STA 250: Statistics

Robert L. Wolpert

1 Change of Variables

1.1 One Dimension

Let X be a real-valued random variable with pdf $f_{X}(x)$ and let $Y=g(X)$ for some strictly monotonically-increasing differentiable function $g(x)$; then Y will have a continuous distribution too, with some pdf $f_{Y}(y)$ and the expectation of any nice enough function $h(Y)$ can be computed either as

$$
\begin{aligned}
\mathrm{E}[h(Y)] & =\int h(g(x)) f_{X}(x) d x \text { or as } \\
& =\int h(y) f_{Y}(y) d y
\end{aligned}
$$

Since $y=g(x)$ and $d y / d x=g^{\prime}(x)$, we can write $d y=g^{\prime}(x) d x$ and get

$$
\left.=\int h(g(x))\right) f_{Y}(y) g^{\prime}(x) d x
$$

so we must have

$$
\begin{aligned}
f_{X}(x) & =f_{Y}(y) g^{\prime}(x), \text { i.e., } \\
f_{Y}(y) & =f_{X}(x) /\left.g^{\prime}(x)\right|_{x: y=g(x)}
\end{aligned}
$$

If g is monotonically-decreasing a similar formula holds with $g^{\prime}(x)$ replaced by $-g^{\prime}(x)$; in both cases this is:

$$
=f_{X}(x) /\left.\left|g^{\prime}(x)\right|\right|_{x: y=g(x)},
$$

giving the density function for $Y=g(X)$ in terms of that for X. A similar formula holds even for non-1:1 functions $g(z)$; just sum the RHS over all x in $g^{-1}(y)=\{x: g(x)=y\}$ (note $g^{-1}(y)$ is a set, not a number):

$$
f_{Y}(y)=\sum_{x \in g^{-1}(y)} \frac{f_{X}(x)}{\left|g^{\prime}(x)\right|} .
$$

For example, if $X \sim \operatorname{No}(0,1)$, then the pdf for $Y=g(x)=x^{2}$ is

$$
\begin{aligned}
f_{Y}(y) & =\sum_{x: x^{2}=y} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \\
& = \begin{cases}0 & y<0, \text { where } g^{-1}(y)=\emptyset \\
\frac{2}{\sqrt{2 \pi}} e^{-y / 2} /|2 \sqrt{y}| & y>0, \text { where } g^{-1}(y)=\{ \pm \sqrt{y}\}\end{cases} \\
& =(2 \pi y)^{-1 / 2} e^{-y / 2}=\frac{(1 / 2)^{1 / 2}}{\Gamma(1 / 2)} y^{\frac{1}{2}-1} e^{-y / 2} \mathbf{1}_{\{y>0\}}
\end{aligned}
$$

the $\operatorname{Ga}\left(\frac{1}{2}, \frac{1}{2}\right)$ density function. Thus the squared Euclidean norm of a p dimensional vector Z whose components are independent $\mathrm{No}(0,1)$ random variables would be the sum of p independent $\mathrm{Ga}\left(\frac{1}{2}, \frac{1}{2}\right)$ random variables, so

$$
Z^{\prime} Z=\sum_{j=1}^{p} Z_{j}^{2} \sim \mathrm{Ga}(p / 2,1 / 2)
$$

a distribution that occurs often enough to have its own name - the "Chi squared distribution with p degrees of freedom", or χ_{p}^{2} for short.

1.2 Vectors \& Matrices

A vector $x \in \mathbb{R}^{p}$ is an ordered sequence of p real numbers, its "coordinates." We usually won't use any special notation (like \mathbf{x} or \vec{x}) to distinguish vectors from other variables; the context should make it clear (after some practice!). An $r \times c$ matrix A is a rectangular array of r rows and c columns whose entries are denoted by $a_{i j}$ (the i th row, j th column) for $1 \leq i \leq r, 1 \leq j \leq c$. We often view vectors as one-column matrices, so

$$
x=\left(x_{1}, \cdots, x_{p}\right)^{\prime}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{p}
\end{array}\right]
$$

Many (but not all) matrices in statistics are square. Any square $p \times p$ matrix has a "determinant" $\operatorname{det}(A)$, with the properties:

$$
\begin{equation*}
\operatorname{det}(c A)=c^{p} \operatorname{det}(A) \quad \operatorname{det}\left(A^{\prime}\right)=\operatorname{det}(A) \quad \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) \tag{1}
\end{equation*}
$$

1.3 Random Vectors

Similarly if X is a vector-valued random variable taking values in \mathbb{R}^{p}, with (joint) pdf $f_{X}(x) \geq 0$ defined on \mathbb{R}^{p}, and if $g: \mathbb{R}^{P} \rightarrow \mathbb{R}^{p}$ is a $1: 1$ differentiable function, then $Y=g(X)$ also has a density function, then instead of " $d y / d x=g^{\prime}(x)$ " we have a $p \times p$ matrix

$$
J(x)=\left\{\frac{\partial y_{i}}{\partial x_{j}}\right\}
$$

of partial derivatives, called the "Jacobian," and change of variables takes the form

$$
\begin{aligned}
\mathrm{E}[g(Y)] & =\int h(g(x)) f_{X}(x) d x \\
& =\int h(y) f_{Y}(y) d y \\
& \left.=\int h(g(x))\right) f_{Y}(y)|\operatorname{det} J(x)| d x
\end{aligned}
$$

so we must have

$$
\begin{equation*}
f_{Y}(y)=f_{X}(x) /|\operatorname{det} J(x)|, \quad x \in g^{-1}(y) \tag{2}
\end{equation*}
$$

2 Multivariate Normal

Let A be an invertible $p \times p$ matrix and μ a vector (which we view as a $p \times 1$ matrix), and let $Z=\left(Z_{1}, \cdots, Z_{p}\right)^{\prime}$ be a p-dimensional vector of independent standard normal random variables $\left\{Z_{j}\right\} \stackrel{\text { iid }}{\sim} \mathrm{No}(0,1)$, with joint pdf $f_{Z}(z)=(2 \pi)^{-p / 2} \exp \left(-z^{\prime} z / 2\right)$. Then

$$
X=\mu+A Z
$$

is a p-dimensional normal vector with mean μ and covariance matrix

$$
\begin{aligned}
C & =\mathrm{E}(X-\mu)(X-\mu)^{\prime} \\
& =\mathrm{E}(A Z)(A Z)^{\prime} \\
& \left.=\mathrm{E}\left[A Z Z^{\prime} A^{\prime}\right] \quad \text { (because } \mathrm{E}\left[Z Z^{\prime}\right]=I_{p}\right) \\
& =A A^{\prime}
\end{aligned}
$$

so by Eqn. (2), $X=g(Z)=\mu+A Z$ (with Jacobian $J(z)=\partial g_{i}(z) / \partial z_{j}=A_{i j}$ and inverse $\left.g^{-1}(x)=A^{-1}(X-\mu)\right)$ has pdf:

$$
\begin{align*}
f_{X}(x) & =f_{Z}(z) /|\operatorname{det} J(z)| \tag{3a}\\
& =(2 \pi)^{-p / 2} \exp \left[-(X-\mu)^{\prime}\left(A^{-1}\right)^{\prime}\left(A^{-1}\right)(X-\mu) / 2\right] /|\operatorname{det} A| \tag{3b}\\
& =(2 \pi)^{-p / 2} \exp \left[-(X-\mu)\left(A A^{\prime}\right)^{-1}(X-\mu) / 2\right] / \sqrt{\operatorname{det} A A^{\prime}} \tag{3c}\\
& =\frac{1}{\sqrt{\operatorname{det} 2 \pi C}} e^{-(X-\mu)^{\prime} C^{-1}(X-\mu) / 2}, \tag{3~d}
\end{align*}
$$

the pdf for $X \sim \operatorname{No}(\mu, C)$. Eqn. (3a) is just the multivariate CoV of Eqn. (2); Eqn. (3b) is from instantiating $f_{Z}(z), g^{-1}(x)$, and $J(z)$ (using the elementary linear algebra fact that $(A B)^{\prime}=B^{\prime} A^{\prime}$ for any two $p \times p$ matrices $A, B)$; Eqn. (3c) uses the elementary linear algebra facts that $(A B)^{-1}=$ $B^{-1} A^{-1}$ and $\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)$ for any two $p \times p$ matrices $\left.A, B\right)$; and Eqn. (3d) uses the facts that $C=A A^{\prime}$ and that $\operatorname{det}(c A)=c^{p} \operatorname{det} A$.
The special case of $C=I_{p}$ and $\mu=0$ reduces to the joint pdf of p iid $\operatorname{No}(0,1)$ random variables, while the special case of $p=1$ (with $C=\sigma^{2} \in \mathbb{R}_{+}$) is the familiar $\operatorname{No}\left(\mu, \sigma^{2}\right)$ density.

3 Another CoV Example: Gamma, Beta

Let $X \sim \operatorname{Ga}(\alpha, \lambda)$ and $Y \sim \mathrm{Ga}(\beta, \lambda)$ be independent for some $\alpha, \beta, \lambda>0$, and set $U=X+Y, V=X /(X+Y)$. We can think of (U, V) as the two components of the function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
\begin{aligned}
g(x, y) & =[(x+y), x /(x+y)]^{\prime} \\
\frac{\partial}{\partial x} g(x, y) & =\left[1, y /(x+y)^{2}\right]^{\prime} \\
\frac{\partial}{\partial y} g(x, y) & =\left[1,-x /(x+y)^{2}\right]^{\prime} \\
J(x, y) & =\left[\begin{array}{cc}
1 & 1 \\
y /(x+y)^{2} & -x /(x+y)^{2}
\end{array}\right] \\
\operatorname{det} J & =-1 /(x+y) \\
g^{-1}(u, v) & =[u v, u(1-v)]^{\prime}
\end{aligned}
$$

The joint pdf for X, Y is:

$$
f_{X Y}(x, y)=\frac{\lambda^{\alpha+\beta}}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1} y^{\beta-1} e^{-\lambda(x+y)}, \quad x, y>0
$$

so that of U, V, by CoV , is:

$$
\begin{aligned}
f_{U V}(u, v) & =f_{X Y}(x, y) /|J(x, y)| \\
& =\frac{\lambda^{\alpha+\beta}}{\Gamma(\alpha) \Gamma(\beta)}(u v)^{\alpha-1}(u(1-v))^{\beta-1} e^{-\lambda u} \times u, \quad 0<u<\infty, 0<v<1 \\
& =\left\{\frac{\lambda^{\alpha+\beta}}{\Gamma(\alpha+\beta)} u^{\alpha+\beta-1} e^{-\lambda u} \mathbf{1}_{\{0<u<\infty\}}\right\}\left\{\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} v^{\alpha-1}(1-v)^{\beta-1} \mathbf{1}_{\{0<v<1\}}\right\}
\end{aligned}
$$

so U, V are independent with the $\mathrm{Ga}(\alpha+\beta, \lambda)$ and $\operatorname{Be}(\alpha, \beta)$ distributions, respectively.

