STA 250/MTH 342 Intro to Mathematical Statistics
Lab Session 4 / Feb 02, 2015 / Handout

In this session we study how to use R to generate random variables from some existing distributions.
We then use these random variables to verify the law of large numbers, and the central limit theorem.
If time permits, I will also present the way of making gif animations to visualize some pdf/pmf’s.

See: https://stat.duke.edu/courses/Springl5/sta250/1labs/ for links to source code and data.
Submit lab solutions via email to: sta250@stat.duke.edu. Any plots should be included in postscript

form as attachments. The email subject must be “STA250 ...” with “...” replaced by your name.

1: Generating random variables from existing distributions. To generate N independent

Po(A) random variables, use the command: rpois(/N, lambda = \).

> rpois(10, lambda = 12)
[1] 10 6 13 6 11 9 17 12 16 13

We may check the sample mean and variance of the generated random variables:

> mean(rpois (100000, lambda = 12))
[1] 11.99181
> var(rpois (100000, lambda = 12))
[1] 11.99201

Note that according to the R documentation, if x = (z1,--- ,zy),

1 ,

var(x) = N1+ (x; — T)%,

=1

which is an unbiased estimator of the true variance (here \).

TASK 1|Draw N = 10,000 independent random variables from the Ga(a, ) distribution with a =
3 and # = 5, and evaluate their sample mean and variance. Recall that the mean and variance of the dis-

tribution is o/ and «/3? respectively. The R command to use is rgamma (N, shape = «, rate = [3).

2: Distribution of order statistics. This section is motivated by Problem 6, in HW4. Let
Xy, -+, Xy be independent random variables from Uniform([0, 1]). Let Yy = max{Xy, -, Xy}. Now
we generate m independent copies of Yy and plot their histogram. We compare the histogram with the
density function of Yy obtained by theoretical derivation.

Recall that the CDF and pdf of Yy at x € [0, 1] are

N
Fy(z) :==Pr(Yy < z) =Pr(Xy,---, Xy < 2) = [[Pr(X; < o) =2V,
=1

fn(z) = Fy(z) = NaV 1t
Now set N = 5. On each call, the following function umax (N) will generate one independent copy of Yy.

1



umax <- function(N) max(runif(N));
Now we generate m = 2000 independent copies of Yy, plot the histogram and the density function.

a <- Vectorize(umax) (rep(5, 2000));

x <- seq(0, 1, len = 1000);

hist(a, breaks = 30, prob = T, ylim = c(0,5));
lines(x, 5 * x74, type = "1", 1lwd = 3, col = "red");

You will get a picture as shown in Fig 1. The above code is available in file h1.R.

histogram

" /

- /
- 1
c
3 7
S /
o
o 7]
w— O 7

—

o

T T T T 1
0.2 0.4 0.6 0.8 1.0
X

Figure 1: Histogram of 2000 independent copies of Yy.

Recall that Zy := min{Xy,---, Xy} has CDF Fy(z) = 1 — (1 — 2)" and pdf fy(z) =
N(1 — )V for z € [0,1]. Please make a picture similar to Figure 1 but for Zy with N = 6. Evaluate
the sample mean and sample variance. Compare them with the true values E[Zs] = 1/7 = 0.1428571
and Var(Zs) = 3/196 = 0.01530612. Paste your code to the email, and attach the picture you obtain.

3: Verify the law of large numbers numerically. Recall that with independent observations
Xi, -+, X, from Ex(1/0), the MLE of 0 is Oy = X. We now study that as N — oo, how does the
absolute error loss |fy — 6| decay. We let # = 1.5. Recall that f(z | ) = se 11,50y and when
X ~ Ex(1/6), E[X] = 0 and Var[X] = 6.

The following function exp.ael generate N independent samples and gives the absolute error loss
|0 — 0.



exp.ael <- function(N) abs(mean(rexp(N, rate =1 / 1.5)) - 1.5);

We call exp.ael 30 times with N = 10, 100, 1000, 10, 000, 100, 000 each. We average the results.

> mean(replicate(30, exp.ael(10)));

[1] 0.3307285

> mean(replicate(30, exp.ael(100)));
[1] 0.1019838

> mean(replicate(30, exp.ael(1000)));
[1] 0.04417023

> mean(replicate(30, exp.ael(10000)));
[1] 0.0141305

> mean(replicate(30, exp.ael(100000)));
[1] 0.004082873

The decay of the error is well demonstrated.

TASK 3| Recall that by its invariance, the MLE of 62 is X2. For the same problem, examine the
decay of the estimator of variance with increasing sample size.

4: Verify the central limit theorem numerically. Recall the Central Limit Theorem. If the
random variables Xy, -, X, are drawn independently from a distribution with mean p and variance
0% < oo, then as n — oo, the statistic

Xn — M
o/v/n

will converge in distribution to the standard normal distribution No(0, 1). We now do a simple simulation

with Poisson(1). The following function gives the above statistic.

pos.sta <- function(n) (mean(rpois(n, lambda = 1)) - 1) * sqrt(n);

We now do the simulation 10,000 times with n» = 1000 and plot the histogram of the values of the

statistic. We also plot the No(0, 1) density curve for comparison.

hist (Vectorize(pos.sta) (rep(1000,10000)), breaks = 30, prob = T,
xlim = c(-4, 4), ylim = c(0, 0.5));

x <- seq(-4, 4, len = 1000);

lines(x, dnorm(x), type = "1", 1lwd = 3, col = "red");

One may get a plot like Figure 2. The above code is available on h2.R. One may get some feeling about

how fast R is! On my aging desktop machine,

> system.time(source("h2.R"));
user system elapsed
user system elapsed
0.807 0.001 0.819
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Figure 2: Histogram of 10,000 independent copies of f}‘% with n = 1000.

TASK 4 |Recall that the uniform distribution Un([0,1]) has mean 1/2 and variance 1/12. Please
repeat the above simulation by replacing Poisson distribution with Uniform on the unit interval.

5: Animation. If time permits I will talk about the code to generate animations. They are
anim.**x* . R. The obtained .gif animations help one establish feelings about some distributions. The
code calls a free image manipulation application called ImageMagick. If it is not yet on your system,

just install it from www.imagemagick.org.



