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eIntrodu
tionIn Probability Theory, we begin with a known probability distribution (perhaps one with a famousname, like Binomial or Poisson, or perhaps just the CDF F (x) = P[X � x℄ in some 
onvenientform) and we try to make predi
tions about properties of one or many random variables fXjg withthat distribution.Statisti
s addresses the Inverse Problem| we begin with observations fXjg of a 
olle
tion ofrandom variables, and then we try to guess (properties of) their distribution, like the fun
tion F (x).Parametri
 & Nonparametri
 ModelsTwo Prin
ipal ParadigmsFisherianA symmetri
 90% interval estimate for a real-valued parameter � 2 � � R is a pair of statisti
s(i.e., fun
tions of the data) L(X) and R(X) with the properties that(8�)P�[� < L(X)℄ � 0:05 (8�)P�[� > R(X)℄ � 0:05from whi
h it follows that (8�)P� f� 2 [L(X); R(X)℄ g � 0:90where \P�" means we 
ompute the probability of di�erent possible values of X for the spe
i�edvalue of the parameter �. This is in some sense a separate statement for every possible � 2 �, andthe probability bounds must hold for all of them. The parameter � is a �xed real number in ea
hstatement, while X and hen
e L(X) and R(X) are random variables.BayesianIn the Bayesian perspe
tive (Bayes, 1763; Lapla
e, 1774) both � and X are \random", with a jointdistribution that may have a density fun
tion of the form �(�) f(x j �). A symmetri
 90% intervalfor � is now a pair of statisti
s L(X), R(X) with the property thatP[� < L(X) j X℄ � 0:05 P[� > R(X) j X℄ � 0:051
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e P[� 2 [L(X); R(X)℄ j X℄ � 0:90where, here, \P" represents the joint probability distribution for X and �.Comparing TheseThe di�eren
e is just what we treat as known (we \
ondition" on these) and what we treat asrandom (we \quantify" over these). The Fisherian treats the parameter � as known, and quanti�esover possible values of the observable data X; the Bayesian treats the observed data X as known,and quanti�es over the un
ertain parameter values.In this 
ourse we will present both views, and note where they agree and where they do not. Wewill sometimes en
ounter other related paradigms, like \Neyman-Pearson" and \�du
ial" (also dueto Fisher) and \likelihoodist", but none of these is as 
ommonly used and s
ienti�
ally importantin this 
entury as the Bayesian and Fisherian. The Fisherian and Neyman-Pearson approa
hes aresometimes lumped together and 
alled 
alled \frequentist" or \sampling based" or, a bit ironi
allyin view of their mid-twentieth 
entury introdu
tion (Fisher, 1922, 1925, 1935; Neyman and Pearson,1933), \
lassi
al".Fundamental Con
eptsA Statisti
al Model for an observation ve
tor X is a family of probability distributions on the\out
ome spa
e" X of all possible values that X might take.The out
ome spa
e X might be dis
rete (typi
ally �nite or 
ountable) or 
ontinuous; it may bes
alar or ve
tor or even in�nite-dimensional. The 
ases we will see most often are �nite sets X ,the integers (N = f1; 2; :::g or Z+ = f0; 1; :::g or Z = f:::;�1; 0; 1; :::g), the reals (R+ = [0;1) or
R = (�1;1)), or intervals (often [0; 1℄), or Cartesian powers or produ
ts of any of these.Re
all that a probability distribution on X is an assignment to subsets E � X of numbers P(E) 2[0; 1℄ su
h that the probability of the union of disjoint subsets is the sum of the individual proba-bilities. Typi
ally (always, in this 
lass) these arise from probability mass fun
tions (pmfs) p(�) fordis
rete X and probability density fun
tions (pdfs) f(�) for 
ontinuous X via the relationsP[E℄ =X fp(x) : x 2 Eg or P[E℄ = ZE f(x) dxThe CDF and the expe
tation of any fun
tion g(X) 
an be writtenF (x) =X fp(t) : t � xg F (x) = Z x�1 f(x) dxE[g(X)℄ =X fg(x) p(x) : x 2 Rg E[g(X)℄ = ZR g(x) f(x) dx= ZR g(x) dF (x) = ZR g(x) dF (x)The Riemann-Stieltjes notation for these expe
tations (shown in the last line) are identi
al fordis
rete, 
ontinuous, or indeed any other distribution (su
h as mixtures of dis
rete and 
ontinuous,Page 2Page 2Page 2
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h arise with 
ensored observations). One way to de�ne them for 
ontinuous g() isZR g(x) dF (x) := limn!1 n2Xi=�n2 g(i=n) �F �(i+ 1)=n�� F �i=n��provided that the limit exists. The measure-theoreti
 notation RR g(x)F (dx) is also used for thissame expression, simplifying and 
larifying expressions when F might depend on another variable(perhaps y) as well and extending to non-
ontinuous g(). To avoid writing everything twi
e, on
e for
ontinuous and on
e for dis
rete distributions, we will typi
ally use this Stieltjes notation wheneverit is unspe
i�ed whether a distribution with CDF F might be 
ontinuous or dis
rete.Statisti
al models 
ome in two varieties:� Parametri
, in whi
h the CDFs F (x j �) (or, equivalently, the pmfs p(x j �) or pdfs f(x j �))are indexed by a low-dimensional set � 2 � � R
k for some modest k 2 N; or� Nonparametri
, in whi
h they aren't. In this 
ase tools from fun
tional analysis, likeSobolev and Besov spa
es, are 
ommonly used.We'll spend about a week looking at some nonparametri
 ideas, but most of this 
ourse will fo
us onfamiliar parametri
 families, like the Normal, Gamma, Exponential, Geometri
, Negative Binomial,Weibull, et
., often with � � R or � � R

2 so the distribution is determined by just one or twonumbers. A list of 
ommon parametri
 distributions along with their notation, pdf or pmf, mean,varian
e, et
. is available at 
ourse PDF sheet (also available from the 
ourse syllabus page). Oftenthe 
omponents Xi of the observation ve
tor X will be modeled as independent and identi
allydistributed from one of these distributions.Typi
ally we will assume that X is a realization of a random ve
tor from a distribution with pdff(x j �) or pmf p(x j �) for some parti
ular parameter value � 2 � that is unknown to us.Point EstimatesOne possible obje
tive of inferen
e would be to determine whi
h value � 2 � gave rise to X 2 X .An estimator is some fun
tion T : X ! � intended to have a value T (X) that is equal to, orat least 
lose to, �. Often we 
onsider sequen
es fXig of iid random variables all with the samedistribution, i.e., the same pdf f(x j �), and 
orresponding sequen
es Tn : X n ! � of estimatorsin the hope that with more and more data we will have a better and better estimate in the sensethat Tn gets 
loser and 
loser to � as n in
reases. For example, if Xi iid� No(�; 1) are all independentand normally distributed with known varian
e �2 = 1 and un
ertain mean � 2 R, we know fromthe Law of Large Numbers that the sample mean �Xn = (X1+ � � �+Xn)=n 
onverges to �. So doesthe sample median �Xn and many other estimators we will 
ompare later.A \statisti
" is any fun
tion of the data, i.e., any fun
tion on the spa
e X ; thus an \estimator" isjust any �-valued statisti
. There are a variety of ways to quantify how 
lose the random variableT (X) is to �, typi
ally.� The bias of an estimator T (X) is its expe
ted error,bias(�) := E��T (X)� �� j ��;Page 3Page 3Page 3
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repan
y. If bias(�) is identi
ally zero, T is 
alled\unbiased".� Themse or Mean Squared Error of an estimator is the long-term average of its squared error,mse(�) := E�jT (X)� �j2:� The se or Standard Error of an estimator is the square root of its varian
e,se(�) := V�[T (X)℄1=2:� By elementary probability, mse(�) = bias(�)2 + se(�)2� Corollary: A family fTng of estimators is \mean square 
onsistent", i.e., has msen 
onvergingto zero, if and only if (1) It is asymptoti
ally unbiased, biasn(�) ! 0; and (2) Its standarderror (or, equivalently, its varian
e) shrinks to zero, sen(�)! 0.� Example: if Xj iid� Po(�) and Tn(X) = n�1PiXi, then E[Tn(X)℄ = � so Tn is unbiased. Thevarian
e V(Tn) = �=n 
onverges to zero, so fTng is MS 
onsistent.� Example: if Xj iid� Po(�) and Sn(X) = (� + n)�1�� +PiXi�, then E[Sn(X)℄ = �+n��+n so Snis asymptoti
ally unbiased. The varian
e V(Sn) = n�(n+�)2 
onverges to zero, so fSng is MS
onsistent.Interval EstimatesOne way to quantify how 
lose an estimator is in a one-dimensional problem (where � � R) isto give a plus-or-minus range with a probability bound| or, equivalently, to give two statisti
s,a lower one L(X) and an upper one U(X), with the intention that typi
ally L(X) < � < U(X).Commonly a probability bound 
 is spe
i�ed (95% is 
ommon) and bounds L, U are found forwhi
h, in some sense, P[L(X) � � � U(X)℄ � 
:We have already seen that Frequentist and Bayesian approa
hes to inferen
e will both want aninequality of this sort, but the probabilities will have di�erent interpretations| in the Frequentistapproa
h the quantity � is �xed and the statement is about the random values of L(X) and R(X),while in the Bayesian approa
h the observed value of X is �xed and the statement is about therandom value of �. In either 
ase one seeks interval estimates [L(X); U(X)℄ with the two 
on
i
tinggoals that (1) P f� 2 [L(X); U(X)℄g is large and that the interval (2) [L(X); U(X)℄ is short.In problems with ve
tor values of � 2 � one 
an still o�er interval estimates for individual
omponents �j, or one 
an 
onstru
t set -valued statisti
s C : X ! 2� with the property thatP[� 2 C(X)℄ � 
. Again one seeks sets with P[� 2 C(X)℄ large yet C(X) small.Frequently a family of estimators Tn(X) is both asymptoti
ally unbiased and asymptoti
ally normalwith varian
e proportional to 1=n, i.e., pn[Tn(X) � �℄ has approximately a No(0; �2) normalPage 4Page 4Page 4
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onstant � > 0 or positive-de�nite matrix �. In that 
ase the 
on�den
e intervalL(X) = Tn(X)� �z
pn ; U(X) = Tn(X) + �z
pnwill be an approximate 100
% \
on�den
e interval" if �(z
) = (1 + 
)=2, in one dimension, orC(X) = f� : (� � Tn(X))0��1(� � Tn(X)) � �=ngwill be a 100
% 
on�den
e set (an ellipsoid) with � � R
k, if � is the 
'th quantile of the �2ddistribution with d degrees of freedom, i.e., the �(d=2; 1=2) distribution. We'll see more about thatin a few weeks.ExampleLet X � Ex(�) be a single observation from the exponential distribution with rate � > 0. How 
anwe �nd a one-sided 
on�den
e interval satisfying(8� > 0) P�� 2 [L(X);1)	 � 
for �xed 0 < 
 < 1? The mean and median of the Ex(�) distribution are 1=� and log(2)=�,respe
tively, so we should anti
ipate that L(X) may be a multiple of 1=X| if X is a distan
emeasured in 
entimeters 
m for example then � has units 
m�1; a swit
h to kilometers km wouldres
ale X by a fa
tor of 10�5 and hen
e res
ale � by 105, so L(X) should also be res
aled by105. Sometimes dimension arguments 
an help us guess the form fun
tions must have, and help usdis
over our own errors when the dimensions don't work out.We're looking for a statisti
 L(X) that satis�es P[L(X) � �℄ = 
. One approa
h would begin bynoting that, for any x > 0, P[X > x℄ = exp(��x)For example, if x = � log(
)=�, thenP�X > � log 
� � = exp���� log 
� � = 
; i.e.,P[� > � log(
)=X℄ = 
:SO, the interval [L(X);1) 
ontains � with probability exa
tly 
 for the statisti
 L(X) := � log(
)=X.For 
 = 0:90, for example, the one-sided interval is about �0:105X ;1�.A similar two-sided interval 
an be 
onstru
ted:P(� log(1+
2 )X � � � � log(1�
2 )X ) = 
For 
 = 0:90, for example, the two-sided interval is about �0:05X ; 3:0X �.
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h to inferen
e is to 
onsider whether or not some assertion about � istrue. This is equivalent to the question of whether or not � lies in some subset H0 � �, namely, theset H0 of all those � 2 � for whi
h the assertion is true. Su
h a subset is 
alled an \hypothesis",or \Null Hypothesis", and its 
omplement H1 = f� 2 � : � =2 H0g is 
alled the \alternate".The Frequentist and Bayesian approa
hes will have di�erent ways of quantifying how plausible H0is after observing X 2 X . The Bayesian approa
h is simply to report the probability P[� 2 H0 j X℄.In the Frequentist approa
h, where � isn't treated as random, this probability 
an take only twovalues| one, if in fa
t � 2 H0, and zero if � =2 H0, but the investigator 
an't tell whi
h of these istrue. Instead, the Frequentist approa
h is to identify a region R � X of possible out
ome valuesthat are not parti
ularly likely for � 2 H0, 
alled the \reje
tion region", and to report whether ornot X lies in this region. The \size" of su
h a test,� = sup fP�[X 2 R℄ : � 2 H0g ;is a measure of the strength of eviden
e against H0 represented by an observation X 2 R: if � issmall, then an observation X 2 R is a near-mira
le if � 2 H0, while it may be rather expe
ted if� =2 H0. Sin
e mira
les are rare, it seems reasonable to \reje
t H0" if we observe X 2 R. We willsee this in mu
h more detail soon, and see some variations (like \P -values").RegressionSometimes we observe pairs of quantities (Yi;Xi) from some produ
t spa
e Y � X and hope todis
over how they are related. Commonly the \explanatory variables" fXig are treated as knownwith 
ertainty (often they are spe
i�ed by the investigator, and are not random at all) whilesome mystery surrounds the distributions of the \response variables" fYig, whi
h may depend onthe 
orresponding fXig. The simplest 
ase is to imagine that Yi � g(Xi) for some \regressionfun
tion" g(�) : X ! Y that is either entirely unknown or, more often, is thought to be fromsome low-dimensional family of fun
tions G = fg�(�) : � 2 Bg, like linear fun
tions g�(X) = X 0�.Commonly the approximation errors ei := �Yi � g(Xi)� are taken to be iid with mean zero fromsome small parametri
 family, usually No(0; �2). More generally one may modelYi ind� f�y j g�(Xi)�for some family of pdfs or pmfs f(y j �) and some family of regression fun
tions g� : C ! �indexed by an un
ertain \regression ve
tor" � 2 B. For example, the Yi might be integer 
ountswith Poisson distributions whose means g�(Xi) = exp(X 0i�) have a log-linear dependen
e on theexplanatory variables. In the most 
ommon example the Yi ind� No(X 0i�; �2) are normal with meang�(Xi) = exp(X 0i�) and 
onstant unknown varian
e �2.Now interest may 
enter on point or interval estimates for the parameter ve
tor �, or on predi
tionof future observations fY �j : j 2 Jg for spe
i�ed ve
tors at new \design" lo
ations fX�j : j 2 Jg,or on the sele
tion of those design points (the \design of experiments") in an e�ort to learn asmu
h as possible about � from as few new observations f(Y �j ;X�j ) : j 2 Jg as possible.Last edited: February 6, 2015Page 6Page 6Page 6
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