setting? Are there cheap-to-construct
alternatives that perform reasonably well?” Answers
will be important in this problem, because real com-
puter models often have more inputs (larger d) than

is customary in many physical experiments, and so
full-scale design optimization will be a numerical
problem of large dimension. The 16-run design used
in the first stage of the example of Section 6 was
computed by minimizing IMSE, assuming the corre-
lation function of equation (9) with § = 2 and p = 2.
Construction of the design required 11 minutes of
time on a Cray X-MP computer, and the resulting
value of VIMSE was 0.6347 (arbitrarily fixing ¢% = 1).
I looked at a few cheap-to-construct 16-run alterna-
tives, including the two-level resolution 4 fractional
factorial design generated by I = ABCD = CDEF,
centered in the design space and scaled so that the
absolute value of each element in the design matrix
varied from 0.05 to 0.5 in increments of 0.05. Assuming
9 = 2 and p = 2 as the authors did,vIMSE values for
these designs are shown in Table 1. (Values are also
given for p = 1 for comparison.) In particular, the
design scaled so that each input takes values —%4 and
+Y4 is nearly as good, with respect to IMSE, as the
authors’ design. Further, this design produces IMSE
values similar to those of the optimal design for dif-
ferent values of # and p (Table 2), suggesting that
cheap-to-construct near-optimal designs may share
any process-robustness properties the optimal design
may have. Finally, since the authors’ optimal design,

TABLE 1
VIMSE for various scalings of a 16-run fractional factorial design
vIMSE
Scaling* p=2 p=1
0.05 0.9061 1.1976
0.10 0.8389 1.0985
0.15 0.7527 1.0426
0.20 0.6798 1.0138
0.25 0.6508 1.0021
0.30 0.6773 1.0011
0.35 0.7432 1.0059
0.40 0.8213 1.0131
0.45 0.8913 1.0200
0.50 0.9446 1.0254

I = ABCD = CDEF
* Absolute value of each element in the design matrix.

TABLE 2
VIMSE for the optimal design of Section 6 and the resolution 4
fractional factorial on (+%)® for several values of 0, and p = 2, 1

] . Fractional
_ Optimal design _ fatorial
9 p=2 p=1 p=2 p=1

8.0 0.9795 1.0306 0.9798 1.0306
4.0 0.8548 1.0275 0.8601 1.0283
2.0 0.6347 0.9982 0.6508 1.0021
1.0 0.4011 0.8851 0.4239 0.8935
0.5 0.2265 0.7008 0.2470 0.7146




DESIGN AND ANALYSIS OF COMPUTER EXPERIMENTS 425

like the optimally scaled fractional factorial, places
many input values about halfway between the center
and edge of the design region, I was curious about how
much of the optimality could be credited to this prop-
erty alone. So I generated 100 random 16-run designs,
where each element of the design matrix could be +%
or —% with equal probability (the only restriction on
the randomization was that no two runs could be
identical), and evaluated the criterion for each of
these. For § = 2 and p = 2, the smallest and largest
values of VIMSE for these designs were 0.6743 and
0.7138, not as close to optimal as the shrunken frac-
tional factorial, but also not too bad, and surprisingly
(to me) consistent.

Of course, one example does not prove that there
will always exist a cheap, simple, nearly optimal de-
sign. Also, as the authors note, it may not be so
important to save 11 minutes of supercomputer time
generating an optimal experimental design if the com-
puter model itself requires even more time per run.
But computing costs aside, I believe that a sizable gain
in design simplicity and symmetry is often worth a
small price in optimality.

Another related issue is how designs generated by
different optimality criteria compare. Using the en-
tropy criterion described in Currin, Mitchell, Morris
and Ylvisaker (1988), I generated a locally optimal
16-run design for the problem of Section 6, again using
6 = 2 and p = 2. This design is almost entirely in the
corners of the design space; only 4 of the 96 entries in
the design matrix are other than +% or —v%. vIMSE
for this design is 0.9343, which is not much different

Comment

Robert G. Easterling

The authors, referred to hereafter as SWMW, are

to be commended for their pioneering work in bringing

statistical thinking and methods to the design and
analysis of computer experiments. Critical decisions
are being made and conclusions drawn based on com-
plex computer models. Data may be lurking about, so
it is natural and vitally important that statisticians
get involved, and even when data are not lurking or
visible, SWMW show that statistical ideas can be
profitably used.

Robert G. Easterling is Supervisor of the Statistics,
Computing and Human Factors Division (7223), San-
dia National Laboratories, Albuquerque, New Mexico
87185.

from that of the largest fractional factorial considered
above. Just as in experimental design for linear
models, there is no reason to believe that two “good”
criteria should lead to exactly the same design. How-
ever, these two criteria are motivated by the same
general goal—that of relatively good prediction of y in
an overall sense—and it is somewhat disturbing to me
that the results of these approaches seem so dramati-
cally different. Somewhere along the line, I expect to
learn either that the approaches are not as similar as
I've assumed, or that the designs are not as different
as they appear.

CONCLUSION

In summary, I think that both the approach outlined
in this paper and the Bayesian alternative described
by Currin, Mitchell, Morris and Ylvisaker (1988) are
promising tools for approximating computer models.
A number of issues, such as selection of a stochastic
process and criteria against which designs may be
measured, must eventually be addressed in consider-
ably more detail. However, this paper marks an excel-
lent beginning, and the authors are to be congratulated
on a job well done.
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The authors address prediction in the sense of de-
veloping an interpolating function that can be used
economically as a surrogate for the computer model
in, e.g., finding the region in the input space that
optimizes the output. But computer models are also
used to make predictions in the more conventional
sense of statements about a possible future outcome,
such as the greenhouse effect, nuclear winter or the
temperature reached in the core of a nuclear reactor
in the event of a hypothesized accident. Inputs to such
calculations can be based on data, such as reliability
data pertaining to nuclear power plant safety systems,
so the output of the computer calculation is a statis-
tical prediction—a function, at least in part, of data.
For informed decision-making, we need to be able to
say something about the statistical and other uncer-
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tainty of this prediction. The calculation of standard
errors and statistical prediction limits is not at all
straightforward, but methods such as the jackknife
and bootstrap can-be useful (or all we have). These
methods are computer-intensive, and we may need to
apply them to a surrogate computer model, rather
than the actual, so this is another possible application
of SWMW’s methods.

Experimental design problems also arise in this
context in deciding how to collect data pertaining to
the inputs in order to most efficiently control or reduce
the statistical uncertainty of the computed prediction.
The calculation of effects and interactions, as in
SWMW’s Section 6, is one way to identify influential
inputs and thereby guide subsequent data collection.
Though these statistical prediction and experimental
design aspects of the use of computer models are
beyond the scope of SWMW?’s paper, I mention them
to bring them to the readers’ attention. Important
decisions are being made based on bare point esti-
mates calculated from complex computer models,
whose very complexity can endow them with unwar-
ranted credibility and camouflage the lack of data. If
we want to strengthen the data foundation of these
decisions, we will have to tackle these problems.

Exercising expensive, important computer models
calls for a great deal of circumspection, and SWMW
exhibit care that is all too rare. In too many areas of
application, the standard approach is to take a shotgun
approach (Monte Carlo or Latin hypercube sampling),
where the shotgun is aimed and loaded with some
highly dubious probability distributions (see Downing,
Gardner and Hoffman, 1985, and Easterling, 1986).
Though the primary objective in these cases may be
to approximate the (dubious) distribution of the out-
put, these randomly chosen input sites are also used
to fit surrogates and evaluate input effects. When
resources are dear, and the objective is to learn some-
thing about the complex processes being modeled, it
seems almost criminal to me to turn over the exercise
of the computer model to a random number generator.

We need to use all the statistical and subject-matter

intelligence that can be mustered.

SWMW entrust the selection of input sites to com-
puter optimization routines, which may be whimsical
but at least are not random. They reject the use of
“standard” experimental designs because they “can be
inefficient or even inappropriate for deterministic
computer codes.” This rejection, however, seems to
be based on the fact that the subsequently fitted
(naive) polynomial models may not provide very
good surrogates for the ecomputer code. The fault,
though, lies with the model, not necessarily with the
design. I think standard designs might provide fits of
kriging models, or other interpolators, that are not
appreciably worse than fits obtained from SWMW’s

“optimal” designs, and would offer more-than-
offsetting advantages.

For example, consider Figure 1, which is a 16-run
computer-selected design in two inputs given in
Currin, Mitchell, Morris and Ylvisaker (1988). (For
whimsy, note that the computer picked three of the
four corner points, one point on three of the edges,
two on the other, and points that are roughly diago-
nal.) About the only place in this design that one can
see the effect of one of the t;s while holding the other
fixed is along the edges. Being able to evaluate simple
effects at many points in the design space seems to
me to be a valuable aid in understanding the nature
of the complex function being studied.

Consequently, I would prefer a 4% design in this
example. This design provides many clean, com-
parable measures of the simple effects of the two
inputs, requires zero CRAY time, is geometrically
appealing and, for these reasons, should be much
easier to sell to the code proprietor or user (unless
that person is swayed by the computer-mystique of
the “optimal” design). I can only conjecture, but I
expect that the resulting fitted kriging model would
provide a surrogate that will perform practically as
well as one fitted to the Figure 1 design.

Another design that might be considered if subject-
matter knowledge suggested that the response was
smoother in one direction than the other would be a
3 x 5 arrangement. Such knowledge might also suggest
transformations, rotations, etc. We need to turn those
black boxes into gray boxes.

Consider next SWMW'’s Section 6 example of 32
runs with 6 inputs. A “standard” design some might
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Source: Figure 9, Currin, Mitchell, Morris and Ylvisaker
(1988).
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consider would be a 25! fraction at corners of the
design space, which have coordinates of £%. I'm sure
SWMW would reject this design as a basis for fitting
their kriging model and T would too. As an alternative,
based on an adaptation of standard designs, I would
propose a 252 at corners of the cube plus an interior
252 at corners of the (—%, %4)® cube. Subject-matter
expertise could help choose the particular fractions
(and I think subject matter expertise would be better
used in this way than in specifying parameters for the
covariance function). One might consider some sort of
optimization -scheme for choosing the inner fraction,
given the outer fraction. (I would think that comple-
mentary fractions ought to be used. For example, if
I = ABCD = CDEF = ABEF is the selected defining
contrast for the outer fraction, then I = ABCD =
—CDEF = —ABEF would be one of my candidate
defining contrasts for the inner.) Additionally, one
might optimize the dimension of the inner cube—
perhaps the corners should be at +% instead in order
to more uniformly fill in the design space. Or it might
help to pull the outer cube points in slightly from the
corners of the design space. The optimality problems
this approach suggests are of much smaller dimension
than those of SWMW, so they ought to be easier to
solve, if one is determined to optimize something.

I would encourage statisticians and code analysts to
investigate and use adaptations of standard designs
such as these I have suggested. The optimal design
community sometimes says that optimality criteria
shouldn’t dictate a design, but rather they should
provide a starting point that might lead to a more
appropriate design. One doesn’t have to do much
nudging on the points in Figure 1 to see a 4> design
emerging. The projection in SWMW’s Figure 1 of
their example’s first 16 points suggests a conventional
22-plus-center-point design on an interior cube. After
the first 16 points, the authors change their design
approach with the result that the subsequent 16 points
are forced out toward the edges. So I think that deep
down we have similar objectives and concepts of good
designs. My experience in this and other contexts is
that optimality algorithms seem to be trying to get to
a recognizable, reasonable design, but they’re so

muscle-bound they can’t quite make it. Of course,
once you realize this, you can skip the CRAY exercise
and go directly for a reasonable design.

In both examples, the algorithmic designs are kind
of “ugly”—to coin a new technical term. They look
like what might emerge from an observational study
or if the experimenter could not control the factor
settings very well. Surely no one would deliberately
design a real experiment this way, so why is it right
for a computer experiment? The authors’ answer is
that the perfect repeatability of a computer run, as
opposed to the imperfect repeatability of field or lab-
oratory experiments, makes things, well, different. To
me, though, this property negates only the utility of
replication. It doesn’t cancel out the attractiveness of
properties such as balance, symmetry, collapsibility
and comparability (of simple effects) that make fac-
torial designs so powerful, informative and “pretty.”
If the objective was to fit a highly nonlinear model,
then an algorithmic design might be called for. But
here the model is (or can be)

Y = constant plus correlated error,

so doesn’t it seem right that geometric and space-
filling ideas should be used? Again, let’s not turn the
exercise of computer codes over to a computer program
until we’ve fully applied our statistical and subject-
matter expertise.

In closing, though I am skeptical about the proposed
experimental designs in the context of computer ex-
periments, I congratulate the authors for this timely,
well-written, and thought-provoking paper, and I ap-
preciate the opportunity to help air some of the issues
involved. I hope readers will be stimulated to take a
statistical look at the use of computer models in their
field of application.
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Comment

Mark E. Johnson and Donald Ylvisaker

A search for new directions to pursue in the Design
of Experiments was undertaken at workshops at
Berkeley in June of 1984 and January of 1985, and at
UCLA in July of 1985, but the thought that design of
computational experiments might stand alone as a
substantial topic for research can be dated from the
January 1986 workshop at UCLA. Subsequent work-
shops at Urbana in May of 1987 and at Santa Fe in
September of 1987 confirmed this promise. The push
for (and the early organization behind) this develop-
ment should be credited to Toby Mitchell.

The paper under discussion does a nice job of cap-
turing the richness and fascination of the subject. It
gives a faithful representation of trends in the choice
of priors, in the choice of criteria, in the use of cross-
validation and maximum likelihood estimation, and
in territories for application. It seems appropriate to
us that this brief comment concentrate on two general
themes: how does the area relate to others which have
come before, and what particular contributions might
we expect from it in the future? What we take to be
the important problems will be mentioned in the
course of the discussion.

The philosophical approach of uncertainty meas-
ures does indeed go back a long way, as has been well
documented in Section 4. Beyond the shared need for
a catalog of workable and representative priors, the
real problem is that of modification of the prior based
on observation and somewhat beyond cross-validation
or maximum likelihood over a parametric family.
Some clever ideas about modification have been put
forward by Mitchell but there is no general method to
fall back on in this area.

Monte Carlo is another tool that introduces proba-
bilistic notions for use in a deterministic world. Design
can and does play a role in problems of a similar vein.
Here we are thinking about settings in which individ-
.ual evaluation is desired over a vast array of “objects”
and, while easy to perform, is still only possible for
relatively few of them. Interest might then center on
the proper allocation of resources to neighborhoods

Mark E. Johnson is Professor, School of Industrial and
Systems Engineering, Georgia Institute of Technology,
Atlanta, Georgia 30332. Donald Ylvisaker is Director,
Division of Statistics, Department of Mathematics,
University of California, Los Angeles, California 90024.

which are determined by a suitable “distance” between
objects, say.

In saturated or super-saturated contexts, Latin hy-
percube sampling and off-line control are appropriate
techniques in the absence of interactions, and some
Bayesian methodology seems necessary in any event.
Does this paper contain enough evidence, anecdotal
or otherwise, to suggest that the present research will
establish its own identity, lead to catalogs of useful
designs or give real guidance to someone possessed of
a like problem? The answer seems to be: not yet.

Our use of the terms object and distance is pre-
meditated. In Johnson, Moore and Ylvisaker (1988) it
is shown that, in the absence of good prior knowledge,
designs of a geometric type have certain robustness
properties. Such robustness is associated with low
correlations between observations. Coupled with the
thought that few observations mean large separations
(surely consistent with low correlations), certain de-
sign problems are reduced to more basic geometric
ones. In effect, one goes full circle to return to a
deterministic question. (Incidently, the IMSE crite-
rion does not show up in a very favorable light in
these considerations, while the MMSE criterion sur-
faces readily and has a natural connection with
D-optimality.)

Our preference in any event is to remain free of
thinking in terms of regular or stylized design spaces,
such as the unit cube in d dimensions. This can be
aided by limiting consideration to finitely many sites,
hence finitely many designs, while not really violating
the spirit of what is feasible. Structure might then be
imposed with the notion of distance between sites.
The problems become: what distance is appropriate
and, most importantly of all, how should the distance
chosen undergo modification in the face of observed
data? Thus, beginning with the collection of data
at distant and suitably chosen sites, where ought
one to turn now for further experimentation? This
point of view seemingly emphasizes design and plays
down the role of analysis of posterior uncertainty.
However, the answer selected might well come out of
such an analysis.

In summary, we find the area of design for compu-
tational experimentation is a lively one and the pres-
ent article attests well to that. Much thought is still
required but, since successful applications continue to
emerge, this is certainly a worthwhile enterprise.
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Comment

A. Owen, J. Koehler and S. Sharifzadeh

We have been running computer experiments re-
lated to semiconductor process design and recently
switched over to the paradigm described by the au-
thors. We have found it to be more flexible than
response surface methodology in handling determin-
istic responses. -

The Bayesian approach suggests how to interpolate,
extrapolate, assess uncertainty and construct designs.
To what extent do the Bayesian answers make sense,
if one does not hold the prior belief? The authors cite
several works in which connections are drawn between
well accepted interpolation methods and various
priors and give an example in which the uncertainty
assessment is accurate. It would be very interesting if
the uncertainty assessments were reasonbly accurate
for a large class of underlying functions. Have the
authors investigated this point? We doubt that the
Bayesian method will help in extrapolation (which we
suspect should be avoided) and thus are worried that
the optimal designs sometimes concentrate near the
center of the design space.

Our main comments are directed at the design prob-
lem and at estimation of the parameters of the covar-
iance model. Our applications have 5 to 10 input
variables and a like number of outputs. The programs
we use are fast enough to make it feasible to consider
50 or more runs.

Before addressing the design and estimation issues,
we wish to point out that ideas from exploratory data
analysis have a role to play in computer experimen-
tation. The authors (with their coworkers) have plot-
ted contours, trajectories and the additive main effects
(mentioned in Section 6) of the response functions.
We think their contributions are noteworthy and look
forward to further developments. When there are
many response variables, care should be taken in
optimizing a functional of the responses without first
considering the tradeoffs among competing goals. The
approach taken in Sharifzadeh, Koehler, Owen and
Shott (1989) is to evaluate the model functions at
thousands of input points and to explore the resulting

A. Owen is Assistant Professor of Statistics, J. Koehler
is a Ph.D. candidate in Statistics, and S. Sharifzadeh
is a Ph.D. candidate in Electrical Engineering, all at
Stanford University. All three are affiliated with the
Center for Integrated Systems. Their mailing address
is: Department of Statistics, Stanford University, Stan-
ford, California 94305.

data set with interactive graphics, in this case S
(Becker, Chambers and Wilks, 1988).

DESIGN ISSUES

In the authors’ Figure 1, the design points are all
quite close to the center. We share the misgivings of
the authors, suspecting that this leads to a robustness
problem. Extrapolation by conditional expectation de-
pends to a far greater degree on the covariance func-
tion used than does interpolation. Thus outside of the
convex hull of the data, the predicted values will
depend strongly on hard-to-verify properties of the
model.

We have been using low discrepancy sequences,
mentioned in Section 7.5, as designs. These designs
are constructed so that the empirical measure of the
design points is close in a Kolmogorov-Smirnov sense
to the uniform measure on the cube. These should be
good designs in the case of large 6, when estimation is
difficult. Johnson, Moore and Ylvisaker (1988) char-
acterize the optimal designs in the large 6 limit. Min-
imizing the maximum distance from a point in the
cube to a design point leads to their version of G
optimality and maximizing the minimum distance be-
tween two sample points leads to their version of D
optimality. Low discrepancy sequences (such as Hal-
ton-Hammersley sequences) tend to have small, but
not minimal, maximum distances from points in the
cube.

We have found that sometimes some of the §; appear
quite small while others are large. That is a response
variable is heavily dependent on a few of the d inputs
and not very sensitive at all to the others. We may
not know in advance which input variables are the

. important ones or, more commonly, each output vari-

able may depend most strongly on a different small
set of inputs. This opens up the possibility of reducing
the dimension of the problem by considering the re-
sponse as a function of the most important inputs,
possibly with some noise due to the other inputs. For
instance, in our first experiment the thickness of a
layer of SiO, only depended on the oxidation temper-
ature. Unfortunately, our design (an all-bias design)
only used three distinct values of the temperature in
43 runs. If our experiment had had 43 nearly equis-
paced temperature values, the results would have been
more informative.

Low discrepancy designs have the added benefit
that when projected onto a cube defined by a subset
of the original variables they are still nearly uniform.
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Thus if the dimension can be reduced, the design in
the remaining dimensions is still reasonably good. The
optimal designs depicted in Johnson, Moore and
Ylvisaker (1988) do not tend to project uniformly.

We prefer the sequences of Faure (1982) to
the Halton-Hammersley sequences. The Halton-
Hammersley sequences are usually based on the first
d prime numbers, whereas Faure uses the same prime
number (the smallest prime r = d) on each axis. When
n = r* the Faure sequences exercise each input vari-
able in much the same way Latin hypercube designs
do. Moreover for k = 2 they exercise pairs of input
variables in that, for any given pair of inputs, one can
partition their domain into r? squares and find r*—2
points in each square. Similarly there are equidistri-
bution properties for three or more axes. The equidis-
tribution properties of the Halton-Hammersley
sequences are different for each marginal subcube,
depending on the associated primes. We have found
that with n =r? and r = 5 or 7 that the Faure sequences
appear to lie on planes in three dimensions. This is
alleviated by replacing each digit b in the base r
representation of the Faure sequence by o (b) where o
is a permutation of 0, ..., r — 1. The permutation
does not alter the equidistribution properties. One can
inspect three-dimensional scatterplots to make sure
that a given permutation is effective.

PARAMETER ESTIMATION

We would like to mention a quick way of estimating
0 ..., 65 in the covariance given by the authors’

Comment

Anthony O’Hagan

The authors are to be congratulated on their lucid

and wide-ranging review. Like others before, I have
independently rediscovered many of the ideas and
results presented here. I therefore sincerely hope that
the greater prominence given to those ideas and results
by this excellent paper will enable future researchers
to start well beyond square one. I first have some
comments concerning the derivation of the basic es-
timator (7), and I will then discuss the model and the
practical implementation of the methods from my own
experience.

Anthony O’Hagan is Senior Lecturer and Chair,
Department of Statistics, University of Warwick,
Coventry CV4 7AL, United Kingdom.

equation (9) with p = 1. When the function Y(x) is
nearly additive, we can estimate the main effects using
scatterplot smoothers. This corresponds to the inner
loop of the ACE algorithm in Breiman and Freidman
(1985). Let g; denote the estimate of the jth main
effect. A very smooth g;j(-) is evidence that 6;
is small and a rough g;j(-) suggests that 6, is
large. The roughness may be assessed by %, =
Yr.(g (i/m) — g ((i — 1)/m))? where the domain of g;
has been rescaled to {0, 1]. The expected value of .%;
may be expressed in terms of 6; through 6,, for fixed
o. The d equations in d unknowns can be solved
iteratively. The likelihood can be used to choose be-
tween the answers from several different values of m.
This avoids a high dimensional search for 6,, ..., 6,.
The first time we tried it, we got better parameter
values (as measured by likelihood) than we had found
by searching. Alternatively it suggests starting values
for such a search.
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The authors mention three derivations of (7). In a
classical framework, it is the MLE if the process
Z(-) is Gaussian, and relaxing this assumption it is
the BLUP, minimizing (2). Thirdly, it is the posterior
mean of Y(x) in a Bayesian analysis with a Gaussian
Z(-) and a uniform prior on 8. It is first worth pointing
out that with a proper multivariate normal prior
B8 ~ N(b, B) and known o2 the posterior mean of Y(x)
has the same form as (7), but with 3 replaced by the
posterior mean of 3, i.e.,

B = (F'R'F + o*B™)(F'R'FB3 + ¢2 B™).

The interpretation of (7), as comprising the fitted
regression model plus smoothed residuals, still holds.

We can also dispense with normality in the Baye-
sian framework, using a similar device to (2). The
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same estimator may be derived as the Bayes Linear
Estimator (BLE), which also minimizes (2), but to
distinguish the different derivations it is important to
recognize the conditioning. The BLUP minimizes,
over the class of y(x) which are unbiased and linear
in Y,

(+1) E[{y(x) — Y0F|B, o°],

conditioning on the parameters being mandatory in
classical statistics. In contrast, we can think of the
posterior mean of Y(x) in general as minimizing (un-
constrained) the posterior expected squared error

(x2) E[{y(x) — Y(x)}?| Y,].

When all diAstributions are normal, the posterior mean
is (7) with g replaced by 8 and happens to be linear in
Y,. The BLE minimizes

(x3) E[{y(x) — Y(0)}*].

over the class of y(x) which are linear in Y,. Only
first- and second-order moments need be specified,
and the solution is again (7) with 3 replaced by 8 and
reduces strictly to (7) if B~ — 0. We can consider
(*3) as the expected MSE, i.e., the expectation of (1)
with respect to the prior distribution of the parame-
ters. We can also consider it as the prior expected
squared error, i.e., the expectation of (*2) with respect
to the preposterior distribution of Y.

There are therefore two Bayesian derivations of (7),
paralleling its two classical derivations, in the case of
a diffuse prior distribution for 8. With proper prior
information about 8 and known ¢2, both yield the
same structure as (7) but with 3 replacing B. With
unknown o2, the posterior mean will no longer be
linear in Y,. The BLE solution is no longer obviously
appropriate, but see the variance-modified BLE of
Goldstein (1979). The BLE has also, incidentally, been
rediscovered several times (see O’Hagan, 1987 and
references therein).

My own work on design and analysis of error-free
data has been in the context of numerical integration,
where the objective has been to make inference about
the integral of Y(.). This work is described in
O’Hagan (1988). My motivation and practical experi-
ence lies in the case where Y(-) is an unnormalized
density function over R This is because, in a Baye-
sian analysis of a complex problem, the posterior
density is generally an intractable function and is only
known up to a normalizing constant. Integrating the
density to obtain this normalizing constant is there-
fore the first task in analyzing the posterior informa-
tion. This is a very specific context, and my main
comment on the model is that context is very impor-
tant. My context implies that Y(-) is non-negative

and will tail away to zero in all directions fast enough
to be integrable. I therefore set Y (x) = T'(x) g(x), where
g(-) is a fixed, proper density function on R? and
T(-) is now assumed to follow a model identical to
(1). This is very different to assuming (1) for the
original process Y(-). There is always prior informa-
tion about the shape of Y(-). To some extent this is
captured in the regression part of (1), but if Y(-) is
constrained then we need a model that recognizes
both the constraint and the fact that the variability
of Y(-) must be reduced when it comes close to the
constraint.

My experience with using this model, although very
limited, reinforces many of the authors’ comments. I
simulated a wide range of posterior densities, in one
dimension only, as mixtures of normal or ¢ distribu-
tions, applied my Bayesian quadrature rules with var-
ious p, # and polynomial regression terms, and
calculated sample MSEs. Like the authors, I found
that there was generally no benefit in using the regres-
sion terms, apart of course from a constant term. Since
my functions were quite smooth, it is not surprising
that p = 2 performed better than p = 1.

The authors remark that the apparent precision of
prediction is dramatically increased by decreasing 6. I
found this too and proposed a general value of 6§ = 1
for my specific context. I did not attempt to estimate
p and 6, but unknown p and 6 are not easy to handle
within the full Bayesian framework. The authors’
maximum likelihood estimates easily translate into
posterior modes, assuming uniform prior distributions
for these parameters. However, merely substituting
these estimates into the rest of the analysis is an
approximation to the full Bayesian analysis, at best,
and is bound to underestimate posterior uncertainty
about Y(.)

For design, my optimality criterion was different
from any suggested by the authors. I was interested
in posterior variance of the integral. Just as
var(X + Y) # var(X) + var(Y) in general, this
variance is different from integrated MSE. It takes
‘account of posterior covariances between Y(x) and
Y (w), which in the classical framework would be re-
placed by covariances between y(x) and y(w). Despite
the different criterion, my experiences with optimal
design were similar to the authors’. In particular, for
d = 2, the few optimal designs I derived were quite
unlike traditional quadrature rules.

The authors comment that the conditioning of R
deteriorates with n. This is a serious problem when
searching for designs, because R is ill-conditioned over
a great part of the design space, namely wherever two
coordinates are sufficiently close in value. The prob-

.lem is much worse for p = 2 than for p = 1. However,

good designs invariably arise in that part of the design
space where R is relatively well-conditioned. It may
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be possible to take account of this in the search
algorithm, to both speed the search and evade numer-
ical problems on the way. Nevertheless, large n must
always present problems.

The only comment in the paper which jars with my
own experience is the reference to designing for very
large 6, in the Currin, Mitchell, Morris and Ylvisaker
(1988) paper. When 6 is large, you cannot estimate
Z(-) except very locally to each design point. The
second part of (7), which smooths the residuals, con-
sists of zero almost everywhere except for blips at each
design point to make y(x) pass through the observa-
tion. Designs for this case will be exclusively con-
cerned with estimating the regression function and,
like classical optimal design for regression, will place
clusters of points at the boundaries of the design
region. Such designs must be very poor when 6 is in
reality not large.

I was very intrigued to see the decomposition of
Y (.) into main effects, interactions, etc. In my context

Comment

Michael L. Stein

I wholeheartedly agree with the authors that stat-
isticians can and should contribute to the design and
analysis of computer experiments. Too often statisti-
cians shy away from problems that do not fit into the
standard statistical frameworks; the authors are to be
congratulated for their trailblazing efforts. Further-
more, I agree that a sensible way to approach these
problems is to view the output from the computer
model as a realization of a stochastic process. Where
I think further work is needed is in the development
of appropriate stochastic models.

The model given by (9) in this article by Sacks,
Welch, Mitchell and Wynn has some undesirable

. properties. For 0 < p < 2, a stochastic process with
this covariance function will not be mean square dif-
ferentiable. As noted by the authors, for p = 2, the
process is infinitely mean square differentiable. Not
allowing processes that are differentiable but not in-
finitely differentiable strikes me as unnecessarily re-

Michael L. Stein is Assistant Professor, Department of
Statistics, University of Chicago, 5734 University Av-
enue, Chicago, Illinois 60637.

where Y(-) is a multivariate density function, the
main effects are just marginal densities. The interac-
tions as defined, however, have no particular value.
Instead I would define

Mij (x;, xj) = f y(x)Hh#i,jdxh - #i(xi)uj (xj),

representing non-independence between x; and x;.

It should be clear from my remarks how much I
have enjoyed reading this paper. The wealth of detail
and the authors’ breadth of knowledge make it one
that I am sure to turn to repeatedly.
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strictive. A more flexible class of correlation functions
is (Yaglom, 1987, page 139)

1
I T(»)2" ! (el w; — % |)’K, (o | w; — x;1),

where K, is a modified Bessel function of order »
(Abramowitz and Stegun, 1965, page 374). A stochas-
tic process with this covariance function will be m
times mean square differentiable if and only if » > m.
The o;s measure the range of the correlation: a large
a;j indicates that correlations die out quickly in the x;
direction.

A problem with all of the correlation functions used
by Sacks, Welch, Mitchell and Wynn is that they do
not allow for the inclusion of prior knowledge such as
that most of the variation in the output y(-) can
probably be explained by main effects plus perhaps
some low order interactions, which in fact occurred in
the circuit simulator example they discuss. If we ex-
pected most of the variation in y(-) could be explained
by main effects, we might want to model Y (x) as

1) Y(x) = X Yi(x) + Z (),
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where the Y;’s and Z are independent Gaussian
processes with covariance functions o;(x; — w;) and
a.(x — w) respectively, so that

cov(Y(x), Y(w)) = ¥ a;(x; — w;) + o.(x — w).

One specific parametric form of this model that might
be worth exploring is

cov(Y(x), Y(w))
= 3 Gyl wy — 51V Koley | w0y — 35])
+ D [1Bilwj — % 1)K, (B; | wj — x;]).

A large C; would correspond to an important main
effect. The model for Z(-) is somewhat problematic
as it allows Z(-) to have an additive component.
Following the decomposition into main effects and
interactions from Section 6 of the article by Sacks,
Welch, Mitchell and Wynn, it might be more satisfy-
ing to define Z(-) to be a stochastic process with no

Rejoinder

additive component:

Z(x) =Z*x) — X f Z*(x) II dxn

h#j

+(d-1) fZ*(x)dx,

where d is the number of dimensions of x and Z*(x)
is a Gaussian process with some simple covariance
function. I think it would be very interesting to find
optimal designs under some models of the general
form given by (1). If the optimal designs are very
different from those obtained by Sacks, Welch, Mitch-
ell and Wynn for their models, that would call into
question the effectiveness of their designs for proc-
esses where most of the variation can be explained by
main effects.
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Jerome Sacks, William J. Welch, Toby J. Mitchell and Henry P. Wynn

We thank the discussants for their incisive com-
ments, suggestions and questions. Nearly all the dis-
cussants have been key participants at the workshops
mentioned by Johnson and Ylvisaker; all have been
instrumental in the development of new methodol-
ogies for the design and analysis of computer experi-
ments. Most of the comments and our responses are
concerned with the choice of the experimental design
and the choice of the correlation function.

We had hoped that the example of Section 6 would
attract some suggestions from the discussants, and in
this we are not disappointed. Morris’ results on the
first-stage, 16-point design are interesting—in partic-
ular, they indicate that the concentration of the design
in the center of the region also occurs for the much
rougher process corresponding to p = 1 in (9). As this
is only a preliminary stage, and there is not much to
be lost by using a cheaper design anyway, his scaled
quarter fraction makes a lot of sense. In a seven-
dimensional problem, Sacks, Schiller and Welch
(1989) similarly reduced the optimization problem by
restricting attention to scaled central-composite de-
signs. Without doing the optimization or amassing
experience from many problems, though, we cannot

know when the relative performance of cheap designs
will be satisfactory.

For all 32 runs, Easterling recommends two com-
plementary quarter fractions. He rightly points out
the advantage of not having to optimize anything, and
we tried these fractions on {—, %} and {—%, %}°. In
some recent applications where data are cheap to
generate, we have been using Latin hypercube designs,
and for comparison we also report results for a 32-run
Latin hypercube. The six factors have the same 32
equally spaced values, —Y64, — 2%u, ..., 3%a4, but in
different random orders. For both designs, the predic-
tor is based on model (14) after re-estimating the
parameters 6, . . ., s and p in the correlation function
(9). Table R1 shows the average squared error of
prediction at the same 100 random points we used
previously. For ease of comparison, the results for our
original design are repeated. The complementary
quarter fractions and the Latin hypercube perform
similarly, with our design showing a modest
advantage.

It is of interest to note that, for certain values of n
and d, scaled standard designs can be optimal. For 8
points in 4 dimensions and 16 points in 5 dimensions
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the optimization problem is still tractable. Suitably
scaled half fractions of maximum resolution are ap-
parently optimal or very close to optimal for the IMSE
criterion when the model has only a constant term for
the regression, and the correlation family is (9) with
p = 2. The scaling of the design depends on the value
of 6. (We regret that we did not include more of these
anecdotes.) Extrapolating these results to the six-
dimensional problem at hand, we tried a half fraction
(I = ABCDEF) on {—0.37, 0.37}5, a scaling associated
with a small value of 6. As seen in Table R1, this
design performs much the same as the complementary
quarter fractions. It is quite likely that a Faure se-
quence, favored by Owen, Koehler and Sharifzadeh,
or a geometrical design, as in Johnson, Moore and
Ylvisaker (1988), would also perform similarly.

These very different designs produce rather similar
results, then. In this respect, our choice of example
was less revealing than we had hoped. Whether this
is a feature of the particular surface or something
more general we can only guess.

In other examples optimal design provides greater
benefits. The 42 design suggested by Easterling for the
problem in Currin, Mitchell, Morris and Ylvisaker
(1988) performs relatively poorly. For the cubic cor-
relation function (11) with parameters determined by
maximum likelihood, the empirical average squared
error of prediction on a 21 X 21 grid is (0.62)2 for the
optimal design shown in Easterling’s figure, compared
to (0.94)* for the 42 design. Although this is just one
example, it does indicate that the well balanced, sym-
metric design does not necessarily perform best, and
the difference is not necessarily trivial. Incidentally
to us, the Currin, Mitchell, Morris and Ylvisaker
design seems rather elegant—beauty of a design is in
the eye of the beholder.

One very important place for the use of optimal
design is for less-regular regions where intuition is
lacking. Ongoing work by D. Cox, J. Park and
C. Singer on a computer model for a nuclear-fusion
device (Tokamak) has a six-dimensional region
which is determined by linear constraints. The cost of
generating data is also fairly high, 3-5 minutes on a

TABLE R1
Empirical average squared error of prediction at the 100
random points
Average
Design squared error

Authors’ (.122)2
Complementary quarter fractions (.146)*
Latin hypercube (.136)2
Half fraction on {—0.37, 0.37}° (.143)
Authors’ (Stein’s correlation function) (.115)?

Cray 2 per run. Here, no regular, symmetric designs
easily come to mind.

We are intrigued by O’Hagan’s experience in apply-
ing similar models to the estimation of integrals. We
have some unpublished results relating to quadrature
in two dimensions. Low-discrepancy sequences (e.g.,
Halton sequences) perform well on the average for
functions generated by the model (9) when p = 1.
However, for functions generated by (9) with p = 2,
which are much smoother, the average performance
of the Halton sequences is poor relative to the optimal
designs obtainable for small problems or relative to
various ad hoc schemes for larger problems.

Morris’ connections between interactions and the
correlation parameters 6 in (9) suggest small rather
than large values of 6, a view shared by O’Hagan. Our
experience with estimating these parameters in a
number of examples, using models with no regression
terms other than a constant, is also consistent with
smaller values. This stands in contrast to Johnson
and Ylvisaker’s results that designs based on large 6
have certain robustness properties. How efficient their
designs are when small values of § are appropriate, or
when linear models are incorporated, is not clear.

To sum up on the choice of design, we suspect with
Easterling that, providing that the design does a rea-
sonable job of infiltrating the space, the predictor is
probably more important than the design. Unfortu-
nately, we do not have enough evidence to strengthen
these suspicions, nor to make notions like infiltration
more precise. Sometimes standard designs like frac-
tional factorials do fairly well; for other problems they
perform rather poorly. To know which case is true,
the optimal design is necessary as a benchmark. John-
son and Ylvisaker correctly point out that we do not
yet have catalogs of useful designs that can be auto-
matically applied. Clearly, more work is needed, and
advanced computations seem indispensable.

Stein suggests a more flexible class of correlation
functions. We took the design and data of Table 1 and
maximized the likelihood over oy, ..., ag and » = 1,
2, 3. Predictions based on » = 1 and a = (.260, .255,
.446, .566, .466, .934) at the 100 random points give
the results reported in Table R1. There is some im-
provement and this family may be worth pursuing
further. We do note, however, that optimization of the
likelihood is more costly, and there may be numerical
instabilities associated with computing K, as v grows.

Stein’s additive covariance models seem promising.
Though they introduce a number of additional param-
eters (the C’s and D), we agree they may be useful
when the output is nearly additive. There may also be
important design considerations.

Any help in estimating the correlation parameters
is welcome, and we look forward to seeing further
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details of the method outlined by Owen, Koehler and
Sharifzadeh. These discussants also note that smaller
6’s may indicate inactive factors, with implications for
dimension reduction. This is usually valid, but we
have found, for example, cases in which 8 is close to
zero for a variable with a strong linear effect. This is
backed up by theoretical work on asymptotic behavior
as § — 0 when p = 2 in (9), as mentioned in Sec-
tion 7.4. To avoid overinterpretation of the 0’s we
endorse the plotting of the main effects, interactions
and so on defined in Section 6.

Black box or gray box? We could not agree more
with Easterling about the need to employ subject-
matter expertise. Progress in applications and new
methodologies requires two-way exchange between
statisticians and the scientists conducting these ex-
periments. In our experience, as in the example of
Section 6, the expert has usually reduced the number
of factors to a small set, most of which are active for
one response or another. To ensure that all important
factors are included, however, a screening stage might
be used to determine the active set empirically. In this

case, as Owen, Koehler and Sharifzadeh point out,
designs that project well for one or relatively few active
factors will also be more useful for prediction. Overly
symmetric designs like fractional factorials may have
replicates when projected in this way. It might be
helpful to incorporate prior information on effects
sparsity into the assumed models, with implications
for design.

O’Hagan sheds some more light on the Bayesian
viewpoint here, to which he has made important con-
tributions, and Morris points out some difficulties
with the frequentist interpretation. In earlier drafts
we did attempt to discuss these philosophical matters
more fully, but we gave up due to differences amongst
the authors! A full Bayesian viewpoint might offer
some advantages. Unfortunately, as O’Hagan points
out, unknown correlation parameters are not easy to
deal with in a full Bayesian framework.

We are grateful that the discussants share and
reinforce our excitement in developing this area. It is
clear to us that there is much work to be done; we
hope that there will be many to do it.
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