Sta 532: Homework #8

- 1. For specified $p_0 \in (0,1)$, $n \in \mathbb{N}$, and $\alpha \in (0,1)$, describe in detail the generalized likelihood ratio test (GLRT) of $H_0: p = p_0$ against the two-sided alternative $H_1: p \neq p_0$ for a single observation of $X \stackrel{\text{iid}}{\sim} \text{Bi}(n,p)$, of size α . Precisely how would you find the rejection region \mathcal{R} (perhaps using R)?
- 2. For specified $p_0 \in (0,1)$, $n \in \mathbb{N}$, and $\alpha \in (0,1)$, describe in detail the GLRT of the one-sided hypothesis $H_0 : p \ge p_0$ against $H_1 : p < p_0$ for a single observation of $X \stackrel{\text{iid}}{\sim} \mathsf{Bi}(n,p)$, of size α . Precisely what is the rejection region \mathcal{R} ?
- 3. For $\sigma_0^2 > 0$ and $n \in \mathbb{N}$, describe in detail the GLRT of $H_0: \sigma^2 = \sigma_0^2$ against $H_1: \sigma^2 \neq \sigma_0^2$ for a sample of size n of $\{X_i\} \stackrel{\text{iid}}{\sim} \mathsf{No}(\mu, \sigma^2)$, with unknown μ , of size α . Precisely what is the rejection region \mathcal{R} ?
- 4. It is generally believed that long-life light bulbs last no more than twice as long as standard light bulbs. In an experiment, the lifetimes X of a standard bulb and Y of a long-life bulb were recorded as X = 1, Y = 5. Modeling the lifetimes as exponential random variables of rates λ and θ (hence means $1/\lambda$ and $1/\theta$), respectively, construct (i) a 90% confidence interval for the ratio θ/λ , and (ii) a test of size $\alpha = 0.05$ of the hypothesis $\lambda < 2\theta$. Suggestion: Find a pivotal quantity related to θ/λ .
- 5. A local councilor suspects that traffic conditions have become more hazardous in Ambridge than in Borchester, so she records the numbers A and B of accidents in each place in the course of a month. Assuming that A and B are independent Poisson random variables with rates λ and θ , it is desired to construct a test of size $\alpha \approx 1/16$ of $H_0: \lambda \geq \theta$ against $H_1: \lambda < \theta$. Show that:
 - (a) A + B is Poisson with rate $(\lambda + \theta)$;
 - (b) Conditional on the value n of A + B, that $A \sim \mathsf{Bi}(n,p)$ where $p = \frac{\lambda}{\lambda + \theta}$.

One way to test H_0 is to *condition* on the total number n = (A+B) of accidents (which itself offers no evidence about H_0) and find a rejection region \mathcal{R}_n with the property that $P[A \in \mathcal{R}_n : A + B = n] \leq \alpha$; the unconditional bound $P[A \in \mathcal{R}_{A+B}] \leq \alpha$ will then follow. Carry out the test for (A = 5, B = 2) and for (A = 3, B = 0). You may find your solution to Problem 2 useful.

6. Find the posterior probability of H_0 in Problem 5 if λ and θ have independent exponential prior distributions with mean one, for the same two observations as before.

Last edited: March 30, 2016