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1 Chi Square

Let’s consider repeating, over and over again, an experiment with k possible
outcomes. If we let n be the number of times we repeat the experiment
(independently!), and count the number Ni of times the i’th outcome occurs
altogether, and denote by ~p = (p1, ..., pk) the vector of probabilities of the k
outcomes, then then each Ni has a binomial distribution

Ni ∼ Bi(n, pi)

but they’re not independent. The joint probability of the events [Ni = ni]
for nonnegative integers ni is the “multinomial” distribution, with pmf:

f(~n | ~p) =
(

n

n1, n2, ..., nk

)

pn1

1 · · · pnk

k (1)

where the “multinomial coefficient” is given by

(

n

n1, n2, ..., nk

)

=

(

n

~n

)

=
n!

n1!n2! · · · nk!

if each ni ≥ 0 and
∑

ni = n, otherwise zero.

If we observe ~N = ~n, what is the MLE for ~p? The answer is intuitively
obvious, but proving it leads to something new. If we try to maximize
Eqn (1) using derivatives (take logs first!), we find

∂

∂pi
log f(~n | ~p) = ni

pi
,

so obviously setting these derivatives to zero won’t work— they’re always
positive, so f(~n | ~p) is increasing in each pi. The reason is that this is really a
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constrained optimization problem— the {pi}’s have to be non-negative and
sum to one. As a function on R

k, the function f(~n | ~p) of Eqn (1) increases
without bound as we take all pi → ∞; but we’re not allowed to let the sum
of pi exceed one.

An elegant solution is the method of Lagrange Multipliers. We introduce an
additional variable λ, and replace the log likelihood with the “Lagrangian”:

L(~p, λ) = log f(~n | ~p) + λ
(

1−
∑

pi

)

= c+
∑

ni log pi + λ
(

1−
∑

pi

)

with partial derivatives

∂

∂pi
L(~p, λ) =

ni
pi

− λ (2)

∂

∂λ
L(~p, λ) = 1−

∑

pi (3)

Note that stationarity w.r.t λ (setting Eqn (3) to zero) enforces the con-
straint. Now the vanishing of derivatives w.r.t. pi in Eqn (2) imply that
ni/pi = λ is constant for all i, so pi = ni/λ, while Eqn (3) now gives
1 =

∑

ni/λ = n/λ, so the solutions are the ones we guessed before:

p̂i = ni/n λ̂ = n.

1.1 Generalized Likelihood Tests

Now let’s consider testing a hypothetical value ~p 0 for the probabilities,
against the omnibus alternative:

H0 : ~p = ~p 0 = (p01, . . . , p
0
k)

H1 : ~p 6= ~p 0

(the alternative asserts that pi 6= p0i for at least one 1 ≤ i ≤ k). The
generalized likelihood ratio against H0 is:

Λ(~n) =
sup~p f(~n | ~p )
f(~n | ~p 0)

=
f(~n | ~̂p )
f(~n | ~p 0)

=

(n
~n

)
∏

(ni/n)
ni

(

n
~n

)
∏

(p0i )
ni

=
∏

(ni/np
0
i )

ni
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Introduce the notation ei = np0i for the “expected” number of outcomes of
type i (under null hypothesis H0) and manipulate:

Λ(~n) =
∏

[

ni
ei

]ni

=
∏

[

ni − ei + ei
ei

]ni

=
∏

[

1 +
ni − ei
ei

]ni

If the ni’s and ei’s are all large enough, we can approximate the logarithm
of this by:

log Λ(~n) =
∑

ni log

(

1 +
ni − ei
ei

)

≈
∑

(ni − ei + ei)

(

ni − ei
ei

− (ni − ei)
2

2 e2i

)

using the two-term Taylor series log(1 + ǫ) = ǫ− ǫ2/2 +O(ǫ3)

≈ 1

2

∑ (ni − ei)
2

ei
=

1

2
Q, (4)

half the quadratic form Q :=
∑ (ni−ei)2

ei
, since

∑

(ni − ei) = 0 and since
∑

(ni − ei)
3 = O(1/

√
n). The statistic Q is the so-called “Chi Squared”

statistic proposed in 1900 by Karl Pearson, who found its asymptotic dis-
tribution.

Since each ni ∼ Bi(ni, pi), asymptotically each ni ∼ No
(

ei, ei(1 − p0i )
)

and
so the individual terms in the sum Eqn (4) have approximate Ga(12 , β) dis-
tributions (proportional to a χ2

1) with β = 1/2(1−pi), if H0 is true; Pearson
showed that Q has approximately (and asymptotically as n → ∞) a χ2

ν

distribution with ν = k − 1 degrees of freedom (we’ll see why below). If H0

is false then Q will be much bigger, of course, leading to the well-known χ2

test for H0, with P -value

P = 1− pgamma(Q, ν/2, 1/2) = pgamma(Q, ν/2, 1/2, lower.tail = F).

1.2 The Distribution of Q(~n)

One way to compute the covariance ofNi andNj is to use indicator variables,
as follows. For 1 ≤ ℓ ≤ n let Jℓ be a label telling us which of the k possible
outcomes happened on the ℓ’th trial— a random integer in the range 1, ..., k,
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with probability pj = P[Jℓ = j] for 1 ≤ j ≤ k. Then Ni can be represented
as the sum:

Ni =

n
∑

ℓ=1

1{Jℓ=i}

of indicator variables. This makes the following expectations easy for i 6= j:

E[Ni] =
∑

P[Jℓ = i] = npi

E[N2
i ] = E

[

∑

ℓ

∑

ℓ′

1{Jℓ=i}1{Jℓ′=i}

]

= npi + n(n− 1)p2i

= npi(1− pi) + (npi)
2

E[NiNj ] = E

[

∑

ℓ

∑

ℓ′

1{Jℓ=i}1{Jℓ′=j}

]

= n(n− 1)pipj

V(Ni) = npi(1− pi)

Cov(Ni, Nj) = −npi pj

If we let Z ∼ No(0, 1) be independent of ~N and add Zpi
√
n to each compo-

nent Ni, we will exactly cancel the negative covariance:

Cov
(

(Ni + Zpi
√
n), (Nj + Zpj

√
n)
)

= −npipj + (pi
√
n)(pj

√
n) = 0

while keeping zero mean

E
(

(Ni + Zpi
√
n)
)

= 0

and increase the variance to

V
(

(Ni + Zpi
√
n)
)

= npi(1− pi) + (pi
√
n)2 = ei.

Thus the random variables (Ni − ei + Zpi
√
n)/

√
ei are uncorrelated and

have mean zero and variance one. By the Central Limit Theorem, they are
approximately k independent standard normal random variables as n→ ∞,
so the quadratic form

Q+(~n) =
k

∑

i=1

(Ni − ei + Zpi
√
n)2

ei
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has approximately a χ2
k distribution for large n. But:

Q+(~n) =
∑ (Ni − ei)

2

npi
+

∑ 2(Ni − ei)Z pi
√
n

npi
+

∑ Z2p2in

npi

= Q(~n) +
2Z√
n

∑

(Ni − ei) + Z2
∑

pi

= Q(~n) + Z2,

the sum of Q(~n) and a χ2
1 random variable independent of ~N— so Q(~n)

itself must have approximately a χ2
ν distribution with ν = (k − 1) degrees

of freedom.

1.3 P -Values

The χ2
ν distribution is just the Ga(α = ν/2, β = 1/2). If the degrees of

freedom parameter ν is even, it may be viewed as the waiting time for ν/2
events in a Poisson process Xt with rate 1/2, so P -values can be computed
in closed form as

P[Q > q] = P[Xq < ν/2] =

(ν/2)−1
∑

k=0

(q/2)k

k!
e−q/2.

For example, with ν = 2 degrees of freedom, the P -value is simply e−q/2,
while for ν = 4 and ν = 6 it is (1 + q/2)e−q/2 and (1 + q/2 + q2/8)e−q/2,
respectively.

For large values of ν the χ2
ν distribution is close to the normal No(ν, 2ν) by

the Central Limit Theorem, so

P[Q > q] ≈ Φ

(

ν − q√
2ν

)

.

For any ν and q, it’s available in R as

1-pchisq(q, nu)

or, more precisely for large q, as pchisq(q, nu, lower.tail=FALSE).
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2 Contingency Tables

Now consider a composite hypothesis like:

H0 : {Nij} ∼ MN(n; θij) for some θij = pi qj, 1 ≤ i ≤ R, 1 ≤ j ≤ C

for R ·C counts Nij summing to n. If n items are categorized separately into
one of R rows and also into one of C columns, and if Nij denotes the number
of items in the ith row and jth column, then this hypothesis asserts that the
two categorizations are independent. Alternately, if Ni+ ≡ ∑C

j=1Nij objects
from the ith of R populations are categorized into one of C categories, then
H0 also asserts that the R populations are all homogeneous in the sense that
they share the same distribution among the C categories.

In either case, a Generalized Likelihood Ratio test will be based on

Λ =
supθ

{

∏

θ
Nij

ij :
∑

θij = 1
}

supp,q
{
∏

(piqj)Nij :
∑

pi = 1,
∑

qj = 1
}

=
∏

{

θ̂ij
p̂iq̂j

}Nij

where θ̂ij = Nij/n, p̂i = Ni+/n, and q̂j = N+j/n. Upon setting êij ≡ np̂iq̂j,

log Λ =
∑

Nij log

{

Nij

êij

}

=
∑

{(Nij − êij) + êij} log
{

1 +
Nij − êij

êij

}

≈ 1

2

∑ (Nij − êij)
2

êij
= Q/2, where

Q =
∑ (Nij − êij)

2

êij

has approximately a χ2
ν distribution with ν = RC − 1− (R− 1)− (C − 1) =

(R−1)(C−1) degrees of freedom. More generally, Q will have approximately
a χ2

ν distribution with ν = k−1−s degrees of freedom if there are k categories
and we must estimate an s-dimensional aspect of θ from the data. The same
idea may be used to test independence for three-way (or more) classifications,
in which H0 asserts that θijk = piqjrk for some ~p, ~q, ~r.
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2.1 A Numerical Example

A 1986 study of a treatment for Hodgkins disease (Dunsmore et al, 1986)
studied the response rates (classified into three levels: Positive, Partial,
and None) for patients of four different histological types. The results are
summarized in this table:

Type Pos Part Neg

LP 74 18 12 104
NS 68 16 12 96
MC 154 54 58 266
LD 18 10 44 72

314 98 126 538

Denote by Xij the entry in the ith row and jth column, and by Xi+ and X+j

the row and column sums (shown in the table). The expected count under
H0 in cell (i, j) is Eij := Xi+X+j/n– E11 = 104×314/538 = 60.70 for (1, 1),
for example, so the ξ2 statistic is Q =

∑

(Xij−Eij)
2/Eij = 75.89. Under the

null hypothesis this would have a χ2
ν distribution with ν = (R−1)(C−1) = 6

degrees of freedom. The P -value is P = pchisq(Q, 6, low=F) = 2.52 ·
10−14, so H0 would be rejected.

In R this calculation could be performed as follows:

Xij <- matrix( c(74,68,154,18, 18,16,54,10, 12,12,58,44), ncol=3);

row <- apply(Xij,1,sum); # Row sums

col <- apply(Xij,2,sum); # Column sums

Eij <- row %o% col / sum(Xij); # Expected counts

Q <- sum( (Xij-Eij)^2/Eij ); # Chi-square statistic

P <- pchisq(Q, 6, low=F); # P-value

using the “apply()” function and the outer product operator “%o%”.

2.2 Two by Two

An important special case of contingency table analysis is when R = C = 2.
For example, we may study the benefit (or risk) of Exposure to some treat-
ment (or hazard) by exploring the independence of classifications with re-
spect to Exposure (Exposed and non-Exposed) and also to a health out-
come (here, Diseased or non-Diseased). Denote the count of subjects in
each class as Xij, where i ∈ {0, 1} indexes the exposure class (1=Exposed)
and j ∈ {0, 1} the disease class (1=Diseased). The object will be to test
the hypothesis H0 that exposure is unrelated to disease status, against the
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two-sided alternative that there is some connection.

These data might arise from any of three possible sampling schemes, which
each lead to different probability models, and somewhat different expressions
for H0:

1. Multinomial: For some number n ∈ N and probability vector p =
(p00, p01, p10, p11), x = (X00,X01,X10,X11) ∼ MN(n, p). H0 would as-
sert that row and column classifications are independent, i.e., that
p00p11 = p01p01 or, equivalently, that the ratio ψ is one, where

ψ =
p00p11
p01p10

2. Prospective: For some numbers x1+ ∈ N of Exposed and x0+ ∈ N

of un-Exposed subjects, we observe X11 ∼ Bi(x1+,P(D | E)) and
X01 ∼ Bi(x0+,P(D | Ec)) diseased cases, respectively. H0 would assert
that P(D | Ec) = P(D | E) or, equivalently, that the disease odds are
equal for exposed and unexposed subjects

P(D | Ec)

P(Dc | Ec)
=

P(D | E)

P(Dc | E)

This condition is satisfied if and only if the odds ratio is one:

ψ :=
P(D | E)P(Dc | Ec)

P(D | Ec)P(Dc | E)
=

P(D ∩E)P(Dc ∩ Ec)

P(D ∩Ec)P(Dc ∩ E)
=
p00p11
p01p10

3. Retrospective: Among some numbers x+1 ∈ N of Diseased and
x+0 ∈ N of un-Diseased subjects, we discover that X11 ∼ Bi(x+1,P(E |
D)) and X10 ∼ Bi(x+0,P(E | Dc)) had been exposed, respectively. H0

would assert that P(E | Dc) = P(E | D) or, equivalently, that the
exposure odds are equal for diseased and undiseased subjects

P(E | Dc)

P(Ec | Dc)
=

P(E | D)

P(Dc | D)

Again this is satisfied if and only if the odds ratio is one:

ψ :=
P(E | D)P(Ec | Dc)

P(E | Dc)P(Ec | D)
=

P(E ∩D)P(Ec ∩Dc)

P(E ∩Dc)P(Ec ∩D)
=
p00p11
p01p10

Thus, all three sampling approaches lead to consideration of whether or not
the odds ratio ψ is unity. A value of ψ > 1 indicates a positive association
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between exposure and disease; a value ψ < 1 indicates a protective effect.
The Maximum Likelihood Estimator for ψ in all three cases is

ψ̂ =
X00X11

X01X10
,

and the GLRT of H0 in all cases leads to rejection of H0 for large values of
the GLR statistic

Λ =

1,1
∏

i,j=0,0

(

n Xij

Xi+X+j

)Xij

=

1,1
∏

i,j=0,0

(Xij/Eij)
Xij ,

where Eij := Xi+X+j/n is the “expected” count under the hypothesis H0 of
independence. Equivalently, one would reject for large values of its logarithm

log Λ =
∑

Xij log(Xij/Eij) ≈ Q/2, where

Q =
∑ (Xij − Eij)

2

Eij

has approximately a χ2
1 distribution for large n.

2.3 A Numerical Example

But what if n is not large? The famous 1985 RCT test of extracorporeal
membrane oxygenation (ECMO– see Ware, 1989) featured only 19 subjects.
Six of ten in the control group survived, and all nine of the treated subjects
survived, so the data are

X00 = 6 X01 = 4 X10 = 9 X11 = 0

and the MLE for the odds ratio is ψ̂ = ∞. Evidently this sample size is
insufficient for the χ2 approximation to hold.

Wolpert and Mengersen (2004) introduced an objective Bayesian approach
using independent Jeffreys’ prior distributions for the survival probabilities
p and q in the Exposed (to ECMO) and un-Exposed groups, respectively,
and then find the posterior probability distribution for ψ = p(1−q)/(1−p)q.

They found an explicit form for the pdf of ε := logψ,

f(x | ǫ) ∝ eε(X11+1/2)
2F1

(

X+0 + 1,X+1 + 1;X++ + 2; 1 − eε
)

(5)
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Figure 1: Reference Posterior PDF for ECMO Log Odds Ratio

in terms of the confluent hypergeometric function 2F1(a, b; c; z) (Abramowitz
and Stegun, 1964, §15.1) and evaluated its mean and variance as

µ = ψ(X00 +
1
2) − ψ(X01 +

1
2) − ψ(X10 +

1
2) + ψ(X11 +

1
2) (6a)

σ2 = ψ′(X00 +
1
2) + ψ′(X01 +

1
2) + ψ′(X10 +

1
2) + ψ′(X11 +

1
2) (6b)

where ψ(z) = (d/dz) log(Γ(z)) and ψ(z) = (d/dz)ψ(z) are the digamma and
trigamma functions, respectively (Abramowitz and Stegun, 1964, §6.3, 6.4).
These are included in R and other computing environments, but their values
here can be computed easily using the identities

(n+ 1
2 )− ψ(m+ 1

2) =

n−1
∑

i=m

(i+ 1
2)

−1 ≈ log
n

m
(7a)

for integers 0 ≤ m < n, and

ψ′(n+ 1
2) =

π2

2
−

n−1
∑

i=0

(i+ 1
2)

−2 ≈ 1

n
(7b)

For the ECMO trial, these give µ = −3.75721 and σ = 2.3368; under the
normal approximation to the posterior of ε the approximate posterior proba-
bility of no effect or harmful effect would be P[ε > 0 | x] ≈ Φ(µ/σ) = 0.0539.
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In fact, due to the skewness of the pdf (see Figure (1)), it is considerably
smaller— numerical integration of (5) gives P[ε > 0 | x] ≈ 9.514 · 10−6,
rather strong evidence in ECMO’s favor despite the small sample sizes.

2.3.1 Frequentist Analysis of ECMO

LetX ∼ Bi(n, p) and set q := (1−p), the failure probability, and θ := log p/q,
the log odds. The MLE for θ is

θ̂ = log
x/n

1− x/n

= θ + log(x/np)− log((n− x)/nq)

= θ + log
(

1 +
x− np

np

)

− log
(

1 +
n− x− nq

nq

)

= θ + log
(

1 +
x− np

np

)

− log
(

1− x− np

nq

)

If n is sufficiently large that |x− np| ≪ n, then by the delta method

θ̂ ≈ θ +
x− np

np
+
x− np

nq
= θ +

x− np

npq
≈ No(θ, σ2)

by the CLT, with mean θ and variance

σ2 = E

(

x− np

npq

)2

=
npq

n2p2q2
=

1

npq
.

In a prospective trial with independent treatment and control arms, it fol-
lows that for sufficiently large sample sizes the MLE ε̂ for the log odds ratio

ε = logψ = log
P(D | E)P(Dc | Ec)

P(D | Ec)P(Dc | E)
= log

P(D | E)

P(Dc | E)
− log

P(D | Ec)

P(Dc | Ec)

is also approximately normally distributed with mean ε and variance

σ2 =
1

X1+P(D | E)P(Dc | E)
+

1

X0+P(D | Ec)P(Dc | Ec)

≈ 1

X00
+

1

X01
+

1

X10
+

1

X11
.

By Eqns (6a, 7a) E[θ̂] is close to the reference posterior mean of ε, and by
Eqns (6b, 7b) Var[θ̂] is close to the posterior variance of ε, for sufficiently
large sample sizes. Unfortunately ECMO’s sample sizes were far too small
for the delta method or the CLT to apply.
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3 Other Composite Hypotheses

We can also use a χ2 test to see if data {Xi} come from some unspecified
member of a parametric family f(x | θ) of distributions. Typically we must
aggregate or bin the data into a finite number (say, k) of categories; compute
the category probabilities pi(θ), 1 ≤ i ≤ k; minimize Λ over all possible
values of θ (or, nearly the same thing, minimize Q(θ)); and approximate the
distribution of Q(θ̂) by the χ2

ν with ν = k − 1− s, for θ ∈ Θ ⊆ R
s.

3.1 Poisson example

For instance, in DeGroot & Schervish (4/e) problem 5 of section 10.2, we
have n = 200 observations Xi ∈ Z+ which may be from a Po(θ) distribution:

X = 0 : 52
X = 1 : 60
X = 2 : 55
X = 3 : 18
X = 4 : 8
X ≥ 5 : 7

At any specific θ, the likelihood for the grouped data would be

L(θ) =
4
∏

i=0

[

θi

i!
e−θ

]Ni

·
[

1− e−θ
4

∑

i=0

θi

i!

]N5

∝ θ0·52+1·60+2·55+3·18+4·8e−θ[52+60+55+18+8]

[

1− e−θ
4

∑

i=0

θi

i!

]7

= θ256e−193θ

[

1− e−θ
4

∑

i=0

θi

i!

]7

The optimal θ is θ̂ = 1.465232 (found by a numerical search) with Q(θ̂) =
7.696875, for a P -value of P = pchisq(7.696875, df=4, low=F) = (1 +
Q/2)e−Q/2 = 0.1033348. Evidently we can’t reject the Poisson hypothesis at
levels α ≤ 0.10. Figure (2) shows a plot of the log likelihood, with θ̂ noted.
In this example θ̂ is very close to the Poisson MLE of θ̃ = 1.5 (using the
additional information about the “X ≥ 5” observations offered in Problem
5 of DeGroot & Schervish, §10.2, 4/e), so the values of the log likelihood
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Figure 2: Multinomial log likelihood.

and of Q agree to two decimal places and the same conclusions would be
drawn using either method.

3.2 Geometric example

Let’s test to see if the same data come from the geometric distribution Ge(p)
for any p ∈ [0, 1]. Setting q = 1− p, the geometric probabilities are

P[X = i] = pqi, 0 ≤ i ≤ 4 P[X ≥ 5] = q5
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so

L(p) =

4
∏

i=0

[

p qi
]Ni ·

[

q5
]N5 = p

∑
4

i=0
Niq

∑
5

i=0
i Ni = p193q291.

This attains its maximum at p̂ = 193/(193 + 291) = 193/484, leading to
“expected” counts of ei = p̂q̂i for 0 ≤ i ≤ 4, and e5 = q̂5. The log GLR
statistic and the quadratic form Q are

log Λ =
∑

Ni log(Ni/ei) = 19.6416

Q =
∑

(Ni − ei)
2/ei = 41.8620 ≈ 2 log Λ

for a P -value of P = pchisq(41.86, 4, low=F) of P ≈ 1.78 · 10−8. This
offers clear evidence that these data do not come from any exponential
distribution.

3.3 Generic example

We can construct a GLR test of the null hypothesis that observationsX1, . . . ,Xn

come from any parametric family P = {fθ(x) : θ ∈ Θ} with finite-dimensional
parameter space Θ ⊂ R

s as follows:

• Partition the outcome space X = ∪k
i=1Ai into some number k > s+ 1

of disjoint sets Ai;

• Evaluate the probabilities pi(θ) =
∫

Ai
fθ(x) dx that X will fall into

each partition element;

• Count the observed occupancies Ni =
∑

j 1Ai
(Xj) = # {j : Xj ∈ Ai};

• Find θ̂ = argmaxθ
∑

Ni log pi(θ) and set p̂i := pi(θ̂) and Ei := np̂i;

• Evaluate

Q(θ̂) :=

k
∑

i=1

(

Ni − npi(θ̂)
)2

npi(θ̂)
=

k
∑

i=1

(Ni −Ei)
2

Ei
;

• Report a P -value of P = pchisq(Q, k-s-1, low=F).
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The fourth step can be replaced with “Find θ̂ = argminθ Q(θ)”, but not

by “Set θ equal to its MLE under the model P”. Since the multinomial
likelihood function is very nearly proportional to eQ (that’s how the χ2 test
was derived, after all), the multinomial MLE θ̂ is very nearly the minimizing
value of Q, but other estimates θ̃ of θ will lead to a heavier-tailed distribution
for Q(θ̃) than the χ2

k−s−1. For the MLE θ̃ under the model P, Chernoff and

Lehmann (1954) showed that Q(θ̃) is distributed like the sum of a χ2
k−s−1

random variable and an independent sum
∑2

i=1 λiZ
2
i for {Zi} iid∼ No(0, 1)

and numbers 0 ≤ λi ≤ 1. It follows that its CDF lies between those of the
χ2
k−s−1 and χ2

k−1, so it is valid to reject H0 at level α if Q(θ̃) exceeds the
(1− α)th quantile of the χ2

k−1 distribution.
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