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1 Introduction

Let f(x | θ) be the pdf of X for θ ∈ Θ; at times we will also consider a sample x = {X1, · · · ,Xn} of
size n ∈ N with pdf fn(x | θ) =∏ f(xi | θ). In these notes we’ll consider how well we can estimate
θ or, more generally, some function g(θ), by observing X or x.

Let λ(X | θ) = log f(X | θ) be the natural logarithm of the pdf, and let λ′(X | θ), λ′′(X | θ)
be the first and second partial derivative with respect to θ (not X). In these notes we will only
consider “regular” distributions, those with continuously differentiable (log) pdfs whose support
doesn’t depend on θ and which attain a maximum in the interior of Θ (not at an edge) where
λ′(X | θ) vanishes. That will include most of the distributions we consider (normal, gamma,
poisson, binomial, exponential, . . . ) but not the uniform.

The quantity λ′(X | θ) is called the “Score” (sometimes it’s called the “Score statistic” but really
that’s a misnomer, since it usually depends on the parameter θ and statistics aren’t allowed to
do that). For a random sample x of size n, since the logarithm of a product is the sum of the
logarithms, the Score is the sum λ′n(x | θ) = (∂/∂θ) log fn(x | θ) =∑ λ(Xn | θ).
Usually the MLE θ̂ is found by solving the equation λ′n(x | θ̂) = 0 for the Score to vanish, but
today we’ll use it for other things. For fixed θ, and evaluated at the random variable X (or vector
x), the quantity Z := λ′(X | θ) (or Zn := λ′n(x | θ)) is a random variable; let’s find its mean and
variance. First consider a single observation, or n = 1.

Let’s consider continuously-distributed random variable X (for discrete distributions, just replace
the integrals below with sums). Since

1 =

∫

f(x | θ) dx

for any pdf and for every θ ∈ Θ, we can take a derivative to find

0 =
∂

∂θ

∫

f(x | θ) dx

=

∫ ∂
∂θf(x | θ)
f(x | θ) f(x | θ) dx

=

∫

λ′(x | θ) f(x | θ) dx = Eθλ
′(X | θ), (1)
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so the Score always has mean zero. The same reasoning shows that, for random samples, Eθλ
′

n(x |
θ) = 0. The variance of the Score is denoted

I(θ) = Eθ

[

λ′(X | θ)2
]

(2)

and is called the Fisher Information function. Differentiating (1) (using the product rule) gives us
another way to compute it:

0 =
∂

∂θ

∫

λ′(x | θ) f(x | θ) dx

=

∫

λ′′(x | θ) f(x | θ) dx+

∫

λ′(x | θ) f ′(x | θ) dx

=

∫

λ′′(x | θ) f(x | θ) dx+

∫

λ′(x | θ) f
′(x | θ)
f(x | θ) f(x | θ) dx

= Eθ

[

λ′′(X | θ)
]

+ Eθ

[

λ′(X | θ)2
]

= Eθ

[

λ′′(X | θ)
]

+ I(θ) by (2), so

I(θ) = Eθ

[

− λ′′(X | θ)
]

. (3)

Since λn(x | θ) =∑λ(Xi | θ) is the sum of n iid RVs, the variance In(θ) = Eθ[λ
′

n(x | θ)2] = n I(θ)
for a random sample of size n is just n times the Fisher Information for a single observation.

1.1 Examples

Normal: For the No(θ, σ2) distribution with fixed σ2 > 0,

λ(x | θ) = −1
2 log(2πσ

2)− 1

2σ2
(x− θ)2

λ′(x | θ) = 1

σ2
(x− θ)

λ′′(x | θ) = − 1

σ2

I(θ) = Eθ

[

(X − θ)2

σ4

]

=
1

σ2
,

the “precision” (inverse variance). The same holds for a random sample In(θ) = n/σ2 of size
n. Thus the variance (σ2/n) of θ̂n = x̄n is exactly 1/In(θ).

Poisson: For the Po(θ),

λ(x | θ) = x log θ − log x!− θ

λ′(x | θ) = x− θ

θ

λ′′(x | θ) = − x

θ2

I(θ) = Eθ

[

(X − θ)2

θ2

]

=
1

θ
,

so again θ̂n = x̄n has variance 1/In(θ) = θ/n.
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Bernoulli: For the Bernoulli distribution Bi(1, θ),

λ(x | θ) = x log θ + (1− x) log(1− θ)

λ′(x | θ) = x

θ
− 1− x

1− θ

λ′′(x | θ) = − x

θ2
− 1− x

(1− θ)2

I(θ) = Eθ

[

X(1 − θ)2 + (1−X)θ2

θ2(1− θ)2

]

=
1

θ(1− θ)
,

so again θ̂n = x̄n has variance 1/In(θ) = θ(1− θ)/n.

Exponential: For X ∼ Ex(θ),

λ(x | θ) = log θ − xθ

λ′(x | θ) = 1

θ
− x

λ′′(x | θ) = − 1

θ2

I(θ) = Eθ

[

(1−Xθ)2

θ2

]

=
1

θ2
,

so In(θ) = n/θ2. This time the variance of θ̂ = 1/x̄n,
θ2n2

(n−1)2(n−2) , is bigger than 1/In(θ) =

θ2/n (you can compute this by noticing that x̄n ∼ Ga(n, nθ) has a Gamma distribution, and
computing arbitrary moments E[Y p] = β−pΓ(α+ p)/Γ(α) for any Y ∼ Ga(α, β), p > −α).

It turns out that this lower bound always holds.

1.2 The Information Inequality

Let T (X) be any statistic with finite variance, and denote its mean by

m(θ) = EθT (X).

By the triangle inequality, the square of the covariance of any two random variables is never more
than the product of their variances (this is just another way of saying the correlation is bounded
by ±1). We’re going to apply that idea to the two random variables T (X) and λ′(X | θ) (whose
variance is Vθ[λ

′(X | θ)] = I(θ)):

Vθ[T (X)] · Vθ[λ
′(X | θ] ≥

[

Eθ

{

[T (X)−m(θ)] · [λ′(X | θ)− 0]
}]2

=

[
∫

{

[T (x)] · [λ′(x | θ)]
}

f(x | θ) dx
]2

=

[
∫

T (x) f ′(x | θ) dx
]2

=
[

m′(θ)
]2
,
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so

Vθ[T (X)] ≥ [m′(θ)]2

I(θ)

or, for samples of size n,

Vθ[Tn(x)] ≥
[m′(θ)]2

n I(θ)
.

For vector parameters θ ∈ Θ ⊂ R
d the Fisher Information is a matrix

I(θ) = Eθ[∇λ(x | θ) ∇λ(x | θ)⊺]
= Eθ[−∇2λ(x | θ)]

where ∇f(θ) denotes the gradient of a real-valued function f : Θ → R, a vector whose components
are the partial derivatives ∂f(θ)/∂θi; where x

⊺ denotes the 1×d transpose of the d×1 column vector
x; and where ∇2f(θ) denotes the Hessian, or d× d matrix of mixed second partial derivatives.
If T (X) was intended as an estimator for some function g(θ), the MSE is

Eθ

{

[Tn(x)− g(θ)]2
}

= Vθ[Tn(x)] + [m(θ)− g(θ)]2

≥ [m′(θ)]2

n I(θ)
+ [m(θ)− g(θ)]2

=
[β′(θ) + g′(θ)]2

n I(θ)
+ β(θ)2

where β(θ) ≡ m(θ)− g(θ) denotes the bias. In particular, for estimating g(θ) = θ itself,

Eθ

{

[Tn(x)− θ]2
}

≥ [β′(θ) + 1]2

n I(θ)
+ β(θ)2

and, for unbiased estimators, the MSE is always at least:

Eθ

{

[Tn(x)− θ]2
}

≥ 1

n I(θ)
.

These lower bounds were long thought to be discovered independently in the 1940s by statisticians
Harold Crámer and Calyampudi Rao, and so this is often called the “Crámer-Rao Lower Inequality,”
but ever since Erich Lehmann brought to everybody’s attention their earlier discovery by Maurice
Fréchet in the 1870s they became called the “Information Inequality.” We saw in examples that
the bound is exactly met by the MLEs for the mean in normal and Poisson examples, but the
inequality is strict for the MLE of the rate parameter in an exponential (or gamma) distribution.

It turns out there is a simple criterion for when the bound will be “sharp,” i.e., for when an
estimator will exactly attain this lower bound. The bound arose from the inequality ρ2 ≤ 1 for the
covariance ρ of T (X) and λ′(X | θ); this inequality will be an equality precisely when ρ = ±1, i.e.,
when T (X) can be written as an affine function T (X) = u(θ)λ′(X | θ) + v(θ) of the Score. The
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coefficients u(θ) and v(θ) can depend on θ, but not on X, but any θ-dependence has to cancel so
that T (X) won’t depend on θ (because it was a statistic). In the Normal and Poisson examples the
statistic T was X, which could indeed be written as an affine function of λ′(X | θ) = (X − θ)/σ2

for the Normal or λ′(X | θ) = (X − θ)/θ for the Poisson, while in the Exponential case 1/X cannot
be written as an affine function of λ′(X | θ) = (1/θ −X).

1.2.1 Multivariate Case

A multivariate version of the Information Inequality exists as well. If Θ ⊂ R
k for some k ∈ N, and

if T : X → R
n is an n-dimensional statistic for some n ∈ N for data X ∼ f(x | θ) taking values in

a space X of arbitrary dimension, define the mean function m : R
k → R

n by m(θ) := EθT (X) and
its n× k Jacobian matrix by

Jij := ∂mi(θ)/∂θj .

Then the multivariate Information Inequality asserts that

Covθ[T (X)] ≥ J I(θ)−1J⊺

where I(θ) := Covθ[∇θ log f(X | θ)] is the Fisher information matrix, where the notation “A ≥ B”
for n × n matrices A,B means that [A − B] is positive semi-definite, and where C⊺ denotes the
k × n transpose of an n × k matrix C. This gives lower bounds on the variance of z′T (X) for all
vectors z ∈ R

n and, in particular, lower bounds for the variance of components Ti(X).

Examples

Normal Mean & Variance

If both the mean µ and precision τ = 1/σ2 are unknown for normal variates Xi
iid∼ No(µ, 1/τ), the

Fisher Information for θ = (µ, τ) is

I(θ) = −E

[

∂2

∂µ2 ℓ
∂2

∂µ∂τ ℓ
∂2

∂τ∂µℓ
∂2

∂τ2 ℓ

]

= −E

[

−τ (X − µ)
(X − µ) −τ−2/2

]

=

[

τ 0
0 τ−2/2

]

where ℓ(θ) = 1
2 [log(τ/2π) − τ(X − µ)2] is the log likelihood for a single observation.

Multivariate Normal Mean

If the mean vector µ ∈ R
k is unknown but the covariance matrix Σij = E(Xi − µi)(Xj − µj) is

known for a multivariate normal RV X ∼ No(µ,Σ), the (k × k)-Fisher Information matrix for µ is

Iij(µ) = −E
∂2

∂µi∂µj

{

−1
2 log

∣

∣2πΣ
∣

∣− 1
2 (X − µ)′Σ−1(X − µ)

}

=
(

Σ−1
)

ij
,

so (as in the one-dimensional case) the Fisher Information is just the precision (now a matrix).
Gamma

If both the shape α and rate λ are unknown for gamma variates Xi
iid∼ Ga(α, λ), the Fisher Infor-

mation for θ = (α, λ) is

I(θ) = −E

[

∂2

∂µ2 ℓ
∂2

∂µ∂τ ℓ
∂2

∂τ∂µℓ
∂2

∂τ2 ℓ

]

= −E

[

−ψ′(α) λ−1

λ−1 −αλ−2

]

=

[

ψ′(α) −λ−1

−λ−1 αλ−2

]
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where ℓ(θ) = α log λ+ (α − 1) logX − λX − log Γ(α) is the log likelihood for a single observation,
and where ψ′(z) := [log Γ(z)]′′ is the “trigamma function” (Abramowitz and Stegun, 1964, 6.4), the
derivative of the “digamma function” ψ(z) := [log Γ(z)]′ (Abramowitz and Stegun, 1964, 6.3).

1.3 Regularity

The Information Inequality requires some regularity conditions for it to apply:

• The Fisher Information exists— equivalently, the log likelihood ℓ(θ) := log f(x | θ) has partial
derivatives with respect to θ for every x ∈ X and θ ∈ Θ, and they are in L2

(

X, f(x | θ)
)

for
every θ ∈ Θ.

• Integration (wrt x) and differentiation (wrt θ) commute in the expression

∇θ

∫

T

T (x) f(x | θ) dx =

∫

T

T (x) ∇θf(x | θ) dx.

This latter condition will hold whenever the support {x : f(x | θ) > 0} doesn’t depend on θ, and
log f(x | θ) has two continuous derivatives wrt θ everywhere.

These conditions both fail for the case of {Xi} iid∼ Un(0, θ), the uniform distribution on an interval
[0, θ], and so does the conclusion of the Information Inequality. In this case the MLE is θ̂n =
X∗

n(X) := max{Xi : 1 ≤ i ≤ n}, the sample maximum, whose mean squared error

Eθ|θ̂n − θ|2 = 2θ2

(n + 1)(n + 2)

tends to zero at rate n−2 as n → ∞, while the Information Inequality bounds that rate below by
a multiple of n−1 for problems satisfying the Regularity Conditions.

2 Efficiency

An estimator δ(X) of g(θ) is called efficient if it satisfies the Information Inequality exactly; oth-
erwise its (absolute) efficiency is defined to be

Eff(δ) =

[β′(θ)+g′(θ)]2

I(θ) + β(θ)2

Eθ {[δ(X) − g(θ)]2}
or, if the bias β(θ) ≡ [Eθδ(X) − g(θ)] vanishes,

=
[g′(θ)]2

I(θ)Vθ[δ(X)]
.

It is asymptotically efficient if the efficiency for a sample of size n converges to one as n→ ∞. This
happens for the MLE θ̂n = 1/x̄n for an Exponential distribution above, for example, whose bias is
βn(θ) = E[ 1

x̄n
− θ] = θ

n−1 and whose absolute efficiency is

Eff(θ̂n) =

[1/(n−1)+1]2

n/θ2
+ θ2

(n−1)2

θ2n2

(n−1)2(n−2)
+ θ2

(n−1)2

=
(n+ 1)(n − 2)

(n+ 2)(n − 1)
.

This increases to one as n→ ∞, so θ̄n is asymptotically efficient.
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3 Asymptotic Relative Efficiency: ARE

If one estimator δ1 of a quantity g(θ) has MSE Eθ|δ1(x)− g(θ)|2 ≈ c1/n for large n, while another
δ2 has MSE Eθ|δ2(x) − g(θ)|2 ≈ c2/n with c1 < c2, then the first will need a smaller sample-size
n1 = (c1/c2)n2 to achieve the same MSE as the second would achieve with a sample of size n2.
The ratio (c2/c1) is called the asymptotic relative efficiency (or ARE) of δ1 wrt δ2. For example,
if c2 = 2c1, then δ1 needs c1/c2 = 0.5 times the sample size, and is (c2/c1) = 2 times more efficient
than δ2.

We won’t go into it much in this course, but it’s interesting to know that the for estimating the mean
θ of the normal distribution No(θ, σ2) the sample mean θ̂ = x̄n achieves the Information Inequality
lower bound of Eθ|x̄n − θ|2 = σ2/n = 1/In(θ), while the sample median M(x) has approximate1

MSE Eθ|M(x−θ
σ )− θ|2 ≈ πσ2/2n, so the ARE of the median to the mean is

σ2/n

πσ2/2(n + 2)
→ 2

π
≈ 0.6366,

so the sample median will require a sample-size about π/2 ≈ 1.57 times larger than the sample
mean would for the same MSE. The median does offer a significant advantage over the sample
mean, however— it is robust against model misspecification, e.g., it is relatively unaffected by a
few percent (or up to half) of errors or contamination in the data. Ask me if you’d like to know
more about that.

4 Change of Variables for Fisher Information

The Fisher information function θ  I(θ) depends on the particular way the model is param-
eterized. For example, the Bernoulli distribution can be parametrized in terms of the success
probability p, the logistic η = log( p

1−p), or in angular form with θ = arcsin(
√
p). The Fisher

Information functions for these various choices will differ, but in a very specific way.

Consider a statistical model that can be parametrized in either of two ways,

X ∼ f(x | θ) = g(x | η), with θ = φ(η), η = ψ(θ)

for one-dimensional parameter vectors θ and ψ, related by invertible differentiable 1:1 transforma-
tions. Then the Fisher Information functions Iθ and Iη in these two parameterizations are related

1You can show this by considering Φ
(

M(x−θ

σ
)
)

, which is the median of n iid uniform random variables and so
has exactly a Be(α, β) distribution with α = β = n+1

2
distribution for odd n, hence variance 1/4(n + 2). Then use

the “Delta method” to relate the variance of M(x−θ

σ
) to that of Φ(M(x−θ

σ
)), V[Φ(M(x−θ

σ
))] ≈ [Φ′(0)]2V[M(x−θ

σ
)] =

1
2π

V[M(x−θ

σ
)], so 1

4(n+2)
≈

1
2π

V[M(x−θ

σ
)] = 1

2πσ2V[M(x)], or V[M(x)] ≈ πσ
2

2(n+2)
.
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by

Iθ(θ) = E

{

(

∂

∂θ
log f(x | θ)

)2
}

= E

{

(

∂

∂θ
log g(x | ψ(θ))

)2
}

= E

{

(

∂

∂η
log g(x | η)∂η

∂θ

)2
}

= E

{

(

∂

∂η
log g(x | η)

)2
}

(∂η

∂θ

)2

= Iη(η)
(

Jη
θ

)2
, (4)

the Fisher information Iη(η) in the η paramaterization times the square of the Jacobian Jη
θ := ∂η/∂θ

for changing variables.

For example, the Fisher Information for Bernoulli random variable in the usual success-probability
parametrization was shown in Section (1.1) to be Ip(p) = 1/p(1−p). In the logistic parametrization
it would be

Iη(η) =
eη

(1 + eη)2
= Ip

( eη

1 + eη
)

(Jp
η )

2,

for Jacobian Jp
η = ∂p/∂η = eη/(1 + eη)2 and inverse transformation p = eη/(1 + eη), while in the

arcsin parameterization the Fisher Information

Iθ(θ) = Ip
(

sin2(θ)
)

(Jp
θ )

2 = 4,

a constant, for Jacobian Jp
θ = ∂p/∂θ = 2 sin θ cos θ and inverse transformation p = sin2 θ.

4.1 Jeffreys’ Rule Prior

From (4) it follows that the unnormalized prior distributions

πθJ(θ) =
(

Iθ(θ)
)1/2

and πηJ(η) =
(

Iη(η)
)1/2

are related by
πθJ(θ) = πηJ(η) |∂η/∂θ|,

exactly the way they should be related for the change of variables η  θ.

It was this invariance property that led Harold Jeffreys (1946) to propose πJ(θ) as a default “ob-
jective” choice of prior distribution. Much later José Bernardo (1979) showed that this is also the
“Reference prior” that maximizes the entropic distance from the prior to the posterior, i.e., the
information to be learned from an experiment; see (Berger et al., 2009, 2015) for a more recent and
broader view. In estimation problems with one-dimensional parameters a Bayesian analysis using
πJ(θ) ∝ I(θ)1/2 is widely regarded as a suitable objective Bayesian approach.
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4.2 Examples using Jeffreys’ Rule Prior

Normal: For the No(θ, σ2) distribution with known σ2, the Fisher Information is I(θ) = 1/σ2, a
constant (for known σ2), so πJ(θ) ∝ 1 is the improper uniform distribution on R and the
posterior distribution for a sample of size n is

πJ(θ | x) ∼ No(X̄n, σ
2/n)

with posterior mean θ̂J = X̄n, the same as the MLE.

Poisson: For the Po(θ), the Fisher Information is I(θ) = 1/θ, so πJ(θ) ∝ θ−1/2 is the improper
conjugate Ga(1/2, 0) distribution and the posterior for a sample x of size n is

πJ(θ | x) ∼ Ga
(

1
2 +

∑

Xi, n
)

,

with posterior mean θ̂J = X̄n + 1/2n, asymptotically the same as the MLE.

Bernoulli: For the Bi(1, θ), the Fisher Information is I(θ) = 1/θ(1−θ), so πJ(θ) ∝ θ−1/2(1−θ)−1/2

is the conjugate Be(1/2, 1/2) distribution and the posterior for a sample x of size n is

πJ(θ | x) ∼ Ga
(

1
2 +

∑

Xi,
1
2 + n−

∑

Xi

)

,

with posterior mean θ̂J = (
∑

Xi +
1
2 )/(n + 1). In the logistic parametrization the Jeffreys’

Rule prior is πJ(η) ∝ 1/(eη/2 + e−η/2) ∝ sech(η/2), the hyperbolic secant, while the Jeffreys’
Rule prior is uniform πJ(θ) ∝ 1 in the arcsin parametrization, but each of these induces the
Be(12 ,

1
2) for p under a change of variables.

Exponential: For the Ex(θ), the Fisher Information is I(θ) = 1/θ2, so the Jeffreys’ Rule prior is
the scale-invariant improper πJ(θ) ∝ 1/θ on R+, with posterior density for a sample x of size
n is

πJ(θ | x) ∼ Ga
(

n,
∑

Xi

)

,

with posterior mean θ̄J = 1/X̄n equal to the MLE.

4.3 Multidimensional Parameters

When θ and η are d-dimensional a similar change-of-variables expression holds, but now Iθ, Iη and
the Jacobian Jη

θ are all d×d matrices:

Iθij(θ) = E

{(

∂

∂θi
log f(x | θ)

)(

∂

∂θj
log f(x | θ)

)}

= E

{(

∂

∂θi
log g(x | ψ(θ))

)(

∂

∂θj
log g(x | ψ(θ))

)}

= E

{(

∑

k

∂

∂ηk
log g(x | η)∂ηk

∂θi

)(

∑

l

∂

∂ηl
log g(x | η)∂ηl

∂θj

)}

Iθ(θ) = Jη
θ
⊺Iη(η)Jη

θ ,
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Jeffreys noted that now the prior distribution

πJ(θ) ∝ |det I(θ)|1/2

proportional to the square root of the determinant of the Jacobian matrix is invariant under changes
of variables, but both he and later authors noted that πJ(θ) has some undesirable features in d ≥ 2
dimensions including the important example of No(µ, σ2) with unknown mean and variance. “Ref-
erence priors” (Berger and Bernardo, 1992a,b) are currently considered the best choice for objective
Bayesian analysis in multi-parameter problems, but they are challenging to compute and to work
with. The tensor product of independent one-dimensional Jeffreys priors πJ(θ1)πJ(θ2) · · · πJ(θd)
are frequently recommended as an acceptable alternative.
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