Sta 532: Homework #6

Several of these problems involve the following random sample from some probability distribution:

$$\{X_i\} = \{1, 16, 13, 9, 30, 6, 2, 21, 1\}$$
(*)

- 1. Let $\{X_i\} \stackrel{\text{iid}}{\sim} \mathsf{Un}(0,\theta)$ with $\theta > 0$ unknown. Based on the sample (\star) find a central 90% Confidence Interval for θ . Suggestion: First, find a pivotal quantity T(x) based on a sufficient statistic.
- 2. Let $\{X_i\} \stackrel{\text{iid}}{\sim} \mathsf{Un}(0,\theta)$ with $\theta > 0$ unknown. Using an improper uniform prior density $\pi(\theta) = \mathbf{1}_{\{\theta > 0\}}$, find a central 90% Credible Interval for θ for sample (\star) .
- 3. Let $\{X_i\} \stackrel{\text{iid}}{\sim} \mathsf{Po}(\theta)$ be Poisson variables with mean $\theta > 0$. Find the Jeffreys' Rule prior density $\pi_J(\theta)$ for θ and, based on the sample (\star) , find a central 90% credible interval for θ .
- 4. For normal data $\{Y_i\} \stackrel{\text{iid}}{\sim} \mathsf{No}(\mu, 1)$ with unit variance, how large a sample size *n* is required for a 99% Confidence Interval $[L(\mathbf{y}), R(\mathbf{y})]$ for μ to have length $|R(\mathbf{y}) L(\mathbf{y})|$ less than 0.01?
- 5. Let $\{X_i\} \stackrel{\text{iid}}{\sim} \mathsf{No}(\mu, \sigma^2)$ be normally-distributed with uncertain mean and variance. Based on the sample (*) find a central 90% Confidence Interval for σ .
- 6. Find the Jeffreys' prior $\pi_J(\theta)$ for the Geometric distribution with pmf

$$\mathsf{P}_{\theta}[Y=y] = \theta(1-\theta)^y, \ y \in \mathbb{Z}_+ = \{0, 1, 2, ...\}$$

for some $\theta \in \Theta = (0, 1)$, by giving its name and the value(s) of any parameter(s). Also find the posterior distribution $\pi_J(\theta \mid \mathbf{y})$ for a sample $\mathbf{y} = \{Y_1, \dots, Y_n\}$, the posterior mean $\mathsf{E}_J[\theta \mid \mathbf{y}]$, and the MLE $\hat{\theta}(\mathbf{y})$.

7. In fact the data in (\star) were generated from a geometric distribution. Find an objective Bayes 90% Credible Interval for θ from these data under the model $\{X_i\} \stackrel{\text{iid}}{\sim} \mathsf{Ge}(\theta)$. 8. Find a central 90% Confidence Interval for θ based on the sample (\star) , for the model $\{X_i\} \stackrel{\text{iid}}{\sim} \mathsf{Ge}(\theta)$.

Suggestion: You will need to know (or figure out) the probability distribution for the natural sufficient statistic $T(\mathbf{x})$ for a sample of size n from $Ge(\theta)$, and recall from course notes "ci.pdf" that for integervalued distributions with CDF $F_{\theta}(x) = \mathsf{P}_{\theta}[X \leq x]$, a central $100\gamma\%$ confidence interval [L(X), R(X)] can be found by evaluating

• If $F_{\theta}(x)$ is monotone **decreasing** in θ for each fixed x,

$$L(x) := \sup \left\{ \theta : F_{\theta}(x-1) \ge \frac{1+\gamma}{2} \right\} \quad R(x) := \inf \left\{ \theta : F_{\theta}(x) \le \frac{1-\gamma}{2} \right\}$$

• If $F_{\theta}(x)$ is monotone **increasing** in θ for each fixed x,

$$L(x) := \inf \left\{ \theta : F_{\theta}(x) \le \frac{1-\gamma}{2} \right\} \quad R(x) := \sup \left\{ \theta : F_{\theta}(x-1) \ge \frac{1+\gamma}{2} \right\}$$

any of which can be found using R.

Last edited: February 29, 2016