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Orthogonal Array-Based Latin Hypercubes

Boxin TANG*

In this article, we use orthogonal arrays (OA’s) to construct Latin hypercubes. Besides preserving the univariate stratification properties
of Latin hypercubes, these strength r OA-based Latin hypercubes also stratify each r-dimensional margin. Therefore, such OA-based
Latin hypercubes provide more suitable designs for computer experiments and numerical integration than do general Latin hypercubes.
We prove that when used for integration, the sampling scheme with OA-based Latin hypercubes offers a substantial improvement

over Latin hypercube sampling.
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1. INTRODUCTION

In many scientific and technological fields, we are often
confronted with the problem of evaluating a complex integral
over a high-dimensional domain. Among numerical inte-
gration techniques, Monte Carlo methods are especially use-
ful and often competitive for high-dimensional integration
(Davis and Rabinowitz 1984, chap. 5.10). and may be for-
mulated as follows. Consider a deterministic function Y
= f(X) where Y € R and X € R” and f is known but
expensive to compute. The random vector, X = (X', ...,
X"), has a uniform distribution on the unit hypercube
[0, 17™. We want to estimate the mean, u = E(Y'), of the
random variable Y. This is equivalent to finding the integral
of y = f(x) with respect to the uniform measure on [0, 1]"”.

The simplest Monte Carlo way is to draw X;, ..., X,
independently from Unif[0, 1]” and to use ¥ = n™!
X 27, f(X,) as an estimate of u. McKay. Conover, and
Beckman (1979) introduced Latin hypercube sampling
(LHS) as an alternative to iid sampling and showed that
LHS can result in variance reduction for ¥ when f is
monotone in each variable. Stein (1987) obtained a more
informative result. To describe Stein’s resuit, we define the
main effects as f;(X’) = E[f(X)|X’] — u. Then Stein
showed that the variance of ¥ under LHS is n~'var[ f(X)]
—n ' 20 var[f;(X7)] + o(n™"), which is asymptotically
smaller than the iid variance n~'var[ f(X)].

The main feature of LHS is that it stratifies each univariate
margin simultaneously. Stein’s result simply states that
stratifying each univariate margin filters out the main effects.
One may expect that if stratification is also achieved on each
bivariate margin, then one may filter out all the bivariate
interactions as well as the main effects. In fact, if we let
S(X7 X9y = ELf (X)X, X] = = fi(X) = (X)) be
the interaction of X' and X/, then we will prove that
the variance of Y is n 'var[f(X)] — n~! T/, var[f]
—n ' 27 var[f;] + o(n™") under the sampling scheme
using strength two OA-based Latin hypercubes.

In the theory and practice of experimental designs, it is

* Boxin Tang is a postdoctoral fellow in the Department of Preventive
Medicine and Biostatistics, University of Toronto, Ontario, Canada, M5S
1A8. This work is part of his Ph.D. dissertation for the Department of Sta-
tistics and Actuarial Science, University of Waterloo. The research was sup-
ported by the Natural Sciences and Engineering Research Council of Canada,
the Manufacturing Research Corporation of Ontario, and the Institute for
Improvement in Quality and Productivity. The author is most indebted to
Jeff Wu for the time and energy he spent on this work. The author also
thanks Mary Thompson, William Welch, and the referees for their helpful
comments and suggestions, and Joan Hu and Runchu Zhang for useful
discussion.

well known that when the assumed model is in doubt, we
are led to concentrate on and minimize the bias part of the
mean squared error (MSE). This usually can be done by
distributing design points uniformly in the design region (Box
and Draper 1959, Sacks and Ylvisaker 1984). OA designs
are used extensively for planning experiments in industry,
and their success is due at least in part to their uniformity
properties. But when a large number of factors are to be
studied in an experiment but only a few of them are virtually
effective, OA designs projected onto the subspace spanned
by the effective factors can result in replication of points.
This is undesirable for physical experiments in which the
bias of the proposed model is more serious than the variance,
and it can be disastrous for deterministic computer experi-
ments. In this case, Latin hypercube designs (LHD’s) are the
preferred alternatives (Welch et al. 1992). But the projections
of such design points onto even bivariate margins cannot be
guaranteed to be uniformly scattered. Current methods for
improving an LHD control the correlations among its per-
mutation columns (Iman and Conover 1982). In this article
we present a method of constructing LHD’s by exploiting
the use of OA’s. Such OA-based LHD’s inherit the r-variate
uniformity property of a strength r OA that is used for con-
struction; and therefore, they are more appropriate designs
for computer experiments than are general LHD’s.

The article is organized as follows. Section 2 introduces
OA’s and Latin hypercubes and shows how OA’s can be
used to construct Latin hypercubes; a number of examples
are presented for illustration. Section 3 presents some results
on the sampling scheme using strength two OA-based Latin
hypercubes. Section 4 gives a brief generalization of our
method through the use of asymmetrical OA’s.

2. CONSTRUCTION OF OA-BASED
LATIN HYPERCUBES

An n X m matrix A, with entries from a set of s = 2
symbols, is called an OA of strength r, size n, with m con-
straints and s levels if each # X r submatrix of A contains
all possible 1 X r row vectors with the same frequency A.
The number A is called the index of the array; clearly, »
= As”. The array is denoted by OA(n, m, s, r). The s symbols
are taken as 1, 2, . .., s throughout this article.

A Latin hypercube is an n X m matrix, each column of
which is a permutation of 1, 2, ..., n. Therefore, by the
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definition of OA’s, a Latin hypercube is an OA of strength
one, OA(n, m, n, 1).

Current users of Latin hypercubes randomly select per-
mutation columns (Welch and Sacks 1990), usually with a
supplemental control of the correlations among the per-
mutation columns, in the hope of getting better uniformity
properties for multivariate margins. The Latin hypercubes
to be constructed here possess the r-variate uniformity prop-
erties inherent in a strength r OA used for construction.

Let A be an OA(n, m, s, r). For each column of A, we
replace the As"~! positions with entry k by a permutation of
(k= DX "+ 1L, (k= DA™ "+ 2, ... (k= DAs" ' 4 rs™!
= kxs"',forall k = 1, ..., s. After the replacement pro-
cedure is done for all m columns of A, the newly obtained
matrix, denoted by U, is evidently a Latin hypercube. It
enjoys the merits of A in achieving uniformity in each r-
variate margin. Note that U becomes A under the element-
wise mapping

Z() =Ti/xs™ 1, 1=1,...,n,

(n

where [ x11s the smallest integer > x.

The construction of OA-based Latin hypercubes depends
on the existence of the corresponding OA. For related results
on OA’s, we refer to Plackett and Burman (1946), Rao
(1947), Bose and Bush (1952), Dey (1985), and de Launey
(1986). OA-based Latin hypercubes are referred to as U de-
signs hereafter when they are used for designing experiments.
U designs should be more appropriate designs than general
LHD’s for computer experiments. They may also be useful
for physical experiments, in which some factors have many
levels to be accommodated so that the number of experi-
ments required by a suitable OA may be too large to be
practical.

The nonuniqueness of U designs based on a single OA
poses the problem of choosing a desirable U design. A paper
in preparation by Tang and Wu discusses this problem, using
both distance and correlation criteria. We do not give details
here but merely point out this important issue.

We now consider how to use OA-based Latin hypercubes
for numerical integration. For a given OA(n, m, s, r) = A,
we randomize its rows, columns, and symbols to obtain a
randomized OA. Then for each column of this randomized
array, we replace the As"~' positions with entry k by a random
permutation (with each such permutation having an equal
probability of being taken) of (k — DAs™ ' + 1, (k — 1)As"!
+2, ., (k= DA+ AT = ks forall k=1, .. .,
s. This procedure generates a random OA-based Latin hy-
percube, denoted by U = (u;). Now suppose that X’
~Unif((i — )/n,i/n),i=1,....n,j=1,..., m, are
all generated independently. Then the » points to be used
for integration are formed by X; = (X, X,Z,‘2 ..... Xe ),
1 =1,...,n. This sampling scheme is referred to as U sam-
pling from now on. It should be noted that for the practical
use of U sampling, we can in fact omit the step of random-
izing the rows of A. It is included simply to make the U
sample X, . . ., X, exchangeable and hence to ease the study
of the theoretical properties of U sampling.

The description of U sampling can be made more compact
using the mapping Z introduced in (1). We may simply draw
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a Latin hypercube randomly from the collection of Latin
hypercubes {U} (each such Latin hypercube having an
equal chance to be drawn) such that (Z(u;)) forms an
OA(n, m, s, r) that is equivalent to the given A. (Two OA’s
are said to be equivalent if one can be obtained by permuting
the rows, columns, and symbols of the other.) This view is
particularly useful for the derivations of various probabilities
connected with U sampling. We postpone the study of the
theoretical properties of U sampling to Section 3. The re-
mainder of this section presents some examples of U designs.

Example 1. We use OA(4, 2, 2, 2) to construct a four-
point U design, U. For comparisons, we also give a four-
point LHD, L, that is not a U design. The two designs are

1 2 3 4Y 1 2 3 47
U-= L=
2 4 1 3 1 2 4 3

and can be represented by Figure 1.

Example 2. We construct two U designs in this ex-
ample, one based on OA(9, 2, 3, 2) and the other on
OA(8, 2, 2, 2). We give their graphical representations in
Figure 2.

Example 3. We consider a more realistic situation
in this example. A random U design is generated using
OA(49, 8, 7, 2), and the pairwise plots of the columns of
the design are given in Figure 3. To allow comparison, we
also provide in Figure 4 the plots of this sort for a random
LHD. It is seen that the design points in the former look
more uniform than those in the latter.

3. SOME RESULTS ON U SAMPLING

In this section, we study U sampling with associated QA’s
being OA (52, m, s, 2), as the use of such arrays leads to the
most economical sample size, n = s2, for a given s. (For
a given s, the U sample is obtained by taking a fixed
OA(s?, m, s, 2) and then applying the method of Section
2.) The basic ideas should carry through for general arrays,
however, although derivations will become very complicated.
An exception is Theorem 2, in which general OA’s are con-
sidered.

! | L ! l:

EEnE ' . :

e e

1 1 | I I I

! —e L : !
(a) (b)

Figure 1. A Four-Point U Design and a Four-Point LHD. The points in
(a) represent the U design; the points in (b), the LHD. On intuitive grounds,
the former should be preferred to the latter. Indeed, suppose that the area
within the dashed line box is the design region. The design points in (a)
are more uniformly scattered than those in (b) in the two-dimensional
region in the sense that each small dashed line box in (a) contains exactly
one design point.
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(a) (b)

Figure 2. U Designs Based on OA(9, 2, 3, 2) and OA(8, 2, 2, 2). The
points in (a) represent a nine-point U design; the points in (b), an eight-
point U design.

We first introduce a generic two-stage sampling scheme
that includes both LHS and U sampling as special cases.
This general framework facilitates the theoretical develop-
ment in the sequel, and it may also be used to suggest other
useful sampling schemes. Let 2 = {[0, 1/n]. (1/n, 2/n],
o (0 =1/n, 1]}and € = {P; X +++ X P,|P,EP,j
=1,..., m}. Members of € are referred to as cells, and
thus the #” cells form a partition of [0, 1]”. We use c¢(F))
to denote the cylinder set of P;; that is, c(P;) consists of
points in [0, 1] such that only the jth coordinate of such
points are restricted and belong to P;. To estimate the mean
of Y, we would like to draw an X from the uniform distri-
bution for each cell in @. Consideration of cost, however,
leads us to use only a sample of cells and hence to consider
the following two-stage sampling scheme.

Stage 1. Draw a sequence C,, . . ., C, of cells from € using
some sampling scheme satisfying the following two criteria:

1. The n cells are distinct, and the random vector

(Cy, ..., C,)is exchangeable.
o [
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Figure 3. The Random Latin Hypercube Based on OA(49, 8, 7, 2).
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Figure 4. The Random Latin Hypercube With 49 Columns and 8 Rows.

2. The marginal distribution of C; is uniform on €,
i=1,...,n.

Stage 2. Foreachi=1, ..., n, an X, is drawn from the
uniform distribution on C;, the drawing being carried out
independently foreach i =1, ..., n.

Denote the variance of Y by ¢2. Then we have the follow-
ing obvious assertion.

Assertion. Under the two-stage sampling scheme, Y is
an unbiased estimator of u, and the variance of Y is given
by var(Y) = n"'¢2 + n ' (n — Deov(f(X)), f(X3)).

It is easy to see that both LHS and U sampling are special
cases of the two-stage sampling scheme, where the ith cell
C; corresponds to the ith row of a random Latin hypercube
for LHS and a random OA-based Latin hypercube for U
sampling. Therefore, the assertion holds for both.

Let @ = {[0, 1/s),(1/s,2/s],...,(1 = 1/s, 1]} and L
={Q X +++ X QnlQ € @Q}. We refer to members of L
as large cells and members of €@ introduced previously as
small cells from now on. We similarly define the cylinder
sets of Q; and Q; X @, denoted by ¢(@Q;) and c(Q; X Q).
We are now in a position to give the following theorem.

Theorem 1.
have

If f is bounded, then under U sampling we

m

cov[ (X)), f(X2)] = —n ' 2 var[E(f(X)] c(P))]

i=1

— 073 var{ ELAX)] (@ X )] = ELf(X €(Q)]

<j

— E[/XDIe(Q)1} + o(n™h),
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where Py X -+ X P, and Q, X - -+ X Q,, are the small
and large cells to which X, belongs and, for example, con-
ditioning on ¢(P;) means conditioning on X, € c(P)).

The proof of Theorem 1 is given in Appendix A. If fis
continuous on [0, 1]™, consequently also bounded, then we
can easily show the following result using Theorem 1.

Corollary 1. If fis continuous on [0, 1]™, then under
U sampling we have

m

cov[f(X), f(X2)] = —n™" X var[f(X7)]

Jj=1

~n ' 3 var[f{ X', X)) + o(n™h),

i<j

where f; and f; are main effects and interactions as defined
in Section 1.

Under LHS, we know that cov[f(X,), f(X,)] = —n~'
X 27y var[ fi( X’)] + o(n™") (Stein 1987). Therefore, Cor-
ollary 1 indicates a stronger negative correlation between
S(X;) and f(X;) under U sampling than under LHS in the
asymptotic sense.

Corollary 2. If fis continuous on [0, 1]™, then under
U sampling we have

var(Y) = n"'¢? — n~! % var[ f;( X”)]
j=1

—n! % var[f;( X', X))} + o(n").

i<j

This follows from Corollary 1 and our Assertion.
If we write

JX) =+ 2 X+ 2 (X X))+ r(X),

Jj=1 i<j

then it is easy to check that the terms on the right side of
the equality are uncorrelated with each other. Therefore, we
obtain the corresponding variance decomposition

o*= 3 var(f) + % var(f;) + var[r(X)],
J=1

i<j

and consequently the variance of Y under U sampling is
n~'var[r(X)]+ o(n~"). This generalizes Stein’s result. Owen

——————— ———-—-—-=--n

_______ P

e e L4

Figure 5. A Six-Point U Design Together With a Six-Point LHD. The
points in (a) represent the U design; the points in (b), the LHD. Note that
each small dashed line box in (a) contains exactly one design point.
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(1992) independently obtained a result similar to Corollary
2 by using randomized OA’s, with the aid of the results
of Patterson (1954). Owen’s sampling procedure may be
briefly described as follows. Suppose that A = (g;) is an
OA(n, m, s, r) with its symbols randomized and that X’
~ Unif(0, 1),i=1,...,n,j=1,..., m, are generated
independently. Then the # points Owen used for integration
are the rows of the matrix ((a; — X%)/s). To compare U
sampling with Owen’s procedure, let V, and V; be the vari-
ances of Y using U sampling and Owen’s procedure. Then
we can show the following theorem.

Theorem 2. When f is additive—that is, when f(X ) = u
+ 27 fi( X’)—we have

Vz_ V]

=n"! 'z": E{var[E(f(X)| X' EPC Q)| X' €Q]} >0,

J=1

where X/ ~ Unif[0, 1]and PE P, Q € Q.

Thus Theorem 2 shows that U sampling gives a smaller
variance of ¥ than does Owen’s procedure whenever fis
additive. Note that Theorem 2 is true for any OA. We prove
Theorem 2 in Appendix B.

Before concluding this section, we note the close connec-
tions between our results and the work in the numerical
analysis literature on quasi-Monte Carlo. Hua and Wang
(1981) gave a systematic account of quasi-Monte Carlo
methods. For historical developments, we refer to the review
papers by Niederreiter (1978, 1988). Our method has two
features not shared by quasi-Monte Carlo methods. First,
OA-based Latin hypercubes stress low-dimensional margins
and specifically achieve uniformity in each ¢-dimensional
margin (¢ < r). Second the uniformity properties of OA-
based Latin hypercubes are in fact finite sample properties
in the sense that, for example, each ¢(P;) contains exactly
one point. I am currently exploring further connections be-
tween OA-based Latin hypercubes and quasi-Monte Carlo
methods, both theoretically and numerically, and hope to
report them in a future communication.

4. GENERALIZATION

Generalizations of OA-based Latin hypercubes can be
made ecasily using asymmetrical OA’s. Relevant references
on asymmetrical OA’s include Rao (1973), Dey (1985), Wu
(1989), Wang and Wu (1991), and Wu, Zhang, and Wang
(1992). The notation OA(n, r; sy, ..., S,)is used to denote
an asymmetrical OA of size n and strength r, with s; levels
in the jth column, j = 1, .. ., m, where the 5;’s may not be
distinct. Let A be a given OA(n, r; 5y, ..., S»). Then an
LHD, U = (u;), is said to be an asymmetrical U design
based on A, if (Z;(uy)) = A, where Z;(i) is defined to be
[is;/n1. The generalization of U sampling can be made ac-
cordingly. A simple example illustrates the underlying idea.

Example 4. An asymmetrical U design is constructed
using the OA(6, 2; 2, 3), and is represented graphically in
Figure 5. An LHD that is not an asymmetrical U design is
also given in Figure 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1396

APPENDIX A: PROOF OF THEOREM 1

Several lemmas are needed for proving Theorem 1.

Lete; =P, X +++ XPr,beasmallcellin€CandL=0Q, X + -
X QO be the large cell containing c,. Further, let G = (UZ, c(P)))
U (U2 c(Q; X @))). For U sampling using OA(s?, m, s, 2), we
have P(C; = ¢;|C, = ¢;) = 0 for all ¢, C G. We derive below an
expression for P(C; = ¢,| Cy = ¢), for ¢; C G¢, which plays a key
role in the proof of Theorem 1. The following lemma is obvious
by the definition of U sampling.

We have
P(Cy=|Cy =)

Lemma 1.

m

a, Ve C (U C(Qj))c = ﬂ (0.
j=1 Jj=1

b, Ve, C (U c(Qj)> G - UI (c(Q\G).

j=1

where a and b are constants. Note that G¢ =
U (UL (c(@H\G)).

In Lemmas 2 and 3 we derive the expressions for ¢ and b.

(N2 e(Q)9)

Lemma 2. We have

a_ s—m+1

b S

Proof. Let ¢, = (uyy, Ua, ..., U,) and ¢ = (Uy, Un,
..., Us,). We want to count the number of Latin hypercubes U
= (u;), with the first and second rows fixed to be ¢, and ¢,, such
that (Z(u;)) is an OA(s?, m, s, 2) that is equivalent to the given
array, A, where Z is defined in (1).

Step 1. We first obtain the elements u;,, i = 3, ..., n, in the first
column. The number of ways for doing this is (n — 2)!.

Step 2. Now consider an OA(s?, m, s, 2), B = (b;) that is equiv-
alent to A, such that the symbols in the first and second rows are
given by b; = Z(uy),i=1,2,j=1,..., m, and the symbols in
the first column are given by b;; = Z(u;,),i=3,..., n.

In understanding Step 2, it is helpful to think of there being ms
symbols7;,j=1,...,mand r = 1, ..., s; then b; = 7;if column
J has level 7 in the ith row. Thus the symbols look like 2,, 3,, 13,
and so on.

For the m pairs (by;, by;) of symbols, j = 1, ..., m, two cases
arise:
Case 1. When ¢, C UL, (¢(Q))\G), there must be one pair

having the same symbol in it. Without loss of generality, suppose
that this is the first pair, which implies b,, = b,,, and by; # by,
ji=2,...,m.

Case 2. When ¢, TN ¢(Q))¢, no pair has the same symbol
init;thatis, by; # by, j=1,..., m.

We now divide the array B into s subarrays of s rows each such
that within each subarray, the symbol in the first column is the
same for all rows. Therefore, within each subarray, each symbol
for every other column appears once. Let us call the subarray to
which the first row (b, by, ..., b,,) belongs the first block and
the subarray to which the next row not in the first block belongs
the second block.

Case 1. The two rows (b, b3, ..., by,,) and (bay, bys, ...,
b,,,) are both in the first block, because b,, = b,;. Because the
symbols by, ..., b, already appear in the top row of the first
block, in the second block they must all be in different rows. Thus
in the second block there are s"D = s(s — 1)+ «(s — m + 2)
ways to arrange the symbols.
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Case 2. The row (b,,, b2, ..., b1,) is in the first block, and
the row (b3, b2, ..., bay) is in the second block, as by, # by,
Here again, the symbols b,,, . . ., b;,, must all be in different rows
in the second block. Because the row (b, baa, . .., bay) already
occupies one row in the second block, there are (s — 1)™ " ways
to arrange the symbols b,, . . ., by, in the second block.

It is well known that for the existence of an OA(s2, m, s, 2), it
is necessary that m < s+ 1. If m = s + 1, then Lemma 2 is obviously
true, because it is impossible to arrange b, . . ., b, in the second
block for Case 2. Now suppose that m < s.

Case 1. Wenow have by, . . ., b, placed in the first and second
blocks, and a subrow (b,,, ..., bs,) of different symbols in the
second row of the first block. Because m < s, at least one of the
rows of the second block (without loss of generality, say, the first
row) has none of by,, b3, ..., by, init. Let (bs, bs, ..., b,,) be
an assignment of symbols to that row.

Case 2. Here we have by, . . ., by, placed in the first and second
blocks and a subrow (b, . . ., by, ) of different symbols in the first
row of the second block. Let (b,, ..., b,) be an assignment of
symbols to the second row of the first block.

At this point, each Case 1 assignment compatible with the given
A could have been arrived at as a Case 2 assignment, and vice versa.
To be specific, with any particular arrangement for the symbols
b2, ..., bim, let B, for Case | and B, for Case 2 be the collections
of OA’s that can be obtained by filling the remaining positions with
appropriate symbols. For any B € 8, if we switch the two symbols
b; and by; in column j, j = 2, ..., m and then supplement the
symbol-switching procedure with a suitably chosen permutation of
the rows, we will obtain an OA in B,. This defines a mapping from
B, to B,. It is easy to check that this mapping actually establishes
a one-to-one correspondence between B, and B,. Thus the numbers
of OA’s in B, and in B, are equal. Note that for any B, € B,, the
array in B, (say, B,) given by the mapping is equivalent to B,. So
either both B, and B, are equivalent to the given A or neither is
equivalent to A. Therefore, B, and B, contain the same number
of OA’s that are equivalent to A.

Step 3. Obtain uy;, i = 3, = 2, suth that Z(u,;) = b;;. It is easily
seen that the number of ways of getting such u;’s is the same for
both cases.

In summary, we conclude that the number of Latin hyper-
cubes based on A. with the first two rows equal to ¢, and c,, is
ks+-+(s — m+ 2)for Case | and k(s — 1)- - «(s — m + 1) for
Case 2. Therefore,

g:k(s~l)-"(s—m+]):s—m+l
b kse(s—m+2) s ’

It is easy to see that the numbers of small cells in N7, c(Q))¢
and in UL, (c(@)\G) are (n — s)™ and m(s — I)}(n — )",
Therefore, we have

a(n— )"+ bm(s— 1)(n—s)"1=1.

Combining this equation with Lemma 2, we can easily derive the
exact expressions for @ and b. The results are provided in Lem-
ma 3.

We have
s—m+ 1 1

s — D5+ 1) Ty s— DM+ 1)

Let » be the uniform measure with total mass 1 on G¢, and let
2(x|C, = ¢) be the probability density function of X, conditionally
on C| = ¢, with respect to ». Then Lemma 4 is a direct consequence
of Lemma 3.

Lemma 3.
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Lemma 4. We have

s2—(m—1)?

for x& m c(Q)°,
j=1

st—1 ’
g(x|Cy=¢)) = 2y s m
ﬁ——szﬁnl—)s, for x€& U (c(OH\G).
_ Pt

We are ready to prove Theorem 1.

Proof of Theorem 1. Without loss of generality, we assume u
= () in the proof. We now have
cov[f(Xy), f(X2)] = E[fIX)f(Xy)] = E[E(f(X))/(X2)| O)],
where C=P; X « -+ X P,and L= Q; X + -+ X Q,, are the small
and large cells to which X; belongs. Let G = (UL, c(F))
U (U, c(Q; X Q) as before. Then, conditionally on C, X, and
X, are independent and X, has the probability density function
g(x|C) given in Lemma 4. Therefore,
E[fX)f(Xy)] = E[E(SIXDIOVE(f(X2) | O)],
so that
cov[f(X,), f(X2)] = E[E(/(X))|O)E(f/(X2)| O)].
Further, we have

4+ (m—1
E(f(X2)|C) = %ﬁ fu’»’il(c(Q)\G)f(x) dv

2 2
sSoim- 1) fm f(x) dbv.
Mj=1c(Q)¢

s2—1
As s becomes large, the set G¢ approaches the unit cube [0, 1]™.
Thus » has a density 1 + o(1) with respect to the Lebesgue measure
on G°. Noting that u = flo.”,,, f(x) dx = 0, we can easily show
that

(A.1)

E(f(X)|C) = =57 2 E[/(X))| e(P)]

Jj=1

—(m =157 3 E(X)]e(Q)]

j=1

—s7 2 EL/X)1e(@i X Q)] + o(s72),

i<j

where, for example, the first X, in the expression can be any random
variable uniformly distributed on ¢(P;). With this expression for
E(f(X;)|C) substituted into (A.1), it is easy to obtain

m

cov[f(Xy), f(X2)] = =572 X var[E(f(X,)| e(P))]

Jj=1

— 72 2 var[E(f(X)|c(Q X Q) — E(f(X1)| c(Q:))

i<j
= E(f(X)|c(ON]+ o(s7?).
This proves the result claimed in Theorem I, as n = s2.
APPENDIX B: PROOF OF THEOREM 2

Because Y= pu+n~' 27, T2, fi(X7}), we have

™M =

Vy=n"?

7

> var[ (X1,
1i=1

1397

where X% ~ Unif((i — 1)/n, i/n), and

AsT!

3 3 var[f( X,

k=1 [=1

M3

Vz = n72

J

where X% ~ Unif((k — 1)/s, k/s). With this observation, the
proof of Theorem 2 is straightforward.

[Received July 1991. Revised January 1993.]
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