Useful Formulas and Some Details

Rui Paulo, paraphrased by Robert Wolpert

Originally: January 302004

1 Likelihood Expressions

The design set for the field data is $D^{F}=\left\{x_{1}, \ldots, x_{\ell}\right\}$. At input vector x_{j} a total of n_{j} replicates are measured, denoted by $y_{k}^{F}\left(x_{j}\right)$ for $1 \leq k \leq n_{j}$. The sufficient statistics are

$$
\begin{aligned}
\bar{y}^{F} & =\left(\bar{y}^{F}\left(x_{j}\right), j=1, \ldots, \ell\right)^{\prime} \\
s_{F}^{2} & =\sum_{j=1}^{\ell} \sum_{k=1}^{n_{j}}\left(y_{k}^{F}\left(x_{j}\right)-\bar{y}^{F}\left(x_{j}\right)\right)^{2},
\end{aligned}
$$

where $\bar{y}^{F}\left(x_{j}\right):=\sum_{k=1}^{n_{j}} y_{k}^{F}\left(x_{j}\right) / n_{j}$. Let
$\boldsymbol{y}^{M}=$ code data, i.e., computer code observed at design set D^{M};
$\boldsymbol{u}_{\star}=$ "true" value of the calibration parameter;
$\boldsymbol{y}_{\star}^{M}=$ code observed at the set D^{F} augmented with the true value of the calibration parameter, \boldsymbol{u}_{\star}, which we will denote by D_{\star}^{F};
$\boldsymbol{b}=$ discrepancy (or "bias") observed at D_{\star}^{F}.
Consequence of the modeling strategy:

$$
\begin{equation*}
\bar{y}^{F}=\boldsymbol{y}_{\star}^{M}+\boldsymbol{b}+\bar{\epsilon}, \quad \epsilon \mid \lambda^{F} \sim \operatorname{No}\left(0, \boldsymbol{\Sigma}^{F}\right), \quad \boldsymbol{\Sigma}^{F}=\operatorname{diag} \boldsymbol{n}^{-1} / \lambda^{F}, \tag{1}
\end{equation*}
$$

which in turn implies that, independently, ${ }^{1}$

$$
\begin{array}{ll}
\bar{y}^{F} \mid \boldsymbol{y}_{\star}^{M}, \boldsymbol{b}, \lambda^{F} & \sim \mathrm{No}\left(\boldsymbol{y}_{\star}^{M}+\boldsymbol{b}, \boldsymbol{\Sigma}^{F}\right) \\
s_{F}^{2} \mid \lambda^{F} & \sim \frac{1}{\lambda^{F}} \chi^{2}\left(\sum_{i=1}^{\ell}\left(n_{i}-1\right)\right) . \tag{3}
\end{array}
$$

[^0]Also, it is clear that

$$
\begin{align*}
& \boldsymbol{b} \mid \theta^{b}, \mu^{b} \quad \sim \operatorname{No}\left(\mathbf{1} \mu^{b}, \quad c^{b}\left(D^{F}, D^{F}\right) / \lambda^{b}\right) \quad \equiv \operatorname{No}\left(\boldsymbol{\mu}^{b}, \boldsymbol{\Sigma}^{b}\right) \tag{4}\\
& \boldsymbol{y}^{M} \mid \theta^{L}, \theta^{M} \quad \sim \operatorname{No}\left(\boldsymbol{X} \theta^{L}, c^{M}\left(D^{M}, D^{M}\right) / \lambda^{M}\right) \equiv \operatorname{No}\left(\boldsymbol{\mu}^{M}, \boldsymbol{\Sigma}^{M}\right) \tag{5}\\
& \boldsymbol{y}_{\star}^{M} \mid \theta^{L}, \theta^{M}, \boldsymbol{u}_{\star} \quad \sim \operatorname{No}\left(\boldsymbol{X}_{\star} \theta^{L}, c^{M}\left(D_{\star}^{F}, D_{\star}^{F}\right) / \lambda^{M}\right) \equiv \operatorname{No}\left(\boldsymbol{\mu}_{\star}^{M}, \boldsymbol{\Sigma}_{\star}^{M}\right) \tag{6}\\
& \boldsymbol{y}_{\star}^{M} \mid \boldsymbol{y}^{M}, \theta^{L}, \theta^{M}, \boldsymbol{u}_{\star} \sim \quad \operatorname{No}\left(\boldsymbol{\mu}_{\star \mid \boldsymbol{\bullet}}, \boldsymbol{\Sigma}_{\star \mid \boldsymbol{\bullet}}^{M}\right) \tag{7}
\end{align*}
$$

where $\boldsymbol{\mu}_{\star \mid \bullet}$ and $\boldsymbol{\Sigma}_{\star \mid \bullet}^{M}$ ("field estimates conditional on design") are given by

$$
\begin{align*}
& \boldsymbol{\mu}_{\star \mid \bullet}=\boldsymbol{\mu}_{\star}^{M}+\boldsymbol{\Sigma}_{\star \bullet}\left[\boldsymbol{\Sigma}^{M}\right]^{-1}\left(\boldsymbol{y}^{M}-\boldsymbol{\mu}^{M}\right) \tag{8}\\
& \boldsymbol{\Sigma}_{\star \mid \bullet}=\boldsymbol{\Sigma}_{\star}^{M}-\boldsymbol{\Sigma}_{\star \bullet}\left[\boldsymbol{\Sigma}^{M}\right]^{-1} \boldsymbol{\Sigma}_{\bullet \star} \tag{9}
\end{align*}
$$

with

$$
\begin{align*}
& \boldsymbol{\Sigma}_{\star \bullet}=c^{M}\left(D_{\star}^{F}, D^{M}\right) / \lambda^{M} \tag{10}\\
& \boldsymbol{\Sigma}_{\bullet \star}=\boldsymbol{\Sigma}_{\star \bullet}{ }^{\prime}=c^{M}\left(D^{M}, D_{\star}^{F}\right) / \lambda^{M} \tag{11}
\end{align*}
$$

With the above in mind, we have

$$
\begin{align*}
f\left(\bar{y}^{F}, s_{F}^{2}, \boldsymbol{b}, \boldsymbol{y}_{\star}^{M}, \boldsymbol{y}^{M} \mid\right. & \underbrace{\theta^{L}, \theta^{M}, \mu^{b}, \theta^{b}, \lambda^{F}, \boldsymbol{u}_{\star}}_{\theta})= \tag{12}\\
= & f\left(\bar{y}^{F}, s_{F}^{2} \mid \boldsymbol{b}, \boldsymbol{y}_{\star}^{M}, \boldsymbol{y}^{M}, \theta\right) \times \tag{13}\\
& f\left(\boldsymbol{b} \mid \boldsymbol{y}_{\star}^{M}, \boldsymbol{y}^{M}, \theta\right) \times \tag{14}\\
& f\left(\boldsymbol{y}_{\star}^{M} \mid \boldsymbol{y}^{M}, \theta\right) \times \tag{15}\\
& f\left(\boldsymbol{y}^{M} \mid \theta\right) \tag{16}\\
= & f\left(s_{F}^{2} \mid \lambda^{F}\right) \times \tag{17}\\
& f\left(\bar{y}^{F} \mid \boldsymbol{b}, \boldsymbol{y}_{\star}^{M}, \lambda^{F}\right) \times \tag{18}\\
& f\left(\boldsymbol{b} \mid \theta^{b}, \mu^{b}\right) \times \tag{19}\\
& f\left(\boldsymbol{y}_{\star}^{M} \mid \boldsymbol{y}^{M}, \theta^{L}, \theta^{M}, \boldsymbol{u}_{\star}\right) \times \tag{20}\\
& f\left(\boldsymbol{y}^{M} \mid \theta^{L}, \theta^{M}\right) \tag{21}
\end{align*}
$$

Note how we know all these densities, and that the last four are all multivariate Gaussian. For that reason, we are actually able to integrate out $\boldsymbol{y}_{\star}^{M}$ and \boldsymbol{b} in closed form to get

$$
\begin{align*}
f\left(\bar{y}^{F}, s_{F}^{2}, \boldsymbol{y}^{M} \mid \theta\right)= & \lambda^{F} \chi^{2}\left(\lambda^{F} s_{F}^{2} \mid \sum_{i=1}^{\ell}\left(n_{i}-1\right)\right) \times \tag{22}\\
& \operatorname{No}\left(\bar{y}^{F} \mid \boldsymbol{\mu}_{\star \bullet \bullet}+b, \boldsymbol{\Sigma}_{\star \mid \bullet}+\boldsymbol{\Sigma}^{F}\right) \times \tag{23}\\
& \operatorname{No}\left(\boldsymbol{y}^{M} \mid \boldsymbol{\mu}^{M}, \boldsymbol{\Sigma}^{M}\right) . \tag{24}
\end{align*}
$$

We can also marginalize only over $\boldsymbol{y}_{\star}^{M}$ to get:

$$
\begin{align*}
f\left(\bar{y}^{F}, s_{F}^{2}, \boldsymbol{y}^{M}, \boldsymbol{b} \mid \theta\right)= & \lambda^{F} \chi^{2}\left(\lambda^{F} s_{F}^{2} \mid \sum_{i=1}^{\ell}\left(n_{i}-1\right)\right) \times \tag{25}\\
& \operatorname{No}\left(\bar{y}^{F} \mid \boldsymbol{\mu}_{\star \mid \bullet}+b, \boldsymbol{\Sigma}_{\star \mid \bullet}+\boldsymbol{\Sigma}^{F}\right) \times \tag{26}\\
& \operatorname{No}\left(\boldsymbol{b} \mid \boldsymbol{\mu}^{b}, \boldsymbol{\Sigma}^{b}\right) \times \tag{27}\\
& \operatorname{No}\left(\boldsymbol{y}^{M} \mid \boldsymbol{\mu}^{M}, \boldsymbol{\Sigma}^{M}\right), \tag{28}
\end{align*}
$$

or only over \boldsymbol{b} for

$$
\begin{align*}
f\left(\bar{y}^{F}, s_{F}^{2}, \boldsymbol{y}^{M}, \boldsymbol{y}_{\star}^{M} \mid \theta\right)= & \lambda^{F} \chi^{2}\left(\lambda^{F} s_{F}^{2} \mid \sum_{i=1}^{\ell}\left(n_{i}-1\right)\right) \times \tag{29}\\
& \operatorname{No}\left(\bar{y}^{F} \mid \boldsymbol{y}_{\star}^{M}+\boldsymbol{\mu}^{b}, \boldsymbol{\Sigma}^{b}+\boldsymbol{\Sigma}^{F}\right) \times \tag{30}\\
& \operatorname{No}\left(\boldsymbol{y}_{\star}^{M} \mid \boldsymbol{\mu}_{\star \mid \boldsymbol{\bullet}}, \boldsymbol{\Sigma}_{\star \mid \bullet}\right) \times \tag{31}\\
& \operatorname{No}\left(\boldsymbol{y}^{M} \mid \boldsymbol{\mu}^{M}, \boldsymbol{\Sigma}^{M}\right) . \tag{32}
\end{align*}
$$

In the second stage of the modular approach, the factor $\operatorname{No}\left(\boldsymbol{y}^{M} \mid \boldsymbol{\mu}^{M}, \boldsymbol{\Sigma}^{M}\right)$ of (32) is omitted. Another alternative to these expressions is the one that arises from considering the joint distribution directly:

$$
\begin{align*}
f\left(\bar{y}^{F}, s_{F}^{2}, \boldsymbol{y}^{M} \mid \theta\right)= & \lambda^{F} \chi^{2}\left(\lambda^{F} s_{F}^{2} \mid \sum_{i=1}^{\ell}\left(n_{i}-1\right)\right) \times \tag{33}\\
& \operatorname{No}\left(\left(\boldsymbol{y}^{M^{\prime}}, \boldsymbol{y}^{F^{\prime}}\right)^{\prime} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}\right) \tag{34}
\end{align*}
$$

where

$$
\boldsymbol{\mu}=\left[\begin{array}{cc}
\boldsymbol{X} & \mathbf{0} \tag{35}\\
\boldsymbol{X}_{\star} & 1
\end{array}\right]\binom{\theta^{L}}{\mu^{b}} \quad \text { and } \quad \boldsymbol{\Sigma}=\left[\begin{array}{cc}
\boldsymbol{\Sigma}^{M} & \boldsymbol{\Sigma} \boldsymbol{\boldsymbol { \Sigma } _ { \star }} \\
\boldsymbol{\Sigma}_{\star} & \boldsymbol{\Sigma}_{\star}^{M}+\boldsymbol{\Sigma}^{b}+\boldsymbol{\Sigma}^{F}
\end{array}\right] .
$$

2 Second stage MCMC if all parameters, except precisions, are fixed

This is what? implemented in the code sent to GM in 2004, with $\mu^{b} \equiv 0$:

1. $\left[\boldsymbol{y}_{\star}^{M}, \boldsymbol{b} \mid \lambda^{b}, \lambda^{F}, \boldsymbol{u}_{\star}, \boldsymbol{y}^{M}, \bar{y}^{F}, s_{F}^{2}\right] \sim$ Kalman Filter, see details in Section (3) below.
2. $\left[\lambda^{F} \mid \lambda^{b}, \boldsymbol{u}_{\star}, \boldsymbol{y}^{M}, \boldsymbol{b}, \boldsymbol{y}^{M}, \bar{y}^{F}, s_{F}^{2}\right] \sim \mathrm{Ga}\left(\alpha_{F \mid \bullet}, r_{F \mid \bullet}\right)$, gamma with conditional shape and rate parameters

$$
\begin{aligned}
\alpha_{F \mid \bullet} & =\alpha_{F}+\sum n_{i} / 2 \\
r_{F \mid \bullet} & =r_{F}+s_{F}^{2} / 2+\left(\bar{y}^{F}-\boldsymbol{b}-\boldsymbol{y}_{\star}^{M}\right)^{\prime}[\operatorname{diag} \boldsymbol{n}]\left(\bar{y}^{F}-\boldsymbol{b}-\boldsymbol{y}_{\star}^{M}\right) / 2
\end{aligned}
$$

and, a priori, $\lambda^{F} \sim \mathrm{Ga}\left(\alpha_{F}, r_{F}\right)$.
3. $\left[\lambda^{b}, \boldsymbol{u}_{\star} \mid \lambda^{F}, \boldsymbol{y}_{\star}^{M}, \boldsymbol{b}, \boldsymbol{y}^{M}, \bar{y}^{F}, s_{F}^{2}\right] \propto \pi\left(\lambda^{b}\right) f\left(\boldsymbol{b} \mid \theta^{b}\right) f\left(\boldsymbol{y}_{\star}^{M} \mid \boldsymbol{y}^{M}, \theta^{L}, \theta^{M}, \boldsymbol{u}_{\star}\right)$.

This vector is sampled jointly using a Metropolis step. The proposal is the full conditional of λ^{b} times the prior on \boldsymbol{u}_{\star}.

The full conditional is $\left[\lambda^{b} \mid \lambda^{F}, \boldsymbol{u}_{\star}, \boldsymbol{y}_{\star}^{M}, \boldsymbol{b}, \bar{y}^{F}, \boldsymbol{y}^{M}, s_{F}^{2}\right] \sim \operatorname{Ga}\left(\alpha_{b \mid \bullet}, r_{b \mid \bullet}\right)$, gamma with shape and rate parameters

$$
\begin{aligned}
\alpha_{b \mid \bullet} & =\alpha_{b}+\ell / 2 \\
r_{b \mid \bullet} & =r_{b}+\boldsymbol{b}^{\prime}\left[c^{b}\left(D^{F}, D^{F}\right)\right]^{-1} \boldsymbol{b} / 2
\end{aligned}
$$

and, a priori, $\lambda^{b} \sim \mathrm{Ga}\left(\alpha_{b}, r_{b}\right)$.
This step can also be done by sampling λ^{b} directly from its full conditional, followed by a Metropolis step to sample \boldsymbol{u}_{\star} from its full conditional. A proposal can be the prior itself, if that works. In the example described in the software documentation, it did not make a noticeable difference whether we were doing this or sampling from the joint.

3 Note on the Kalman Filter part

All statements are conditional on the parameters. By sufficiency,

$$
f\left(\boldsymbol{y}_{\star}^{M}, \boldsymbol{b} \mid \boldsymbol{y}^{M}, y^{F}\right)=f\left(\boldsymbol{y}_{\star}^{M}, \boldsymbol{b} \mid \boldsymbol{y}^{M}, \bar{y}^{F}\right)
$$

Also, it is clear that

$$
\boldsymbol{y}^{M}, \bar{y}^{F}, \boldsymbol{y}_{\star}^{M}, \boldsymbol{b} \sim \operatorname{No}(\boldsymbol{\mu}, \boldsymbol{\Sigma})
$$

where

$$
\boldsymbol{\mu}=\left[\begin{array}{cc}
\boldsymbol{X} & \mathbf{0} \\
\boldsymbol{X}_{\star} & \mathbf{1} \\
\boldsymbol{X}_{\star} & \mathbf{0} \\
\mathbf{0} & \mathbf{1}
\end{array}\right]\binom{\theta^{L}}{\mu^{b}}
$$

and

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cccc}
\boldsymbol{\Sigma}^{M} & & & \\
\boldsymbol{\Sigma}_{\star \bullet} & \boldsymbol{\Sigma}_{\star}^{M}+\boldsymbol{\Sigma}^{b}+\boldsymbol{\Sigma}^{F} & & \\
\boldsymbol{\Sigma}_{\star \bullet} & \boldsymbol{\Sigma}_{\star}^{M} & \boldsymbol{\Sigma}_{\star}^{M} & \\
\mathbf{0} & \boldsymbol{\Sigma}^{b} & \mathbf{0} & \boldsymbol{\Sigma}^{b}
\end{array}\right]
$$

so that it's easy to compute the mean and covariance of the conditional distribution. How can one partition the conditional density of $\left(\boldsymbol{y}_{\star}^{M}, \boldsymbol{b}\right)$ given the data? The conditionals and marginals are all Gaussian with mean and covariance that follow the pattern

$$
\begin{aligned}
\boldsymbol{\Sigma} & =\left(A^{-1}+B^{-1}\right)^{-1} \\
\mu & =A-A(A+B)^{-1} A=A(A+B)^{-1} B \\
\mu\left(A^{-1} \mu_{1}+B^{-1} \mu_{2}\right) & =\mu_{1}+A(A+B)^{-1}\left(\mu_{2}-\mu_{1}\right)
\end{aligned}
$$

according to the following table:

	A	μ_{1}	B	μ_{2}
$\boldsymbol{y}_{\star}^{M} \mid \bar{y}^{F}, \boldsymbol{y}^{M}, \boldsymbol{b}$	$\boldsymbol{\Sigma}^{F}$	$\bar{y}^{F}-\boldsymbol{b}$	$\boldsymbol{\Sigma}_{\star \mid \bullet}$	$\mu_{\star \mid \bullet}$
$\boldsymbol{b} \mid \bar{y}^{F}, \boldsymbol{y}^{M}, \boldsymbol{y}_{\star}^{M}$	$\boldsymbol{\Sigma}^{F}$	$\bar{y}^{F}-\boldsymbol{y}_{\star}^{M}$	$\boldsymbol{\Sigma}^{b}$	μ^{b}
$\boldsymbol{y}_{\star}^{M} \mid \bar{y}^{F}, \boldsymbol{y}^{M}$	$\boldsymbol{\Sigma}_{\star \mid \bullet}$	$\mu_{\star \mid \bullet}$	$\boldsymbol{\Sigma}^{b}+\boldsymbol{\Sigma}^{F}$	$\bar{y}^{F}-\mu^{b}$
$\boldsymbol{b} \quad \mid \bar{y}^{F}, \boldsymbol{y}^{M}$	$\boldsymbol{\Sigma}^{F}+\boldsymbol{\Sigma}_{\star \mid \bullet} . y^{F}-\mu_{\star \mid \bullet}$	$\boldsymbol{\Sigma}^{b}$	μ^{b}	

4 Notes

The quantity θ^{M} never seems to be used (although we sometimes condition on it). In context the functions $c^{b}(\cdot, \cdot)$ and $c^{M}(\cdot, \cdot)$ must be correlation functions (probably from the power-exponential family) for the discrepancy/bias
and for the model, respectively. Perhaps θ^{M} includes the range and power parameters for $c^{M}(\cdot, \cdot)$? What about $c^{b}(\cdot, \cdot)$?
In (4) the prior mean of \boldsymbol{b} is $\boldsymbol{\mu}^{b}$, but $\mu^{b}=0$ is assumed in Section (2). For example, the conditional distribution of λ^{b} (item 3) would have rate parameter $r_{b \mid \bullet}=r_{b}+\left(\boldsymbol{b}-\mu^{b}\right)^{\prime}\left[c^{b}\left(D^{F}, D^{F}\right)\right]^{-1}\left(\boldsymbol{b}-\mu^{b}\right) / 2$ (I think) if μ^{b} doesn't vanish.

[^0]: ${ }^{1}$ Note that $\sum_{i=1}^{\ell}\left(n_{i}-1\right)=\left(n_{+}-\ell\right)$

