Sta 532: Homework #4

- 1. Find the Kullback-Leibler divergence $KL(\theta : \theta')$ for the binomial distribution $Bi(n, \theta)$ with fixed n, for $\theta, \theta' \in (0, 1)$.
- 2. Find the Fisher Information $I_n(\theta)$ for the binomial distribution $\mathsf{Bi}(n,\theta)$ with fixed n, and verify that¹

$$\mathrm{KL}(\theta:\theta') = \frac{1}{2}I_n(\theta)(\theta-\theta')^2 + o(\theta-\theta')^2$$

Suggestion: Write $\theta' = \theta + \epsilon$, and use the Taylor series $\log(1 + x) = x - \frac{x^2}{2} + \frac{\xi^3}{3}$ for some $\xi \in [0, x]$.

This always happens (under the usual regularity conditions)— so, within parametric families, closeness in the Kullback-Leibler is the same as closeness in the Information metric, and the Information distance is approximately $\sqrt{2\text{KL}(\theta:\theta')}$ for $\theta' \approx \theta$.

3. Let $\{X_i\} \stackrel{\text{iid}}{\sim} \mathsf{Un}(0,\theta)$ be uniformly distributed on the interval $[0,\theta]$ for some uncertain $\theta > 0$. The MLE is $\hat{\theta}_n = X_n^* := \max\{X_i : 1 \le i \le n\}$, the sample maximum. Verify that $\hat{\theta}_n$ is consistent, *i.e.*, that

$$\mathsf{P}_{\theta}\left[|\hat{\theta}_n - \theta| > \epsilon\right] \to 0$$

for any $\epsilon > 0$, by giving an explicit bound for the indicated probability in terms of n, ϵ , and θ .

4. Again let $\{X_i\} \stackrel{\text{iid}}{\sim} \mathsf{Un}(0,\theta)$ be uniformly distributed, and let θ have the improper scaleinvariant prior density function $\pi(\theta) = \theta^{-1} \mathbf{1}_{\{\theta > 0\}}$. Find the Bayesian posterior mean $\bar{\theta}_n := \mathsf{E}[\theta \mid X_1 \cdots X_n]$ and verify that it too is consistent.

Last edited: January 29, 2015

¹A note on "little oh" and "big oh" notation: The notation "f(x) = o(g(x)) at x_0 " or " $f(x) \in o(g(x))$ at x_0 ", pronounced "f(x) is little oh of g(x) at x_0 ", means that $\lim_{x\to x_0} |f(x)/g(x)| = 0$, *i.e.*, that f(x) is negligible compared to g(x) near x_0 . Often (as in problem 2) x_0 is zero or infinity and is implicit. The notation "f(x) = O(g(x)) at x_0 " or " $f(x) \in O(g(x))$ at x_0 ", pronounced "f(x) is big oh of g(x) at x_0 ", means that |f(x)/g(x)| is bounded in a neighborhood of x_0 .