Sta $250 = Mth \ 342$: Homework 6

Problems

1. Find the limit as $\nu \to \infty$ of the un-normalized t density,

$$\frac{1}{(1+x^2/\nu)^{(\nu+1)/2}}$$

Do you recognize it?

2. The *t* distribution was introduced (both by our text book authors and, early last century, by William Gossett who invented it and published about it under the pseudonym *Student*) as a ratio

$$t = \frac{Z}{\sqrt{Y/\nu}}$$

for independent random variables $Z \sim No(0,1)$ and $Y \sim \chi^2_{\nu}$. Show that t^2 is the ratio of two independent Gamma-distributed random variables, each with mean one. Find the parameters for each Gamma distribution.

3. Let $\{X_1, \ldots, X_n\} \stackrel{\text{iid}}{\sim} \mathsf{No}(\mu, \sigma^2)$ be a simple random sample from the Normal distribution with unknown mean μ but **known** variance σ^2 . Denote the standard normal CDF by $\Phi(z)$. For any $0 < \gamma < 1$ let z_{γ}^* be the (1+q)/2'th quantile of the $\mathsf{No}(0,1)$ distribution, so $\Phi(z_{\gamma}^*) = \frac{1+\gamma}{2}$ and $\Phi(-z_{\gamma}^*) = \frac{1-\gamma}{2}$. If \bar{x}_n denotes the sample mean of $\{X_i\}$, show that

$$\left(\bar{x}_n - \frac{z_\gamma^* \sigma}{\sqrt{n}}, \quad \bar{x}_n + \frac{z_\gamma^* \sigma}{\sqrt{n}}\right)$$

is a confidence interval for μ with coefficient γ .

- 4. How large a sample size *n* is required to ensure that a $\gamma = 0.99$ confidence interval for μ from iid variates $\{X_1, \ldots, X_n\} \stackrel{\text{iid}}{\sim} \mathsf{No}(\mu, 1)$ will have length less than 0.01?
- 5. The eight observations $\{31, 35, 26, 34, 38, 30, 29, 25\}$ are taken from a normal No (μ, σ^2) distribution with both μ and σ unknown. Find the shortest confidence interval for μ with coefficient $\gamma = 0.80$ and (separately) with $\gamma = 0.98$.

- 6. With the same data as Problem 5, find a p = 80% posterior credible interval for μ if the variance is known to be $\sigma^2 = 16$, using an improper uniform prior distribution for μ .
- XC: With the same data as Problem 5, find a p = 80% posterior credible interval for μ if $\sigma^2 = 1/\tau$ is unknown, using a normal-gamma prior distribution with a gamma distribution $\tau \sim Ga(2, 20)$ for the precision $\tau = 1/\sigma^2$ and a normal conditional distribution $\mu | \tau \sim No(25, 1/4\tau)$ for the mean μ .