STA 250/MTH 342 Intro to Mathematical Statistics Lab Session 4 / Feb 02, 2015 / Handout

In this session we study how to use \mathbf{R} to generate random variables from some existing distributions. We then use these random variables to verify the law of large numbers, and the central limit theorem. If time permits, I will also present the way of making gif animations to visualize some pdf/pmf's.

See: https://stat.duke.edu/courses/Spring15/sta250/labs/ for links to source code and data. Submit lab solutions via email to: sta250@stat.duke.edu. Any plots should be included in postscript form as attachments. The email subject must be "STA250 ..." with "..." replaced by your name.

1: Generating random variables from existing distributions. To generate N independent $Po(\lambda)$ random variables, use the command: $rpois(N, lambda = \lambda)$.

> rpois(10, lambda = 12)
[1] 10 6 13 6 11 9 17 12 16 13

We may check the sample mean and variance of the generated random variables:

```
> mean(rpois(100000, lambda = 12))
[1] 11.99181
> var(rpois(100000, lambda = 12))
[1] 11.99201
```

Note that according to the **R** documentation, if $\mathbf{x} = (x_1, \cdots, x_N)$,

$$\operatorname{var}(\mathbf{x}) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2,$$

which is an unbiased estimator of the true variance (here λ).

TASK 1 Draw N = 10,000 independent random variables from the $Ga(\alpha, \beta)$ distribution with $\alpha = 3$ and $\beta = 5$, and evaluate their sample mean and variance. Recall that the mean and variance of the distribution is α/β and α/β^2 respectively. The **R** command to use is rgamma(N, shape = α , rate = β).

2: Distribution of order statistics. This section is motivated by Problem 6, in HW4. Let X_1, \dots, X_N be independent random variables from Uniform([0, 1]). Let $Y_N = \max \{X_1, \dots, X_N\}$. Now we generate *m* independent copies of Y_N and plot their histogram. We compare the histogram with the density function of Y_N obtained by theoretical derivation.

Recall that the CDF and pdf of Y_N at $x \in [0, 1]$ are

$$F_N(x) := \Pr(Y_N \le x) = \Pr(X_1, \cdots, X_N \le x) = \prod_{i=1}^N \Pr(X_i \le x) = x^N,$$
$$f_N(x) := F'_N(x) = Nx^{N-1}.$$

Now set N = 5. On each call, the following function umax(N) will generate one independent copy of Y_N .

umax <- function(N) max(runif(N));</pre>

Now we generate m = 2000 independent copies of Y_N , plot the histogram and the density function.

```
a <- Vectorize(umax)(rep(5, 2000));
x <- seq(0, 1, len = 1000);
hist(a, breaks = 30, prob = T, ylim = c(0,5));
lines(x, 5 * x<sup>4</sup>, type = "l", lwd = 3, col = "red");
```

You will get a picture as shown in Fig 1. The above code is available in file h1.R.

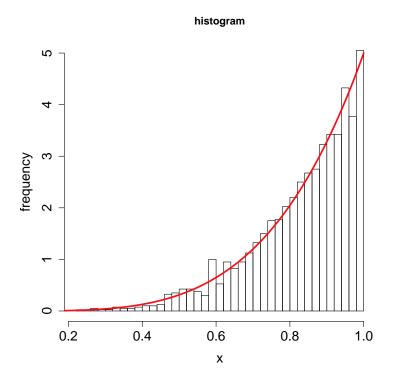


Figure 1: Histogram of 2000 independent copies of Y_N .

TASK 2 Recall that $Z_N := \min\{X_1, \dots, X_N\}$ has CDF $F_N(x) = 1 - (1 - x)^N$ and pdf $f_N(x) = N(1 - x)^{N-1}$ for $x \in [0, 1]$. Please make a picture similar to Figure 1 but for Z_N with N = 6. Evaluate the sample mean and sample variance. Compare them with the true values $E[Z_6] = 1/7 = 0.1428571$ and $Var(Z_6) = 3/196 = 0.01530612$. Paste your code to the email, and attach the picture you obtain.

3: Verify the law of large numbers numerically. Recall that with independent observations X_1, \dots, X_n from $\mathsf{Ex}(1/\theta)$, the MLE of θ is $\hat{\theta}_N = \bar{X}$. We now study that as $N \to \infty$, how does the absolute error loss $|\hat{\theta}_N - \theta|$ decay. We let $\theta = 1.5$. Recall that $f(x \mid \theta) = \frac{1}{\theta} e^{-x/\theta} \mathbf{1}_{\{x>0\}}$ and when $X \sim \mathsf{Ex}(1/\theta), \mathsf{E}[X] = \theta$ and $\mathsf{Var}[X] = \theta^2$.

The following function exp.ael generate N independent samples and gives the absolute error loss $|\hat{\theta}_N - \theta|$.

exp.ael <- function(N) abs(mean(rexp(N, rate = 1 / 1.5)) - 1.5);</pre>

We call exp.ael 30 times with N = 10, 100, 1000, 10, 000, 100, 000 each. We average the results.

```
> mean(replicate(30, exp.ael(10)));
[1] 0.3307285
> mean(replicate(30, exp.ael(100)));
[1] 0.1019838
> mean(replicate(30, exp.ael(1000)));
[1] 0.04417023
> mean(replicate(30, exp.ael(10000)));
[1] 0.0141305
> mean(replicate(30, exp.ael(100000)));
[1] 0.004082873
```

The decay of the error is well demonstrated.

TASK 3 Recall that by its invariance, the MLE of θ^2 is \bar{X}^2 . For the same problem, examine the decay of the estimator of variance with increasing sample size.

4: Verify the central limit theorem numerically. Recall the Central Limit Theorem. If the random variables X_1, \dots, X_n are drawn independently from a distribution with mean μ and variance $\sigma^2 < \infty$, then as $n \to \infty$, the statistic

$$\frac{\bar{X}_n - \mu}{\sigma / \sqrt{n}}$$

will converge in distribution to the standard normal distribution No(0, 1). We now do a simple simulation with Poisson(1). The following function gives the above statistic.

```
pos.sta <- function(n) (mean(rpois(n, lambda = 1)) - 1) * sqrt(n);</pre>
```

We now do the simulation 10,000 times with n = 1000 and plot the histogram of the values of the statistic. We also plot the No(0, 1) density curve for comparison.

```
hist(Vectorize(pos.sta)(rep(1000,10000)), breaks = 30, prob = T,
    xlim = c(-4, 4), ylim = c(0, 0.5));
x <- seq(-4, 4, len = 1000);
lines(x, dnorm(x), type = "l", lwd = 3, col = "red");
```

One may get a plot like Figure 2. The above code is available on h2.R. One may get some feeling about how fast R is! On my aging desktop machine,

```
> system.time(source("h2.R"));
   user system elapsed
   user system elapsed
   0.807   0.001   0.819
```

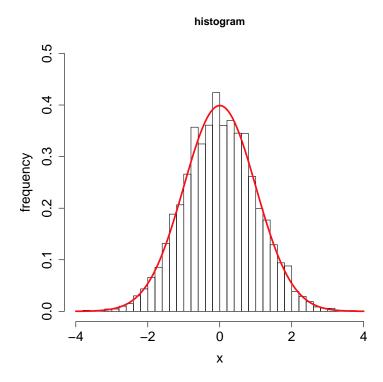


Figure 2: Histogram of 10,000 independent copies of $\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}}$ with n = 1000.

TASK 4 Recall that the uniform distribution Un([0, 1]) has mean 1/2 and variance 1/12. Please repeat the above simulation by replacing Poisson distribution with Uniform on the unit interval.

5: Animation. If time permits I will talk about the code to generate animations. They are anim.****.R. The obtained .gif animations help one establish feelings about some distributions. The code calls a free image manipulation application called ImageMagick. If it is not yet on your system, just install it from www.imagemagick.org.

 $\sim \sim END \sim \sim$