
STA 250/MTH 342 Intro to Mathematial StatistisLab Session 5 / February 09, 2015 / HandoutIn this session we make three ases. First, we approximate some pdf by a disrete step funtion,and then onstrut a disrete distribution that approximates the original one from whih we an drawsamples easily. While there are many other eÆient sampling algorithms (e.g., rejetion sampling), thedisretization method is easy to understand with still aeptable preision.The seond ase is a simple appliation of the law of large numbers to evaluate ompliated de�niteintegrals by Monte Carlo integration.In the third ase, we study how to use R to �nd loal and global maxima of a funtion. This isuseful when deriving the maximizer of a likelihood funtion is not straightforward.See: https://stat.duke.edu/ourses/Spring15/sta250/labs/ for links to soure ode and data.Submit lab solutions via email to: sta250�stat.duke.edu. Any plots should be inluded in postsriptform as attahments. The email subjet must be \STA250 . . . " with \. . . " replaed by your name.1: A Bayesian analysis.Consider the model X � Bi(n; p), p 2 [0; 1℄. Suppose p modeled with the pdf �(p) = ep=(e � 1),p 2 [0; 1℄. The posterior based on an observations x is �(p j x) = Const� px(1� p)n�xep. The onstant,whih is one over the integral R 10 px(1� p)n�xep dp, is quite hard (yet still doable) to derive analytially.We now try to generate a sequene of independent random variables from the distribution �(p j x).Sine p takes value only on the interval (0; 1), we use the trik of dividing the set into small intervals(0; 1N ℄, ( 1N ; 2N ℄, � � � , (N�1N ; 1). Here the integer N is very large. Then it is easy to see that the probabilitythat p falls into an interval ( iN ; i+1N ℄, is approximately proportional to �( i+0:5N j x).For numerial simulation, we let n = 7, x = 3, and N = 300. First, we generate a vetor u whih isproportional to ��( i+0:5N j x = 3)	Ni=1.n <- 7; x = 3; N = 300;xi <- funtion(t) t ^ x * (1 - t) ^ (n - x) * exp(t);t <- ((0 : (N - 1)) + 0.5) / N;Then we generate a sequene of m = 10; 000 random variables from a disrete distribution on theset �0:5N ; 1:5N ; � � � N�0:5N 	 with the probability vetor proportional to u.s <- sample(t, size = 10000, replae = T, prob = xi(t));Note that in R, the probability vetor will be internally normalized to sum 1. Now we plot thehistogram of the samples s, and add the urve of the density funtion. See Figure 1. They math quitewell. The ode is in �le ase1.R.x.urv <- seq(0, 1, len = 500);y.urv <- xi(x.urv) / integrate(xi, 0, 1)$value;hist(s, freq = F, xlim = (0, 1), ylim = (0, 2.5), breaks = 50);lines(x.urv, y.urv, ol = "red", lwd = 2); 1
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Figure 1: Left: the histogram of the 10,000 random samples generated from �(p j x = 3). Right: thesolution to task 1.TASK 1 Please replae the distribution �(p j x = 3) of p with Be(2; 5) and repeat the simulationabove. Use and modify the ode �le ase1.R. You should obtain a plot like the right one on Figure 1.Reall that Be(�; �) has density funtionf(x) = �(� + �)�(�)�(�)x��1(1� x)��1; for 0 < x < 1:2: Monte Carlo integration. Let's onsider again the de�nite integralZ 10 p3(1� p)4ep dp:Evaluating it will be extremely diÆult. In fat, the integral equals 8742�3216e � 0:0056396757117909,a horrible number. However, we may approximate it by the law of large numbers. Denote f(p) =p3(1� p)4ep.Suppose X � Uniform([0,1℄). We draw N independent random opies fXigNi=1 of X. We have1N NXi=1 f(Xi) � E[f(X)℄ = Z 10 p3(1� p)4ep dp:This method of approximating a de�nite integral is alled Monte Carlo integration. Let's ode it!> f <- funtion(p) p ^ 3 * (1 - p) ^ 4 * exp(p);> 0.0056396757117909 - mean(f(runif(1000)));[1℄ -0.0001142902> 0.0056396757117909 - mean(f(runif(10000)));[1℄ 2.904246e-05> 0.0056396757117909 - mean(f(runif(100000)));[1℄ 1.496385e-05 2



Note that the fator p3(1� p)4 takes zero at the boundary of the integration interval. This somehowwastes the samples taken near the boundary. To make the simulation more eÆient, we try to reduethe sampling density at the plaes the funtion has small values. Now suppose X � Beta(4,5). De�neg(x) := �(4)�(5)�(9) ex = ex280 . Now draw N independent random opies fXigNi=1 of X to give1N NXi=1 g(Xi) � E[g(X)℄ = Z 10 �(4)�(5)�(9) ep �(9)�(4)�(5)p3(1� p)4 dp = Z 10 p3(1� p)4ep dp:Again we obtain a statisti whih is lose to the integral. We ode it up.> g <- funtion(x) exp(x) / 280;> 0.0056396757117909 - mean(g(rbeta(shape1 = 4, shape2 = 5, n = 1000)));[1℄ -3.103029e-05> 0.0056396757117909 - mean(g(rbeta(shape1 = 4, shape2 = 5, n = 10000)));[1℄ -6.104516e-06> 0.0056396757117909 - mean(g(rbeta(shape1 = 4, shape2 = 5, n = 100000)));[1℄ -7.749469e-08Comparing with the previous simulation, we �nd that the new method is muh more aurate!TASK 2 Use the method with uniform random variables to evaluateZ 10 exp(sin(x)) dx:Note that the integral equals 1:631869608418051348137161723744681 � � � .3: Optimization. R has some funtions and pakages for optimization. We an use them to �ndthe maximum of, e.g., a likelihood funtion. Note that in some ases R is only able to ahieve a loalmaximum. One needs to plot or use other tools to judge whether it is a global maximum.Now suppose fX1; � � � ; Xng are independent observations from a gamma distribution (with � = 1),f(x j �) = 1�(�)x��1e�x:Then the log likelihood funtion islogL(�) = �N log �(�) + (�� 1) NXi=1 logXi � NXi=1 Xi:This attains its maximum at the same value of � that maximizes:g(�) := 1N  logL(�) + NXi=1 logXi + NXi=1 Xi! = � 1N NXi=1 logXi!� log �(�):Let's do some simulation. We �rst generate a sample, then use it to infer the parameter �.3



> X <- rgamma(10000, shape = pi);> g <- funtion(a) { a * mean(log(X)) - log(gamma(a)) };> optimize(g, interval = (0, 10), maximum = T);$maximum[1℄ 3.132265$objetive[1℄ 2.231332Here in the ode, the funtion optimize() searhes an interval to maximize/minimize a funtion.So it annot optimize multivariate funtions. To optimize multivariate funtions, try the funtionsoptim() or nlm(), or the pakage nloptr. The funtion optimize() asks us to give an interval whihis reasonable in the numerial world. We see that in the above example the estimate is quite lose tothe truth, � = � = 3:14159. On the other hand, we have learned this model in Question 8 of Homework3, where we found (for � = 1) that  (�) = �0(b�)�(b�) = 1N NXi=1 logXi:Here the funtion  is referred to as digamma funtion, and R has its implementation. So we an hekif the above optimizer really returns a preise solution.> digamma(optimize(g, interval = (0, 10), maximum = T)$maximum);[1℄ 0.9737164> mean(log(X));[1℄ 0.9737133We see that the result is preise. However, one may improve the preision by setting the desiredauray.> digamma(optimize(g, interval = (0,10), maximum=T)$maximum) - mean(log(X));[1℄ 3.136381e-06> digamma(optimize(g, interval = (0,10), maximum=T, tol = 1e-10)$maximum) - mean(log(X));[1℄ -8.285729e-09TASK 3 Reall that for the Poisson distribution with mean �, the MLE for � is b� = �X, and thelog likelihood funtion is logL(�) = �N� + log� NXi=1 Xi � NXi=1 log(Xi!):Let N = 10; 000 and � = 3:5, use the R ommand rpois(N,�) to generate data, write the likelihoodfuntion (you may sale and shift it by multiplying and adding some onstant) and use the aboveoptimize() funtion to �nd b� (set the searhing interval yourself!). Compare it with �X.��END��4


