
STA 532: Theory of Statistial InfereneRobert L. WolpertDepartment of Statistial SieneDuke University, Durham, NC, USA1 Models & InfereneIntrodutionIn Probability Theory, we begin with a known probability distribution (perhaps one with a famousname, like Binomial or Poisson, or perhaps just the CDF F (x) = P[X � x℄ in some onvenientform) and we try to make preditions about properties of one or many random variables fXjg withthat distribution.Statistis addresses the Inverse Problem| we begin with observations fXjg of a olletion ofrandom variables, and then we try to guess (properties of) their distribution, like the funtion F (x).Parametri & Nonparametri ModelsTwo Prinipal ParadigmsFisherianA symmetri 90% interval estimate for a real-valued parameter � 2 � � R is a pair of statistis(i.e., funtions of the data) L(X) and R(X) with the properties that(8�)P�[� < L(X)℄ � 0:05 (8�)P�[� > R(X)℄ � 0:05from whih it follows that (8�)P� f� 2 [L(X); R(X)℄ g � 0:90where \P�" means we ompute the probability of di�erent possible values of X for the spei�edvalue of the parameter �. This is in some sense a separate statement for every possible � 2 �, andthe probability bounds must hold for all of them. The parameter � is a �xed real number in eahstatement, while X and hene L(X) and R(X) are random variables.BayesianIn the Bayesian perspetive (Bayes, 1763; Laplae, 1774) both � and X are \random", with a jointdistribution that may have a density funtion of the form �(�) f(x j �). A symmetri 90% intervalfor � is now a pair of statistis L(X), R(X) with the property thatP[� < L(X) j X℄ � 0:05 P[� > R(X) j X℄ � 0:051



STA 532 Week 1 R L WolpertSTA 532 Week 1 R L WolpertSTA 532 Week 1 R L Wolpertand hene P[� 2 [L(X); R(X)℄ j X℄ � 0:90where, here, \P" represents the joint probability distribution for X and �.Comparing TheseThe di�erene is just what we treat as known (we \ondition" on these) and what we treat asrandom (we \quantify" over these). The Fisherian treats the parameter � as known, and quanti�esover possible values of the observable data X; the Bayesian treats the observed data X as known,and quanti�es over the unertain parameter values.In this ourse we will present both views, and note where they agree and where they do not. Wewill sometimes enounter other related paradigms, like \Neyman-Pearson" and \�duial" (also dueto Fisher) and \likelihoodist", but none of these is as ommonly used and sienti�ally importantin this entury as the Bayesian and Fisherian. The Fisherian and Neyman-Pearson approahes aresometimes lumped together and alled alled \frequentist" or \sampling based" or, a bit ironiallyin view of their mid-twentieth entury introdution (Fisher, 1922, 1925, 1935; Neyman and Pearson,1933), \lassial".Fundamental ConeptsA Statistial Model for an observation vetor X is a family of probability distributions on the\outome spae" X of all possible values that X might take.The outome spae X might be disrete (typially �nite or ountable) or ontinuous; it may besalar or vetor or even in�nite-dimensional. The ases we will see most often are �nite sets X ,the integers (N = f1; 2; :::g or Z+ = f0; 1; :::g or Z = f:::;�1; 0; 1; :::g), the reals (R+ = [0;1) or
R = (�1;1)), or intervals (often [0; 1℄), or Cartesian powers or produts of any of these.Reall that a probability distribution on X is an assignment to subsets E � X of numbers P(E) 2[0; 1℄ suh that the probability of the union of disjoint subsets is the sum of the individual proba-bilities. Typially (always, in this lass) these arise from probability mass funtions (pmfs) p(�) fordisrete X and probability density funtions (pdfs) f(�) for ontinuous X via the relationsP[E℄ =X fp(x) : x 2 Eg or P[E℄ = ZE f(x) dxThe CDF and the expetation of any funtion g(X) an be writtenF (x) =X fp(t) : t � xg F (x) = Z x�1 f(x) dxE[g(X)℄ =X fg(x) p(x) : x 2 Rg E[g(X)℄ = ZR g(x) f(x) dx= ZR g(x) dF (x) = ZR g(x) dF (x)The Riemann-Stieltjes notation for these expetations (shown in the last line) are idential fordisrete, ontinuous, or indeed any other distribution (suh as mixtures of disrete and ontinuous,Page 2Page 2Page 2



STA 532 Week 1 R L WolpertSTA 532 Week 1 R L WolpertSTA 532 Week 1 R L Wolpertwhih arise with ensored observations). One way to de�ne them for ontinuous g() isZR g(x) dF (x) := limn!1 n2Xi=�n2 g(i=n) �F �(i+ 1)=n�� F �i=n��provided that the limit exists. The measure-theoreti notation RR g(x)F (dx) is also used for thissame expression, simplifying and larifying expressions when F might depend on another variable(perhaps y) as well and extending to non-ontinuous g(). To avoid writing everything twie, one forontinuous and one for disrete distributions, we will typially use this Stieltjes notation wheneverit is unspei�ed whether a distribution with CDF F might be ontinuous or disrete.Statistial models ome in two varieties:� Parametri, in whih the CDFs F (x j �) (or, equivalently, the pmfs p(x j �) or pdfs f(x j �))are indexed by a low-dimensional set � 2 � � R
k for some modest k 2 N; or� Nonparametri, in whih they aren't. In this ase tools from funtional analysis, likeSobolev and Besov spaes, are ommonly used.We'll spend about a week looking at some nonparametri ideas, but most of this ourse will fous onfamiliar parametri families, like the Normal, Gamma, Exponential, Geometri, Negative Binomial,Weibull, et., often with � � R or � � R

2 so the distribution is determined by just one or twonumbers. A list of ommon parametri distributions along with their notation, pdf or pmf, mean,variane, et. is available at ourse PDF sheet (also available from the ourse syllabus page). Oftenthe omponents Xi of the observation vetor X will be modeled as independent and identiallydistributed from one of these distributions.Typially we will assume that X is a realization of a random vetor from a distribution with pdff(x j �) or pmf p(x j �) for some partiular parameter value � 2 � that is unknown to us.Point EstimatesOne possible objetive of inferene would be to determine whih value � 2 � gave rise to X 2 X .An estimator is some funtion T : X ! � intended to have a value T (X) that is equal to, orat least lose to, �. Often we onsider sequenes fXig of iid random variables all with the samedistribution, i.e., the same pdf f(x j �), and orresponding sequenes Tn : X n ! � of estimatorsin the hope that with more and more data we will have a better and better estimate in the sensethat Tn gets loser and loser to � as n inreases. For example, if Xi iid� No(�; 1) are all independentand normally distributed with known variane �2 = 1 and unertain mean � 2 R, we know fromthe Law of Large Numbers that the sample mean �Xn = (X1+ � � �+Xn)=n onverges to �. So doesthe sample median �Xn and many other estimators we will ompare later.A \statisti" is any funtion of the data, i.e., any funtion on the spae X ; thus an \estimator" isjust any �-valued statisti. There are a variety of ways to quantify how lose the random variableT (X) is to �, typially.� The bias of an estimator T (X) is its expeted error,bias(�) := E��T (X)� �� j ��;Page 3Page 3Page 3

http://www.stat.duke.edu/courses/Spring15/sta532/exams/pdf.pdf


STA 532 Week 1 R L WolpertSTA 532 Week 1 R L WolpertSTA 532 Week 1 R L Wolpertor (by the LLN) the long-term average disrepany. If bias(�) is identially zero, T is alled\unbiased".� Themse or Mean Squared Error of an estimator is the long-term average of its squared error,mse(�) := E�jT (X)� �j2:� The se or Standard Error of an estimator is the square root of its variane,se(�) := V�[T (X)℄1=2:� By elementary probability, mse(�) = bias(�)2 + se(�)2� Corollary: A family fTng of estimators is \mean square onsistent", i.e., has msen onvergingto zero, if and only if (1) It is asymptotially unbiased, biasn(�) ! 0; and (2) Its standarderror (or, equivalently, its variane) shrinks to zero, sen(�)! 0.� Example: if Xj iid� Po(�) and Tn(X) = n�1PiXi, then E[Tn(X)℄ = � so Tn is unbiased. Thevariane V(Tn) = �=n onverges to zero, so fTng is MS onsistent.� Example: if Xj iid� Po(�) and Sn(X) = (� + n)�1�� +PiXi�, then E[Sn(X)℄ = �+n��+n so Snis asymptotially unbiased. The variane V(Sn) = n�(n+�)2 onverges to zero, so fSng is MSonsistent.Interval EstimatesOne way to quantify how lose an estimator is in a one-dimensional problem (where � � R) isto give a plus-or-minus range with a probability bound| or, equivalently, to give two statistis,a lower one L(X) and an upper one U(X), with the intention that typially L(X) < � < U(X).Commonly a probability bound  is spei�ed (95% is ommon) and bounds L, U are found forwhih, in some sense, P[L(X) � � � U(X)℄ � :We have already seen that Frequentist and Bayesian approahes to inferene will both want aninequality of this sort, but the probabilities will have di�erent interpretations| in the Frequentistapproah the quantity � is �xed and the statement is about the random values of L(X) and R(X),while in the Bayesian approah the observed value of X is �xed and the statement is about therandom value of �. In either ase one seeks interval estimates [L(X); U(X)℄ with the two onitinggoals that (1) P f� 2 [L(X); U(X)℄g is large and that the interval (2) [L(X); U(X)℄ is short.In problems with vetor values of � 2 � one an still o�er interval estimates for individualomponents �j, or one an onstrut set -valued statistis C : X ! 2� with the property thatP[� 2 C(X)℄ � . Again one seeks sets with P[� 2 C(X)℄ large yet C(X) small.Frequently a family of estimators Tn(X) is both asymptotially unbiased and asymptotially normalwith variane proportional to 1=n, i.e., pn[Tn(X) � �℄ has approximately a No(0; �2) normalPage 4Page 4Page 4



STA 532 Week 1 R L WolpertSTA 532 Week 1 R L WolpertSTA 532 Week 1 R L Wolpertdistribution in one dimension, or multivariate normal No(0;�) in d > 1 dimensions, for someonstant � > 0 or positive-de�nite matrix �. In that ase the on�dene intervalL(X) = Tn(X)� �zpn ; U(X) = Tn(X) + �zpnwill be an approximate 100% \on�dene interval" if �(z) = (1 + )=2, in one dimension, orC(X) = f� : (� � Tn(X))0��1(� � Tn(X)) � �=ngwill be a 100% on�dene set (an ellipsoid) with � � R
k, if � is the 'th quantile of the �2ddistribution with d degrees of freedom, i.e., the �(d=2; 1=2) distribution. We'll see more about thatin a few weeks.ExampleLet X � Ex(�) be a single observation from the exponential distribution with rate � > 0. How anwe �nd a one-sided on�dene interval satisfying(8� > 0) P�� 2 [L(X);1)	 � for �xed 0 <  < 1? The mean and median of the Ex(�) distribution are 1=� and log(2)=�,respetively, so we should antiipate that L(X) may be a multiple of 1=X| if X is a distanemeasured in entimeters m for example then � has units m�1; a swith to kilometers km wouldresale X by a fator of 10�5 and hene resale � by 105, so L(X) should also be resaled by105. Sometimes dimension arguments an help us guess the form funtions must have, and help usdisover our own errors when the dimensions don't work out.We're looking for a statisti L(X) that satis�es P[L(X) � �℄ = . One approah would begin bynoting that, for any x > 0, P[X > x℄ = exp(��x)For example, if x = � log()=�, thenP�X > � log � � = exp���� log � � = ; i.e.,P[� > � log()=X℄ = :SO, the interval [L(X);1) ontains � with probability exatly  for the statisti L(X) := � log()=X.For  = 0:90, for example, the one-sided interval is about �0:105X ;1�.A similar two-sided interval an be onstruted:P(� log(1+2 )X � � � � log(1�2 )X ) = For  = 0:90, for example, the two-sided interval is about �0:05X ; 3:0X �.
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STA 532 Week 1 R L WolpertSTA 532 Week 1 R L WolpertSTA 532 Week 1 R L WolpertHypothesis TestsAnother traditional approah to inferene is to onsider whether or not some assertion about � istrue. This is equivalent to the question of whether or not � lies in some subset H0 � �, namely, theset H0 of all those � 2 � for whih the assertion is true. Suh a subset is alled an \hypothesis",or \Null Hypothesis", and its omplement H1 = f� 2 � : � =2 H0g is alled the \alternate".The Frequentist and Bayesian approahes will have di�erent ways of quantifying how plausible H0is after observing X 2 X . The Bayesian approah is simply to report the probability P[� 2 H0 j X℄.In the Frequentist approah, where � isn't treated as random, this probability an take only twovalues| one, if in fat � 2 H0, and zero if � =2 H0, but the investigator an't tell whih of these istrue. Instead, the Frequentist approah is to identify a region R � X of possible outome valuesthat are not partiularly likely for � 2 H0, alled the \rejetion region", and to report whether ornot X lies in this region. The \size" of suh a test,� = sup fP�[X 2 R℄ : � 2 H0g ;is a measure of the strength of evidene against H0 represented by an observation X 2 R: if � issmall, then an observation X 2 R is a near-mirale if � 2 H0, while it may be rather expeted if� =2 H0. Sine mirales are rare, it seems reasonable to \rejet H0" if we observe X 2 R. We willsee this in muh more detail soon, and see some variations (like \P -values").RegressionSometimes we observe pairs of quantities (Yi;Xi) from some produt spae Y � X and hope todisover how they are related. Commonly the \explanatory variables" fXig are treated as knownwith ertainty (often they are spei�ed by the investigator, and are not random at all) whilesome mystery surrounds the distributions of the \response variables" fYig, whih may depend onthe orresponding fXig. The simplest ase is to imagine that Yi � g(Xi) for some \regressionfuntion" g(�) : X ! Y that is either entirely unknown or, more often, is thought to be fromsome low-dimensional family of funtions G = fg�(�) : � 2 Bg, like linear funtions g�(X) = X 0�.Commonly the approximation errors ei := �Yi � g(Xi)� are taken to be iid with mean zero fromsome small parametri family, usually No(0; �2). More generally one may modelYi ind� f�y j g�(Xi)�for some family of pdfs or pmfs f(y j �) and some family of regression funtions g� : C ! �indexed by an unertain \regression vetor" � 2 B. For example, the Yi might be integer ountswith Poisson distributions whose means g�(Xi) = exp(X 0i�) have a log-linear dependene on theexplanatory variables. In the most ommon example the Yi ind� No(X 0i�; �2) are normal with meang�(Xi) = exp(X 0i�) and onstant unknown variane �2.Now interest may enter on point or interval estimates for the parameter vetor �, or on preditionof future observations fY �j : j 2 Jg for spei�ed vetors at new \design" loations fX�j : j 2 Jg,or on the seletion of those design points (the \design of experiments") in an e�ort to learn asmuh as possible about � from as few new observations f(Y �j ;X�j ) : j 2 Jg as possible.Last edited: February 6, 2015Page 6Page 6Page 6
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