Sta $250 = Mth \ 342$: Homework 4

In each of the exercises below where it appears, the symbol \mathbf{x} denotes a simple random sample $\mathbf{x} = \{X_1, \ldots, X_n\}$ of n independent draws from the specified distribution.

1. Suppose that waiting times (in years, rounded up) for rare events are independent random variables with pf

$$\Pr[X_j = x] = \begin{cases} pq^{x-1} & x = 1, 2, \dots \\ 0 & \text{other } x \end{cases}$$

and that we observe n = 4 events with waiting times

$$\mathbf{x} = \{ 10, 20, 40, 50 \}$$

Find the Maximum Likelihood Estimators for

(a) p, the annual probability of the event; and

(b) $\theta = 1/p$, the return rate

2. Suppose that **x** is a random sample of size *n* from the $Be(\theta, 1)$ distribution with pdf

$$f(x \mid \theta) = \theta x^{\theta - 1} \mathbf{1}_{\{0 < x < 1\}}$$

Find the MLE for θ .

3. Suppose that **x** is a random sample of size n from the Laplace distribution with pdf

$$f(x \mid \theta) = \frac{1}{2} e^{-|x-\theta|}$$

Find the MLE for θ .

- 4. Let α be the population median of the $\mathsf{Be}(\theta, 1)$ distribution (recall Exercise (2)), *i.e.*, the number such that $\Pr[X \leq \alpha \mid \theta] = \frac{1}{2}$. Find the MLE $\hat{\alpha}$ for a random sample $\mathbf{x} = \{X_1, \ldots, X_n\}$ from this distribution.
- 5. Let $\{X_j\}$ be an infinite sequence of independent random variables from the uniform distribution $Un(0, \theta)$ on the interval $[0, \theta]$. Show that the MLE $\hat{\theta}_n$ based on the random sample consisting of the first nobservations is a *consistent* sequence of estimators in the sense that, for any $\epsilon > 0$,

$$\Pr[|\theta_n - \theta| \le \epsilon] \to 1 \text{ as } n \to \infty$$

- 6. Suppose that **x** is a random sample of size *n* from the Normal No(μ, σ^2) distribution with both mean μ and variance σ^2 unknown. Find the MLE for
 - (a) The 90th percentile θ , *i.e.*, the number such that $\mathsf{P}[X_j \leq \theta] = 0.90;$
 - (b) The probability $\nu = \Pr[X > 2]$.
- 7. Let **x** be a random sample of size *n* from the $Ga(\alpha, \beta)$ distribution with α known. Show that $S = \sum_{j=1}^{n} X_j$ is sufficient for β .
- 8. Let **x** be a random sample of size *n* from the $Ga(\alpha, \beta)$ distribution with β known. Show that $T = \sum_{j=1}^{n} \log X_j$ is sufficient for α .
- 9. Let θ be a real-valued parameter taking values in an interval Θ (possibly unbounded) and let \mathbf{x} have pdf or pf $f(\mathbf{x} \mid \theta)$, conditional on θ . Let $T = t(\mathbf{x})$ be a sufficient statistic. Show that for every prior distribution $\pi(\theta)$, the posterior distribution $\pi(\theta \mid \mathbf{x})$ of θ given $X = \mathbf{x}$ depends on \mathbf{x} only through the value $t = t(\mathbf{x})$.