Sta $250=$ Mth 342 : Homework 4

In each of the exercises below where it appears, the symbol \mathbf{x} denotes a simple random sample $\mathbf{x}=\left\{X_{1}, \ldots, X_{n}\right\}$ of n independent draws from the specified distribution.

1. Suppose that waiting times (in years, rounded up) for rare events are independent random variables with pf

$$
\operatorname{Pr}\left[X_{j}=x\right]= \begin{cases}p q^{x-1} & x=1,2, \ldots \\ 0 & \text { other } x\end{cases}
$$

and that we observe $n=4$ events with waiting times

$$
\mathbf{x}=\{10,20,40,50\}
$$

Find the Maximum Likelihood Estimators for
(a) p, the annual probability of the event; and
(b) $\theta=1 / p$, the return rate
2. Suppose that \mathbf{x} is a random sample of size n from the $\operatorname{Be}(\theta, 1)$ distribution with pdf

$$
f(x \mid \theta)=\theta x^{\theta-1} \mathbf{1}_{\{0<x<1\}}
$$

Find the MLE for θ.
3. Suppose that \mathbf{x} is a random sample of size n from the Laplace distribution with pdf

$$
f(x \mid \theta)=\frac{1}{2} e^{-|x-\theta|}
$$

Find the MLE for θ.
4. Let α be the population median of the $\operatorname{Be}(\theta, 1)$ distribution (recall Exercise (2)), i.e., the number such that $\operatorname{Pr}[X \leq \alpha \mid \theta]=\frac{1}{2}$. Find the MLE $\hat{\alpha}$ for a random sample $\mathbf{x}=\left\{X_{1}, \ldots, X_{n}\right\}$ from this distribution.
5. Let $\left\{X_{j}\right\}$ be an infinite sequence of independent random variables from the uniform distribution $\operatorname{Un}(0, \theta)$ on the interval $[0, \theta]$. Show that the MLE $\hat{\theta}_{n}$ based on the random sample consisting of the first n observations is a consistent sequence of estimators in the sense that, for any $\epsilon>0$,

$$
\operatorname{Pr}\left[\left|\hat{\theta}_{n}-\theta\right| \leq \epsilon\right] \rightarrow 1 \text { as } n \rightarrow \infty
$$

6. Suppose that \mathbf{x} is a random sample of size n from the Normal $\operatorname{No}\left(\mu, \sigma^{2}\right)$ distribution with both mean μ and variance σ^{2} unknown. Find the MLE for
(a) The $90^{\text {th }}$ percentile θ, i.e., the number such that $\mathrm{P}\left[X_{j} \leq \theta\right]=$ 0.90 ;
(b) The probability $\nu=\operatorname{Pr}[X>2]$.
7. Let \mathbf{x} be a random sample of size n from the $\mathrm{Ga}(\alpha, \beta)$ distribution with α known. Show that $S=\sum_{j=1}^{n} X_{j}$ is sufficient for β.
8. Let \mathbf{x} be a random sample of size n from the $\mathrm{Ga}(\alpha, \beta)$ distribution with β known. Show that $T=\sum_{j=1}^{n} \log X_{j}$ is sufficient for α.
9. Let θ be a real-valued parameter taking values in an interval Θ (possibly unbounded) and let \mathbf{x} have pdf or $\mathrm{pf} f(\mathbf{x} \mid \theta)$, conditional on θ. Let $T=t(\mathbf{x})$ be a sufficient statistic. Show that for every prior distribution $\pi(\theta)$, the posterior distribution $\pi(\theta \mid \mathbf{x})$ of θ given $X=\mathbf{x}$ depends on \mathbf{x} only through the value $t=t(\mathbf{x})$.
