
STA 250/MTH 342 Intro to Mathemati
al Statisti
sLab Session 6 / Mar
h 02, 2015 / HandoutIn this session we fo
us on the Gibbs sampling algorithm. The motivation is to draw random samplesfrom some 
ompli
ated multivariate distributions.See: https://stat.duke.edu/
ourses/Spring15/sta250/labs/ for links to sour
e 
ode and data.Submit lab solutions via email to: sta250�stat.duke.edu. Any plots should be in
luded in posts
riptform as atta
hments. The email subje
t must be \STA250 . . . " with \. . . " repla
ed by your name.1: Gibbs sampling.Let f(w; v) be a bivariate pdf from whi
h we want to draw a sample (w1; v1); � � � ; (wM ; vM). Letf1(w j v) and f2(v j w) denote the two 
onditional pdfs asso
iated with f(w; v). A Gibbs samplingdraws these samples iteratively as follows:� Start with an arbitrary (w0; v0) at whi
h f(w0; v0) > 0.� For i = 1; � � � ;M iterate the following{ sample wi from the 
onditional pdf f1(w j v = vi�1) [using vi�1 from previous step℄{ sample vi from the 
onditional pdf f2(v j w = wi) [using the new wi℄.This algorithm is fairly easy to implement provided it is easy to sample from f1(w j v) and f2(v j w).Some advan
ed probability theory shows that the samples we draw (perhaps after dis
arding someinitial draws) well represent the bivariate pdf f(w; v). Consequently (and maybe more usefully), thesamples w1; � � � ; wM well represent the marginal pdf f1(w) and the samples v1; � � � ; vM well representthe marginal pdf f2(v).Example[Bivariate normal℄. Consider the bivariate pdff(w; v) = 12�p�21�22(1� �2) exp�� 12(1� �2) �(w � �1)2�21 + (v � �2)2�22 � 2�(w � �1)(v � �2)�1�2 �� ;de�ned over �1 < w; v <1. This is known as the bivariate normal pdf with means �1; �2 2 (�1;1),varian
es �21; �22 2 (0;1) and 
orrelation � 2 (�1; 1). The following fa
ts are easy to derive:� f1(w) = No(�1; �21),� f2(v) = No(�2; �22).� f1(w j v) = No(�1 + ��1�2 (v � �2); �21(1� �2)).� f2(v j w) = No(�2 + ��2�1 (w � �1); �22(1� �2)).We shall use Gibbs sampler to draw samples of (w; v) and then 
ompare their empiri
al joint/marginaldistributions with f(w; v), f1(w) and f2(v). The 
ode below implements the Gibbs sampler for a totalB +M iterations, where B is the number of initial samples to be dis
arded (they are referred to as the1



burn-in samples). We start by setting B = 0 and will later 
onsider some a
tual dis
arding. The �rstexample uses �1 = �2 = 0, �1 = �2 = 1 and � = 0:5.Here in Figure 1, we 
ompare two sample sets: one is drawn dire
tly from the joint distribution, theother is drawn by Gibbs sampling with B = 0. We see that the point 
louds are similar. In Figure 2,we illustrate some steps of the sampling pro
ess. On the website shown above, we give a movie of thepro
ess.
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Figure 1: The 
omparison of dire
t sampling and Gibbs sampling. Left: i.i.d. samples dire
tly drawnfrom the joint distribution; Right: output of Gibbs sampling algorithm (prepared by the s
ript �le\gibbs.samp.R").
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Figure 2: Some steps of the Gibbs sampling pro
ess. Prepared by the s
ript �le \gibbs.samp.R".# pdf parametersmu.1 <- 0; mu.2 <- 0; sigma.1 <- 1; sigma.2 <- 1; rho <- 0.5# inital valuesw <- 0v <- 0# prepare ve
tor to retain samplesM <- 1e3B <- 0 ## number of initial samples to dis
ardw.samp <- rep(NA, B + M)v.samp <- rep(NA, B + M)# run Gibbs samplerfor(i in 1:(B + M)){w <- rnorm(1, mu.1 + rho * sigma.1 / sigma.2 * (v - mu.2), sigma.2 * sqrt(1 - rho^2))v <- rnorm(1, mu.2 + rho * sigma.2 / sigma.1 * (w - mu.1), sigma.1 * sqrt(1 - rho^2))w.samp[i℄ <- w 3



v.samp[i℄ <- v}# dis
ard the initial partw.samp <- w.samp[B + 1:M℄v.samp <- v.samp[B + 1:M℄Next we visually 
ompare the samples we obtained against the pdf f(w; v). For this example, we
ould evaluate the pdf, or more usefully, its logarithm, on a grid of values over the range of w and v. Itis 
onvenient to write the log-pdf up to a 
onstantlog f(w; v) = 
onst� 12(1� �2) �(w � �1)2�21 + (v � �2)2�22 � 2�(w � �1)(v � �2)�1�2 � :While plotting, we would not 
are about the 
onstant. In fa
t, we would shift the values by a 
onstantamount so that the maximum equals zero. These are just te
hniques to improve plots. The 
ode belowgives the details. The plot obtained is at Figure 3.
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Figure 3: Comparison of the samples and the joint distribution by heat plot. Prepared by the s
ript �le\heat.plot.R".# grids over ranges of w and vw.grid <- mu.1 + sigma.1 * seq(-4,4,.1)v.grid <- mu.2 + sigma.2 * seq(-4,4,.1)# fun
tion to 
al
ulate log-pdflog.pdf <- fun
tion(w, v) {z.1 <- (w - mu.1) / sigma.1 4



z.2 <- (v - mu.2) / sigma.2return(-0.5 * (z.1^2 + z.2^2 - 2 * rho * z.1 * z.2) / (1 - rho^2))}# 
ontour type plotslf.grid <- outer(w.grid, v.grid, log.pdf)lf.grid <- lf.grid - max(lf.grid) ## don't 
are about 
onstant subtra
tionimage(w.grid, v.grid, lf.grid)
ontour(w.grid, v.grid, lf.grid, add = TRUE)points(w.samp, v.samp, p
h = 20, 
ex = 0.3)TASK 1 Draw separate histograms for samples of w and v. Compare them against the plots ofthe marginal pdf's f1(w) and f2(v).TASK 2 Run the sampler again and draw the heat plot as in Figure 3 with � = 0:9. Compare thehistogram of samples of w with its marginal distribution.TASK 3 For � = 0:9, run the sampler again with starting values w = 10, v = 10. Draw thehistogram of w together with the 
urve of the 
orresponding marginal distribution.TASK 4 Now run the sampler again (� = 0:9) but allow burn-in B = 100. Make the histogram ofw together with the 
urve of the marginal distribution. Does the histogram improve?Remark. You are suggested to save the 
ode into some �les. When one task is done, you may simplymake a 
opy of the �le, and just 
hange some parameters to �nish the next task. Some model solutionsare put in Figure 4.
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Figure 4: Model solutions.
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