STA 250/MTH 342 Intro to Mathematical Statistics
 Lab Session 7 / March 02, 2015 / Handout

In this session we work on an example, from which it is very hard to draw samples directly.
See: https://stat.duke.edu/courses/Spring15/sta250/labs/ for links to source code and data. Submit lab solutions via email to: sta250@stat.duke. edu. Any plots should be included in postscript form as attachments. The email subject must be "STA250 ..." with "..." replaced by your name.

1: The problem. Now consider the following bivariate pdf.

$$
f(w, v)=\text { Const } \times v^{-\frac{r+n+2}{2}} \exp \left[-\frac{r s+(n-1) s_{x}^{2}+n(\bar{x}-w)^{2}}{2 v}-\frac{(w-a)^{2}}{2 b^{2}}\right]
$$

defined on $w \in(-\infty, \infty)$ and $v \in(0, \infty)$. It is fairly difficult to calculate the constant term that makes this function a pdf. But it is relatively easy to show that

- $f_{1}(w \mid v)=\operatorname{No}\left(\frac{n b^{2} \bar{x}+v a}{n b^{2}+v}, \frac{v b^{2}}{n b^{2}+v}\right)$.
- $f_{2}(v \mid w)=\operatorname{InvGamma}\left(\frac{r+n}{2}, \frac{r s+(n-1) s_{n}^{2}+n(\bar{x}-w)^{2}}{2}\right)$.

TASK 1 Use the above two conditionals to run a Gibbs sampler and generate samples of (w, v) from $f(w, v)$. Take $a=0, b=r=s=1, n=10, \bar{x}=1.38$ and $s_{x}=0.33$. Generate histograms of w samples and separately for v samples.

For you to work on the task, here are some tips.
Recall that last time we worked on Gibbs sampling and the code is here
https://stat.duke.edu/courses/Spring15/sta250/labs/lab6/gibbs.samp.R you are advised to reuse some part of it.

The distribution $\operatorname{InvGamma}(\alpha, \beta)$ is referred to as the inverse gamma distribution. For example, it appears in question15, page 406 of the textbook. The parameters α and β should both be positive, and the pdf is

$$
f_{\operatorname{InvGamma}(\alpha, \beta)}(x)= \begin{cases}\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-\alpha-1} e^{-\beta / x}, & \text { for } x>0 \\ 0, & \text { for } x \leq 0\end{cases}
$$

Recall the definition of the $\mathrm{Ga}(\alpha, \beta)$ distribution, for $\alpha, \beta>0$. The pdf is

$$
f_{\operatorname{Gamma}(\alpha, \beta)}(x)= \begin{cases}\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}, & \text { for } x>0 \\ 0, & \text { for } x \leq 0\end{cases}
$$

One has

$$
X \sim \operatorname{Ga}(\alpha, \beta) \Leftrightarrow \frac{1}{X} \sim \operatorname{InvGamma}(\alpha, \beta) .
$$

Therefore, the following \mathbf{R} command generates a sequence x of $n=5$ independent random variables from InvGamma ($\alpha=1.5, \beta=2.3$).

```
| x <- 1 / rgamma(n = 5, shape = 1.5, rate = 2.3)
> x
[1] 1.3762238 1.2532001 2.5736181 2.2477231 0.4937492
```

When you finish the task, the histograms would look like those in Figure 1.

Figure 1: Model solutions. Total samples drawn: 10,000. The curves of the marginal distributions are plotted in red. You are not required to draw the red curves.

