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1 Introduction

Point estimates of unknown parameters θ ∈ Θ governing the distribution of an observed quantity
X ∈ X are unsatisfying if they come with no measure of accuracy or precision. One approach
to giving such a measure is to offer set-valued or, for one-dimensional Θ ⊂ R, interval-valued
estimates for θ, rather than point estimates. Upon observing X = x, we construct an interval
I(x) which is very likely to contain θ, and which is very short. The approach to exactly how these
are constructed and interpreted is different for inference in the Sampling Theory tradition, and in
the Bayesian tradition. In these notes I’ll present both approaches to estimating the means of the
Normal and Exponential distributions, using “pivotal quantities,” and of integer-valued random
variables with monotone CDFs.

1.1 Confidence Intervals and Credible Intervals

A γ-Confidence Interval is a random interval I(X) ⊂ Θ with the property that Pθ[θ ∈ I(X)] ≥ γ,
i.e., that it will contain θ with probability at least γ no matter what θ might be. Such an interval
may be specified by giving the end-points, a pair of functions A : X→ R and B : X→ R with the
property that

(∀θ ∈ Θ) Pθ[A(X) < θ < B(X)] ≥ γ. (1)

Notice that this probability is for each fixed θ; it is the endpoints of the interval I(X) = (A,B)
that are random in this calculation, not θ, in the sampling-based Frequentist paradigm.

A γ-Credible Interval is an interval I ⊂ Θ with the property that P[θ ∈ I | X] ≥ γ, i.e., that
the posterior probability that it contains θ is at least γ. A family of intervals {I(x) : x ∈ X} for
all possible outcomes x may be specified by giving the end-points as functions A : X → R and
B : X→ R with the property that

P[A(x) < θ < B(x) | X = x] ≥ γ. (2)

This expression is a conditional or posterior probability that the random variable θ will lie in the
interval [A,B], given the observed value x of the random variable X. It is the parameter θ that is
random in the Bayesian paradigm, not the endpoints of the interval I(x) = (A,B).
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1.2 Pivotal Quantities

Confidence intervals for many parametric distributions can be found using “pivotal quantities”.
A pivotal quantity is a function of the data and the parameters (so it’s not a statistic) whose
probability distribution does not depend on any uncertain parameter values. Some examples:

• Ex(λ): If X ∼ Ex(λ) then λX ∼ Ex(1) is pivotal and, for samples of size n, λX̄n ∼ Ga(n, n)
and 2nλX̄n ∼ χ2

2n are pivotal.

• Ga(α, λ): If X ∼ Ga(α, λ) with α known then λX ∼ Ga(α, 1) is pivotal and, for samples of
size n, λX̄n ∼ Ga(αn, n) and 2nλX̄n ∼ χ2

2αn are pivotal.

• No(µ, σ2): If µ is unknown but σ2 is known, then (X − µ) ∼ No(0, σ2) is pivotal and, for
samples of size n,

√
n(X̄n − µ) ∼ No(0, σ2) is pivotal.

• No(µ, σ2): If µ is known but σ2 is unknown, then (X − µ)/σ ∼ No(0, 1) is pivotal and, for
samples of size n,

∑

(Xi − µ)2/σ2 ∼ χ2
n is pivotal.

• No(µ, σ2): If µ and σ2 are both unknown then for samples of size n,
√
n(X̄n−µ)/σ ∼ No(0, 1)

and
∑

(Xi − X̄n)
2/σ2 ∼ χ2

n−1 are both pivotal. This is the key example below.

• Un(0, θ): If X ∼ Un(0, θ) with θ unknown then (X/θ) ∼ Un(0, 1) is pivotal and, for samples
of size n, max(Xi)/θ ∼ Be(n, 1) is pivotal. Find a sufficient pair of pivotal quantities for

{Xi} iid∼ Un(α, β).

• We(α, β): If X ∼We(α, β) has a Weibull distribution then βXα ∼ Ex(1) is pivotal.

1.3 Confidence Intervals from Pivotal Quantities

Pivotal quantities allow us to construct sampling-theory “confidence intervals” for uncertain pa-
rameters. For the simplest example, let’s consider the problem of finding a γ = 90% Confidence
Interval for the unknown rate parameter λ from a single observation X ∼ Ex(λ) from the exponen-
tial distribution. Since λX ∼ Ex(1) is pivotal, we have

Pλ

[

a ≤ λX ≤ b
]

= e−a − e−b = 0.95 − 0.05 = 0.90

if a = − log(0.95) = 0.513 and b = − log(0.05) = 2.996, so for every fixed λ > 0

0.90 = Pλ

[0.513

X
≤ λ ≤ 2.996

X

]

(3a)

will be a symmetric Confidence Interval for λ for a single observation X. Note it is the endpoints of
the interval that are random (through their dependence on X) in this sampling-distribution based
approach to inference, while the parameter λ is fixed. That’s why the word “confidence” is used for
these intervals, and not “probability.” In Section (4) when we consider Bayesian interval estimates
this will switch— the observed (and so fixed) values of X will be used, while the parameter will be
regarded as a random variable.
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With a larger sample-size something similar can be done. For example, since 2nλX̄n ∼ χ2
2n is

pivotal for iid {Xj} ∼ Ex(λ), and since the 5% and 95% quantiles of the χ2
10 distribution are 3.940

and 18.307, a sample of size n = 5 from the Ex(λ) distribution satisfies

0.90 = Pλ[3.940 ≤ 2nλX̄n ≤ 18.307] = Pλ

[

0.3940

X̄5
≤ λ ≤ 1.8307

X̄5

]

, (3b)

so [0.39/X̄5 , 1.83/X̄5] is a 90% confidence interval for λ based on a sample of size n = 5. Intervals
(3a) and (3b) are both of the same form, straddling the MLE λ̂ = 1/X̄n, but (3b) is narrower
because its sample-size is larger. This will be a recurring theme— larger samples will lead more
precise estimates (i.e., narrower intervals) at the cost of more sampling.

Most discrete distributions don’t have (exact) pivotal quantities, but the central limit theorem
usually leads to approximate confidence intervals for most distributions for large samples. Exact
intervals are available for many distributions, with a little more work, even for small samples; see
Section (5.3) for a construction of exact confidence and credible intervals for the Poisson distribu-
tion. Ask me if you’re interested in more details.

2 Confidence Intervals for a Normal Mean

First let’s verify the claim above that, for a sample of size n from the No(µ, σ2) distribution, the
pivotal quantities

∑

(Xi − X̄n)
2/σ2 ∼ χ2

n−1 and
√
n(X̄n − µ)/σ ∼ No(0, 1) have the distributions

I claimed for them— and, moreover, that they are independent.

Let x = {X1, . . . ,Xn} iid∼ No(µ, σ2) be a simple random sample from a normal distribution mean µ
and variance σ2. The log likelihood function for θ = (µ, σ2) is

log f(x | θ) = log
{

(2πσ2)−n/2 e−
∑

(xi−µ)2/2σ2
}

= −n

2
log(2πσ2)− 1

2σ2

∑

(xi − x̄n)
2 − n(x̄n − µ)2

2σ2

so the MLEs are

µ̂ = x̄n =
1

n

∑

xi and σ̂2 =
1

n
S where S :=

∑

(xi − x̄n)
2. (4)

First we turn to discovering the probability distributions of these estimators, so we can make
sampling-based interval estimates for µ and σ2.

Since the {Xi} are independent, their sum
∑

Xi has a No(nµ, nσ2) distribution and

µ̂ = x̄n ∼ No(µ, σ2/n).

Since the covariance between x̄n and each component of (x−x̄n) is zero, and since they’re all jointly
Gaussian, x̄n must be independent of (x − x̄n) and hence of any function of (x − x̄n), including
S =

∑

(xi − x̄n)
2. Now we can use moment generating functions to discover the distribution of S.

Since Z2 ∼ χ2
1 = Ga(1/2, 1/2) for a standard normal Z ∼ No(0, 1), we have

n(x̄n − µ)2/σ2 ∼ Ga(1/2, 1/2) and
∑

(xi − µ)2/σ2 ∼ Ga(n/2, 1/2)
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so
n(x̄n − µ)2 ∼ Ga(1/2, 1/2σ2) and

∑

(xi − µ)2 ∼ Ga(n/2, 1/2σ2).

By completing the square we have

∑

(xi − µ)2 =
∑

(xi − x̄n)
2 + n(x̄n − µ)2

as the sum of two independent terms. Recall (or compute) that the Gamma Ga(α, λ) MGF is
(1 − t/λ)−α for t < λ, and that the MGF for the sum of independent random variables is the
product of the individual MGFs, so

E exp
{

t
∑

(xi − µ)2
}

= (1− 2σ2t)−n/2

= E exp
{

t
∑

(xi − x̄n)
2
}

E exp
{

tn(x̄n − µ)2
}

= E exp
{

t
∑

(xi − x̄n)
2
}

(1− 2σ2t)−1/2, so

E exp
{

t
∑

(xi − x̄n)
2
}

= (1− 2σ2t)−(n−1)/2 by dividing. Thus

S :=
∑

(xi − x̄n)
2 ∼ Ga

(

n− 1

2
,

1

2σ2

)

and so S/σ2 ∼ χ2
n−1 is independent of

√
n(X̄n − µ)/σ ∼ No(0, 1), as claimed.

2.1 Confidence Intervals for Mean µ when Variance σ2
0 is Known

The pivotal quantity

Z =
x̄n − µ
√

σ2/n

has a standard No(0, 1) normal distribution, with CDF Φ(z). If σ2 = σ2
0 were known, then for any

0 < γ < 1 and for z∗ such that Φ(z∗) = (1 + γ)/2 we could write

γ = Pµ

[

−z∗ ≤ x̄n − µ
√

σ2
0/n
≤ z∗

]

= Pµ

[

x̄n − z∗σ0/
√
n ≤ µ ≤ x̄n + z∗σ0/

√
n
]

(5)

to find a confidence interval [x̄n − z∗σ0/
√
n, x̄n + z∗σ0/

√
n] for µ by replacing x̄n with its observed

value.

If σ2 is not known, and must be estimated from the data, then we have a bit of a problem— because
although the analogous quantity

x̄n − µ
√

σ̂2/n

obtained by replacing “σ2” by its estimate “σ̂2” in the definition of Z does have a probability
distribution that does not depend on µ or σ2, and so is pivotal, its distribution is not Normal.
Heuristically, this quantity has “fatter tails” than the normal density function, because it can be
far from zero if either x̄n is far from its mean µ or if the estimate σ̂2 for the variance is too small.
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Following William S. Gosset (a statistician studying field data from barley cultivation for the
Guinness Brewery in Dublin, Ireland) as adapted by Ronald A. Fisher (an English theoretical
statistician), we consider the (slightly re-scaled, by Fisher) pivotal quantity:

t :=
x̄n − µ

√

σ̂2/(n− 1)
=

√
n(x̄n − µ)

√

S/(n− 1)

=

√
n(x̄n − µ)/σ

√

S/σ2(n− 1)
=

Z
√

Y/ν
,

for independent Z ∼ No(0, 1) and Y ∼ χ2
ν with ν = (n − 1) degrees of freedom. Now we turn to

finding the density function for t, so we can find confidence intervals for µ in Section (2.3).

2.2 The t pdf

Note X := Z2/2 ∼ Ga(1/2, 1) and U := Y/2 ∼ Ga(ν/2, 1). Since Z has a symmetric distribution
about zero, so does t and its pdf will satisfy fν(t) = fν(−t). For t > 0,

P

[

Z
√

Y/ν
> t

]

= 1
2P

[

Z2

Y/ν
> t2

]

= 1
2P

[

Z2

2
>

Y

2

t2

ν

]

= 1
2

∫ ∞

0

{

∫ ∞

ut2/ν

x−1/2

Γ(1/2)
e−x dx

}

uν/2−1

Γ(ν/2)
e−u du

Taking the negative derivative wrt t, and noting Γ(1/2) =
√
π,

fν(t) =
1

2
√
π

∫ ∞

0

{

2ut

ν
(u t2/ν)−1/2e−ut2/ν uν/2−1

Γ(ν/2)
e−u

}

du

=
1√

πν Γ(ν/2)

∫ ∞

0
u

ν+1
2

−1 e−u(1+t2/ν) du

=

[

Γ(ν+1
2 )√

πν Γ(ν/2)

]

1

(1 + t2/ν)(ν+1)/2,

the Student t density function. It’s not important to remember or be able to reproduce the deriva-
tion, or to remember the normalizing constant— but it’s useful to know a few things about the t
density function:

• fν(t) ∝ (1+ t2/ν)−(ν+1)/2 is symmetric and bell-shaped, but falls off to zero as t→ ±∞ more
slowly than the Normal density (fν(t) ≍ |t|−ν−1 while φ(z) ≍ e−z2/2).

• For one degree of freedom ν = 1, the t1 is identical to the standard Cauchy distribution
f1(t) = π−1/(1 + t2), with undefined mean and infinite variance.

• As ν →∞, fν(t)→ φ(t) converges to the standard Normal No(0, 1) density function.
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2.3 Confidence Intervals for Mean µ when Variance σ2 is Unknown

With the t distribution (and hence its CDF Fν(t)) now known, for any random sample x =

{X1, . . . ,Xn} iid∼ No(µ, σ2) from the normal distribution we can set ν := n − 1 and compute
sufficient statistics

x̄n =
1

n

∑

xi σ̂2
n =

1

n
S =

1

n

∑

(xi − x̄n)
2

and, for any 0 < γ < 1, find t∗ such that Fν(t
∗) = (1 + γ)/2, then compute

γ = Pµ

[

−t∗ ≤ x̄n − µ
√

σ̂2
n/ν
≤ t∗

]

= Pµ

[

x̄n − t∗σ̂n/
√
ν ≤ µ ≤ x̄n + t∗σ̂n/

√
ν
]

= Pµ

[

x̄n − t∗sn/
√
n ≤ µ ≤ x̄n + t∗sn/

√
n
]

,

where s2n = σ̂2
nn/(n − 1) is the usual unbiased estimator s2n := 1

n−1

∑

(xi − x̄n)
2 of σ2. Once again

we have a random interval that will contain µ with specified probability γ— and can replace the
sufficient statistics x̄n, σ̂

2
n with their observed values to get a confidence interval. In this sampling

theory approach the unknown µ and σ2 are kept fixed and only the data x are treated as random;
that’s what the subscript “µ” on P was intended to suggest.

For example, with just n = 2 observations the t distribution will have only ν = 1 degree of freedom,
so it coincides with the Cauchy distribution with CDF

F1(t) =

∫ t

−∞

1/π

1 + x2
dx = 1

2 +
1

π
arctan(t).

For a confidence interval with γ = 0.95 we need t∗ = tan[π(0.975− 0.5)] = tan(0.475π) = 12.70620
(much larger than z∗ = 1.96); the interval is

0.95 = Pµ[x̄− 12.7σ̂2 ≤ µ ≤ x̄+ 12.7σ̂2]

with x̄ = (x1 + x2)/2 and σ̂2 = |x1 − x2|/2.
When σ2 is known it is better to use its known value than to estimate it, because (on average) the
interval estimates will be shorter. Of course some things we “know” turn out to be false... or, as
Will Rogers put it,

It isn’t what we don’t know that gives us trouble,

it’s what we know that ain’t so.

3 Confidence Intervals for a Normal Variance

Estimating variances arises less frequently than estimating means does, but the methods are illu-
minating and the problem does arise on occasion.
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3.1 Confidence Intervals for Variance σ2, when Mean µ0 is Known

If {Xi} iid∼ No(µ0, σ
2) then

σ̂2 =
1

n

∑

(Xi − µ0)
2 ∼ Ga

(

n/2, n/2σ2
)

has a Gamma distribution with rate proportional to σ−2, so the re-scaled

nσ̂2/σ2 ∼ Ga
(

n/2, 1/2
)

= χ2
n

is a pivotal quantity. We can construct an exact 100γ% Confidence Interval for σ2 from

γ = P

[

a ≤
∑

(Xi − µ0)
2

σ2
≤ b

]

for any 0 ≤ a < b < ∞ with γ = pgamma(b, n/2, 1/2)− pgamma(a, n/2, 1/2) or, equivalently,
γ = pchisq(b, n)− pchisq(a, n). For a symmetric interval, take a = qgamma(1−γ

2
, n/2, 1/2), b =

qgamma(1+γ
2

, n/2, 1/2), to get

γ = P

[∑

(Xi − µ0)
2

b
≤ σ2 ≤

∑

(Xi − µ0)
2

a

]

,

a symmetric 100γ% confidence interval for σ2, with known mean µ0.

3.2 Confidence Intervals for Variance σ2, when Mean µ is Unknown

In the more realistic case that {Xi} iid∼ No(µ, σ2) with both µ and σ2 unknown, we find that

σ̂2 =
1

n

∑

(Xi − X̄n)
2 ∼ Ga

(n− 1

2
,

n

2σ2

)

again has a Gamma distribution with rate proportional to σ−2, so again the re-scaled

nσ̂2/σ2 ∼ Ga
(

ν/2, 1/2
)

= χ2
ν

is a pivotal quantity with a χ2
ν distribution, now with one fewer degrees of freedom ν = (n − 1).

This again leads to an exact 100γ% Confidence Interval for σ2 from

γ = P

[

a ≤
∑

(Xi − X̄n)
2

σ2
≤ b

]

for any 0 ≤ a < b < ∞ with γ = pgamma(b, ν/2, 1/2)− pgamma(a, ν/2, 1/2) or, equivalently,
γ = pchisq(b, ν)− pchisq(a, ν) for ν = (n− 1). For a symmetric interval, take

a = qgamma(1−γ
2

, ν
2
, 1/2) b = qgamma(1+γ

2
, ν
2
, 1/2)

= qchisq(1−γ
2

, ν) = qchisq(1+γ
2

, ν)

to get the 100γ% confidence interval for σ2, with unknown mean µ:

γ = P

[∑

(Xi − X̄n)
2

b
≤ σ2 ≤

∑

(Xi − X̄n)
2

a

]

.
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4 Bayesian Credible Intervals for a Normal Mean

How would we make inference about µ for the normal distribution using Bayesian methods?

4.1 Unknown mean µ, known precision τ := σ−2

When only the mean µ is uncertain but the precision τ := 1/σ2 is known, the normal likelihood
function

f(x | µ) = (τ/2π)n/2 e−
τ
2

∑
(xi−x̄n)2−

τ
2
n(x̄n−µ)2 ∝ e−

nτ
2
(µ−x̄n)2

is proportional to a normal density for the parameter µ with mean x̄n and precision nτ . With
the improper uniform Jeffreys’ Rule or Reference prior for this problem, πJ(µ) ∝ 1, the posterior
distribution would be

πJ(µ | x) ∼ No
(

x̄n, (nτ)−1
)

leading to posterior 100γ% intervals of the form

γ = PJ

[

x̄n − z∗/
√
nτ < µ < x̄n + z∗/

√
nτ

∣

∣

∣
x

]

where z∗ = qnorm(1+γ
2

) is the normal quantile such that Φ(z∗) = 1+γ
2 , identical to the frequentist

Confidence Interval of (5)

More generally, for any µ0 ∈ R and any τ0 ≥ 0, the prior distribution π0(µ) ∼ No(µ0, τ
−1
0 )

is conjugate in the sense that the posterior distribution is again normal, in this case µ | x ∼
No(µ1, τ

−1
1 ) with updated “hyper-parameters”

µ1 =
τ0µ0 + nτx̄n

τ0 + nτ
, τ1 = τ0 + nτ. (6)

The posterior precision is the sum of the prior precision τ0 and the data precision nτ , while the
posterior mean is the precision-weighted average of the prior mean µ0 and the data mean x̄n. The
Reference example above was the special case of τ0 = 0 and arbitrary µ0, leading to µ1 = x̄n and
τ1 = nτ .

Posterior credible intervals are available of any size 0 < γ < 1. Using the quantile z∗ such that
Φ(z∗) = (1 + γ)/2, from (6) we have

γ = P

[

µ1 − z∗/
√
τ1 < µ < µ1 + z∗/

√
τ1

∣

∣

∣
x

]

.

The limit as µ0 → 0 and τ0 → 0 leads to the improper uniform prior π0(µ) ∝ 1 with posterior µ | x ∼
No(µ1 = x̄n, τ

−1
1 = σ2/n), with a Bayesian credible interval [x̄n − z∗σ/

√
n, xn + z∗σ/

√
n] identical

to the sampling theory confidence interval of Section (2.1), but with a different interpretation: here
γ = P[x̄n − z∗σ/

√
n < µ < xn + z∗σ/

√
n | x] (with µ random, x̄n fixed), while for the sampling-

theory interval γ = Pµ[x̄n − z∗σ/
√
n < µ < xn + z∗σ/

√
n] (with x̄n random for fixed but unknown

µ).
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4.2 Known mean µ, unknown precision τ = σ−2

When µ is known and only the precision τ is uncertain,

f(x | τ) ∝ τn/2 e−τ
∑

(xi−µ)2/2

is proportional to a gamma density in τ , so a gamma prior πτ (τ) ∼ Ga(α0, λ0) is conjugate for τ .
The posterior distribution is τ | x ∼ Ga(α1, λ1) with updated hyper-parameters

α1 = α0 +
n

2
, λ1 = λ0 +

1

2

∑

(xi − µ)2.

There’s no point in giving interval estimates for µ (since it’s known), but we can use the fact that
2λ1τ ∼ χ2

ν with ν = 2α1 degrees of freedom to generate interval estimates for τ or σ2. For numbers
0 < γ1 < γ2 < 1 find quantiles 0 < c1 < c2 <∞ of the χ1

ν distribution that satisfy P[χ2
ν ≤ cj ] = γj ;

then

γ2 − γ1 = P

[ c1
2λ1

< τ <
c2
2λ1

∣

∣

∣
x

]

= P

[ 2λ1

c2
< σ2 <

2λ1

c1

∣

∣

∣
x

]

For 0 < γ < 1 the symmetric case of γ1 =
1−γ
2 , γ2 =

1+γ
2 is not the shortest possible interval of size

γ = γ2 − γ1, because the χ2 density isn’t symmetric. The shortest choice is called the “HPD” or
“highest posterior density” interval because the Ga(α1, λ1) density function takes equal values at
c1, c2 and is higher inside [c1, c2] than outside. Typically HPDs are found by a numerical search.

In the limit as α0 → 0 and β0 → 0, we have the improper prior πτ (τ) ∝ τ−1 for the precision, with
posterior τ | x ∼ Ga(n/2,Σ(xi−µ)2/2) proportional to a χ2

n distribution, and the Bayesian credible
interval coincides with a sampling theory confidence interval for σ2 (again, with the conditioning
reversed).

4.3 Both mean µ and precision τ = σ−2 Unknown

When both parameters are uncertain, there is no conjugate family with µ, τ independent under both
prior and posterior— but there is a four-parameter family, the “normal-gamma” distributions, that
is conjugate. It is usually expressed in conditional form:

τ ∼ Ga(α0, β0), µ | τ ∼ No
(

µ0, [λ0τ ]
−1

)

for parameter vector θ0 = (α0, β0, µ0, λ0), with prior precision λ0τ for µ proportional to the data
precision τ . Its density function on R× R+ is seldom needed, but is easily found:

π(µ, τ | α0, β0, µ0, λ0) =
βα0

0

Γ(α0)

√

λ0

2π
τα0−1/2 e−τ [β0+λ0(µ−µ0)2/2] (7)

The posterior distribution is again of the same form, with updated hyper-parameters that depend
on the sample size n and the sufficient statistics x̄n and σ̂2

n (see (4)):

α1 = α0 +
n

2
β1 = β0 +

n

2

[

σ̂2
n +

λ0(x̄n − µ0)
2

λ0 + n

]

µ1 = µ0 +
n(x̄n − µ0)

λ0 + n
λ1 = λ0 + n
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It will be proper so long as α0 > −1, β0 ≥ 0, and λ0 > −1. The conventional “non-informative” or
“vague” improper prior distribution for a location-scale family like this is π(µ, τ) = τ−1, invariant
under changes in both location x  x + a and scale x  cx; from Eqn (7) we see this can be
achieved (apart from the irrelevant normalizing constant) by taking α0 = −1/2 and β0 = λ0 = 0,
with µ0 arbitrary. In this limiting case we find posterior distributions of τ ∼ Ga(ν/2, S/2) and
µ | τ ∼ No(x̄n, nτ) with ν = n−1, so

µ− x̄n
√

σ̂2
n/ν
∼ tν

and the Bayesian posterior credible interval

γ = P

[

x̄n − t∗
σ̂n√
n− 1

< µ < x̄n + t∗
σ̂n√
n− 1

∣

∣

∣
x

]

coincides with the sampling-theory confidence interval

γ = P

[

x̄n − t∗
σ̂n√
n− 1

< µ < x̄n + t∗
σ̂n√
n− 1

∣

∣

∣
µ, τ

]

of Section (2.3), with a different interpretation.

More generally, for any θ∗ = (α∗, β∗, µ∗, λ∗), the marginal distribution for τ is Ga(α∗, β∗) and the
marginal distribution for µ is that of a shifted (or “non-central”) and scaled tν distribution with
ν = 2α∗ degrees of freedom; specifically,

µ− µ∗
√

β∗/α∗λ∗

∼ tν , ν = 2α∗

One way to see that is to begin with the relations

τ ∼ Ga(α∗, β∗), µ | τ ∼ No

(

µ∗,
1

λ∗τ

)

and, after scaling and centering, find

Z := (µ − µ∗)
√

λ∗τ ∼ No(0, 1) ⊥⊥ Y := 2β∗τ ∼ Ga(α∗, 1/2) = χ2
ν

for ν := 2α∗ and hence
Z

√

Y/ν
=

µ− µ∗
√

β∗/α∗λ∗

∼ tν .

With the normal-gamma prior, and with t∗ chosen so that P[tν ≤ t∗] = 1+γ
2 , a Bayesian posterior

credible interval for the mean µ is:

γ = P

[

µ1 − t∗
√

β1/α1λ1 ≤ µ ≤ µ1 + t∗
√

β1/α1λ1

∣

∣

∣
x

]

,

an interval that is a meaningful probability statement even after x̄n and σ̂2
n (and hence α1, β1, µ1,

λ1) are replaced with their observed values from the data.

10



5 Confidence Intervals for Distributions with Monotone CDFs

Many statistical models feature a one-dimensional sufficient statistic T whose CDF

Fθ(t) := Pθ[T (x) ≤ t]

is a monotonic function of a one-dimensional parameter θ ∈ Θ ⊂ R, for each fixed value of t ∈ R .
For these we can find Confidence Intervals [A(x), B(x)] with endpoints of the form A(x) = a(T (x))
and B(x) = b(T (x)) as follows.

5.1 CIs for Continuous Distributions with Monotone CDFs

If T (X) has a continuous probability distribution with a CDF Fθ(t) that is monotone decreasing

in θ for each t, so larger values of θ are associated with larger values of T (x), then set

a(t) := sup
{

θ : Fθ(t) ≥ 1+γ
2

}

b(t) := inf
{

θ : Fθ(t) ≤ 1−γ
2

}

(8a)

Conversely, if Fθ(t) that is monotone increasing in θ for each t, set

a(t) := sup
{

θ : Fθ(t) ≤ 1−γ
2

}

b(t) := inf
{

θ : Fθ(t) ≥ 1+γ
2

}

(8b)

and, in either case,

A(x) := a
(

T (x)
)

B(x) := b
(

T (x)
)

.

For most continuous distributions these infima and suprema a(t), b(t) will be the unique values of θ
such that Fθ(t) =

1±γ
2 . Now the interval [A(x), B(x)] will be an exact 100γ% symmetric confidence

interval, i.e., will satisfy
(∀θ ∈ Θ) Pθ [A(x) < θ < B(x)] = γ.

For example, if X ∼ Ex(θ) has the exponential distribution, then T (X) := X has CDF Fθ(t) =
Pθ(X ≤ t) = [1 − exp(−θt)]+, a monotone increasing function of θ > 0 for any fixed t > 0. The
functions in (8) above are a(t) = − log(1+γ

2 )/t and b(t) = − log(1−γ
2 )/t, leading for γ = 0.90 to the

interval [A(X) = 0.0513/X, B(X) = 2.996/X].

If {X1 . . . Xn} iid∼ Un(0, θ) then T (X) := max{Xi} has CDF Fθ(t) = (t/θ)n+ ∧ 1, decreasing in θ > t

for any t > 0, so a(t) =
(1+γ

2

)−1/n
and b(t) =

(1−γ
2

)−1/n
. For γ = 0.90 and n = 4 this leads to the

interval [A(X) = 1.013/T, B(X) = 2.115/T ] for θ.

5.2 CIs for Discrete Distributions with Monotone CDFs

For discrete distributions it will be impossible to attain precisely probability γ except possibly for a
discrete set of {γi} ⊂ (0, 1), but we can find conservative intervals whose probability of containing
θ is at least γ for any γ ∈ (0, 1).

Let T be an integer-valued sufficient statistic with CDF Fθ(t) that decreases monotonically in θ for
each fixed t. For any sequence · · · < c0 < c1 < c2 < · · · spanning Θ and any integer k ∈ Z, then

ck < θ < ck+1 =⇒ Pθ

[

cT (x) < θ
]

= Pθ

[

cT (x) ≤ θ
]

= Pθ [T (x) ≤ k] = Fθ(k)

11



To achieve the upper bound Pθ

[

θ < a
(

T (x)
)]

≤ 1−γ
2 for the left endpoint of the interval, i.e.,

Pθ

[

a
(

T (x)
)

≤ θ
]

≥ 1+γ
2 , evidently entails Fθ(k) ≥ 1+γ

2 for each k and each θ ∈
(

a(k), a(k + 1)
)

.
Since Fθ(t) is decreasing in θ, the inequality will hold for all θ in the interval if and only if Fθ(k) ≥
1+γ
2 for θ = a(k + 1). Thus the largest permissible left endpoint is A(x) = a

(

T (x)
)

for

a(t) := sup
{

θ : Pθ[T (x) ≤ (t− 1)] ≥ 1+γ
2

}

(9a)

Similarly the requirement for the right endpoint that Pθ

[

b
(

T (x)
)

≤ θ
]

≤ 1−γ
2 entails Fθ(k) ≤ 1−γ

2

for each k and each θ ∈
(

b(k), b(k+1)
)

or, by monotonicity, simply that Fθ(k) ≤ 1+γ
2 for θ = b(k).

The smallest permissible right endpoint is B(x) = b
(

T (x)
)

for

b(t) := inf
{

θ : Pθ[T (x) ≤ t] ≤ 1−γ
2

}

(9b)

With these choices the interval with endpoints A(x) := a
(

T (x)
)

and B(x) := b
(

T (x)
)

will satisfy

(∀θ ∈ Θ) Pθ [A(x) < θ < B(x)] ≥ γ. (10)

For example, the statistic T (x) =
∑

Xi is sufficient for iid Bernoulli random variables {Xi} iid∼
Bi(1, θ) with a CDF Fθ(t) = pbinom(t, n, theta) that decreases in θ for each fixed t. For T = 7
successes in a sample of size n = 10, an exact 90% confidence interval for θ would be [A,B], where

a(7) = sup {θ : pbinom(6, 10, theta) ≥ 0.95} = 0.3933

b(7) = inf {θ : pbinom(7, 10, theta) ≤ 0.05} = 0.9128

found using the R code

th <- seq(0,1,,10001);

a <- max(th[pbinom(6,10,th) >= 0.95]);

b <- min(th[pbinom(7,10,th) <= 0.05]);

Or, using the identity pbinom(x,n,p) = 1-pbeta(p,x+1,n-x) relating binomial and beta CDFs,
the simpler and more precise

a(x)← qbeta(1−γ
2

, x, n − x+ 1) b(x)← qbeta(1+γ
2

, x+ 1, n− x)

If the CDF Fθ(t) of an integer-valued statistic T (x) is monotonically increasing in θ for each fixed
t, then applying (9) to the statistic −T (x) whose CDF decreases in θ leads to an interval of the
form A(x) := a

(

T (x)
)

and B(x) := b
(

T (x)
)

where

a(t) := sup
{

θ : Pθ[T (x) ≤ t] ≤ 1−γ
2

}

(11a)

b(t) := inf
{

θ : Pθ[T (x) ≤ t− 1] ≥ 1+γ
2

}

(11b)

For example, for any fixed x ∈ Z+ the CDF Fθ(x) = 1−(1−θ)x+1 for a single observationX ∼ Ge(θ)
from the geometric distribution increases monotonically from F0(x) = 0 to F1(x) = 1 as θ increases
from zero to one, so a symmetric 90% interval for θ from the single observation X = 10 would be

[

A(10) = 1− (0.95)1/11 = 0.0047, B(10) = 1− (0.05)1/10 = 0.2589
]

12



5.3 Confidence Intervals for the Poisson Distribution

Let x = {X1, · · · ,Xn} iid∼ Po(θ) be a sample of size n from the Poisson distribution. The
natural sufficient statistic S(x) =

∑

Xi has a Po(nθ) distribution whose CDF Fθ(s) decreases
with θ for each fixed s ∈ Z+, so by (9) a 100γ% Confidence Interval would be [A(x), B(x)]

with A(x) = a(S) and B(x) = b(S) given by a(s) = sup
{

θ : ppois(s− 1, n ∗ θ) ≥ 1+γ
2

}

and

b(s) = inf
{

θ : ppois(s, n ∗ θ) ≤ 1−γ
2

}

.

These bounds can be found without a numerical search, by exploiting the relation between the
Poisson and Gamma distributions. Recall that the arrival time Tk for the kth event in a unit-rate
Poisson process Xt has the Ga(k, 1) distribution, and that Xt ≥ k if and only if Tk ≤ t (at least k
fish by time t if and only if the kth fish arrives before time t)— hence, in R, the CDF functions for
Gamma and Poisson are related for all k ∈ N and t > 0 by the identity

1− ppois(k− 1, t) = pgamma(t, k).

Using this, we can express the Poisson confidence interval limits as

a(s) = sup
{

θ : ppois(s− 1, n ∗ θ) ≥ 1+γ
2

}

b(s) = inf
{

θ : ppois(s, n ∗ θ) ≤ 1−γ
2

}

= sup
{

θ : pgamma(n ∗ θ, s) ≤ 1−γ
2

}

= inf
{

θ : pgamma(n ∗ θ, s+ 1) ≥ 1+γ
2

}

= qgamma(1−γ
2

, s)/n = qgamma(1+γ
2

, s+ 1)/n

= qgamma(1−γ
2

, s, n) = qgamma(1+γ
2

, s+ 1, n) (12)

Here we have used the Gamma quantile function qgamma() in R, an inverse for the CDF function
pgamma(), and its optional rate parameter. Since a re-scaled random variable Y ∼ Ga(α, λ) satisfies
λY ∼ Ga(α, 1) with unit rate (the default for pgamma() and qgamma()), these are related by

p = pgamma(λ q, α) = pgamma(q, α, λ) ⇔ q = qgamma(p, α)/λ = qgamma(p, α, λ).

5.4 Bayesian Credible Intervals

A conjugate Bayesian analysis for iid Poisson data {Xj} iid∼ Po(θ) begins with the selection of
hyperparameters α > 0, β > 0 for a Ga(α, β) prior density

π(θ) ∝ θα−1e−βθ

and calculation of the Poisson likelihood function

f(x | θ) =
n
∏

j=1

[

θxj

xj !
e−θ

]

∝ θSe−nθ,

where again S :=
∑n

j=1Xj. The posterior distribution is

π(θ | x) ∝ θα+S−1e−(β+n)θ

∼ Ga(α+ S, β + n).
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Thus a symmetric γ posterior (“credible”) interval for θ can be given by

Pπ[A(x) < θ < B(x) | x] = γ (13)

where A(x) = a(S) and B(x) = b(S) with

a(s) := qgamma(1−γ
2

, α+s, β+n) b(s) := qgamma(1+γ
2

, α+s, β+n). (14)

5.5 Comparison

The two probability statements in Eqns (10, 13) look similar but they mean different things— in
Eqn (10) the value of θ is fixed while x (and hence the sufficient statistic S) is random, while
Eqn (13) expresses a conditional probability given x and hence A(x) and B(x) are fixed, while
θ is random. Because S has a discrete distribution it is not possible to achieve exact equality
for all θ; the coverage probability Pθ[A(x) < θ < B(x)] as a function of θ jumps at each of the
points {As, Bs} (see Figure (1)). Instead we guarantee a minimum probability of γ (γ = 0.95 in
Figure (1)) that θ will be captured by the interval. In Eqn (2), however, x (and hence S) are fixed,
and we consider θ to be random; it has a continuous distribution, and it is possible to achieve exact
equality.
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Figure 1: Exact coverage probability for 95% Poisson Confidence Intervals

The formulas for the interval endpoints given in Eqns (12, 14) are similar. If we take β = 0 and
α = 1

2 they will be as close as possible to each other. This is the objective “Jeffreys’ Rule” or
“Reference” prior distribution for the Poisson, the Ga(12 , 0) distribution with density

π(θ) ∝ θ−1/2
1{θ>0}.

It is “improper” in the sense that
∫

Θ π(θ) dθ = ∞, but the posterior distribution π(θ | x) ∼
Ga(S+1

2 , n) is proper for any x ∈ X. For any α ≥ 0 and β ≥ 0, all the intervals have the same
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asymptotic behavior for large n: by the central limit theorem, in both cases

A(x) x̄− zγ
√

x̄/n, B(x) x̄+ zγ
√

x̄/n

for large n where Φ(zγ) = (1 + γ)/2, so γ = Φ(zγ)− Φ(−zγ).

5.6 One-sided Intervals

For rare events one is often interested in one-sided confidence intervals of the form

(∀θ ∈ Θ) Pθ[0 ≤ θ ≤ B(x)] ≥ γ

or one-sided credible intervals
P[0 ≤ θ ≤ B(x) | x] ≥ γ.

For example, if zero events have been observed in n independent tries, how large might θ plausibly
be? The solutions follow from the same reasoning that led to the symmetric two-sided intervals of
Eqns (12, 14): B(x) = BS and B(x) = bS for S :=

∑n
j=1Xj , with

Bk = qgamma(γ, k+ 1, n) bk = qgamma(γ, α+k, β+n). (12’,14’)

For example, the Reference Bayesian γ = 90% one-sided interval for θ upon observing k = 0 events
in n = 10 tries would be [0, 0.1353] with upper limit b0 = qgamma(0.90, 0.50, 10), tighter and
probably more useful than the two-sided interval [0.0001966, 0.192073].

5.7 Poisson HPD Intervals

Sometimes interest focuses on the shortest interval [a(x), b(x)] with the posterior coverage proba-
bility Pπ[θ ∈ [a(x), b(x)] | X] ≥ γ. In general there is no closed-form expression, but the solution
can be found by setting ak = a(ξ⋆) and bk = b(ξ⋆) for the number

ξ⋆ := argmin
0≤ξ≤1−γ

[b(ξ) − a(ξ)]

for the functions

a(ξ) := qgamma(ξ, α+S, β+n) b(ξ) := qgamma(ξ + γ, α+S, β+n),

which can be found with a one-dimensional numerical search.
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