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1 Empirical Bayes

The Bayesian approach to making inference about the parameter θ of a random sample {Xi} iid∼
fθ(x) from a parametric family P = {fθ(x) : θ ∈ Θ} begins by selecting a prior distribution π(θ).
One “objective” approach is to let the data help with this prior selection. First, an example.

Normal Example

Let {Xi} iid∼ No(µi, 1) and let µi
iid∼ No(θ, τ2) for some indeterminant prior mean θ and variance τ2.

The marginal distribution for the {Xi} is

f(x) =

∫

Θ

fµ(x)π(µ) dµ,

easily shown to be Xi ∼ No(θ, τ2 +1). For large enough sample size p we should expect that θ and
τ2 would be close to their MLEs θ̂ = X̄p and τ̂2 =

[

1

n

∑

(Xi − X̄p)
2 − 1

]

+
(this used to be called

“type-two maximum likelihood”, but one seldom hears that phrase nowadays). Empirical Bayes

inference proceeds by doing ordinary Bayesian analysis with prior distribution π = No(θ̂, τ̂2), as if
this had been the choice all along.

Conditional on θ and τ2, the Bayes posterior distribution of ~µ is No(M,V ) with mean and variance

M = E[~µ | ~X, θ, τ2] =
τ2

1 + τ2
~X +

1

1 + τ2
θ V = V[~µ | ~X, θ, τ2] =

τ2

1 + τ2

for sample-size n = 1, so the squared-error Bayes risk of the posterior mean is

r = E

p
∑

i=1

(µi −Mi)
2 =

p
∑

i=1

Vi =
pτ2

1 + τ2

Marginally Xi ∼ No(θ, τ2+1) so (Xi− θ)/
√
τ2 + 1 are iid No(0, 1) and ‖X− θ‖2/(τ2+1) ∼ χ2

p and
‖X−X̄p‖2/(τ2+1) ∼ χ2

p−1. The expected inverse of any Y ∼ Ga(α, β) random variable is E[1/Y ] =

β/(α − 1) for α > 1, and in particular for χ2 variables we have E‖X − θ‖−2 = 1/[(p − 2)(1 + τ2)
and E‖X − X̄p‖−2 = 1/[(p − 3)(1 + τ2), so

E

[

1− p− 2

‖X − θ‖2
]

=
τ2

1 + τ2
= E

[

1− p− 3

‖X − X̄‖2
]
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Estimating τ2/(1 + τ2) by 1− (p− 2)/‖X − θ‖2 in the expression for M leads to the James-Stein
estimator

δJS(X) =

[

1− p− 2

‖X − θ‖2
]

~X +

[

p− 2

‖X − θ‖2
]

θ = ~X +
p− 2

‖X − θ‖2 (θ −
~X)

that shrinks towards θ in p > 2 dimensions (most authors follow Stein in shrinking towards θ = 0),
while estimating it by 1− (p− 3)/‖X − X̄‖2 leads to a related estimator

δJS−X̄(X) = ~X +
p− 3

‖X − X̄p‖2
(X̄p − ~X)

in dimensions four or more. One can show (and Young & Smith do) that the Bayes risk of δJS is

r(τ, δJS) = p− p− 2

τ2 + 1
= r(τ, δ⋆τ ) +

2

τ2 + 1
,

exceeding the risk of the Bayes estimator δ⋆τ for a known value of τ2 by an amount 2/(τ2 + 1) that
may be interpreted as the price for having to estimate τ2 from the data.

Binomial Example

Let Xi
ind∼ Bi(ni, pi) be independent Binomial random variables, the numbers of successes in known

numbers ni of trials with possibly different success probabilities {pi}, and assign conjugate Beta

prior probability distribution {pi} iid∼ Be(α, β). For specified values α, β of the hyperparameters,
the posterior distribution of pi given x = {Xi} would be pi | x ∼ Be(α⋆

i , β
⋆
i ) for α⋆

i = α + xi and
β⋆
i = β + ni − xi, with mean E[pi | x] = α⋆

i /(α
⋆
i + β⋆

i )— but what if we don’t wish to specify α, β?

The marginal distribution of each Xi is the “beta-binomial” distribution with pmf

mi(x) =

∫ 1

0

Γ(α+ β)

Γ(α)Γ(β)

(

ni

x

)

pα+x−1(1− p)β+n−x dp

=
Γ(α+ β)ni!Γ(α+ x)Γ(β + ni − x)

Γ(α)Γ(β)x!(ni − x)!Γ(α + β + ni)
(1)

with marginal mean E[Xi] = niα/β and marginal variance V[Xi] = niαβ/(α+β)(α+β+1)+n2
iα/β

2.
Using either Method of Moments with these means and variances, or maximizing

∑

logmi(xi) from
(1), we can find data-dependent estimates α̂, β̂. With these in hand the estimated binomial means
become

θ̄i =
α̂+ xi

α̂+ β̂ + ni

=

{

ni

α̂+ β̂ + ni

}

xi
ni

+

{

α̂+ β̂

α̂+ β̂ + ni

}

α̂

α̂+ β̂

shrunk from the MLE xi/ni towards an overall mean α̂/(α̂+ β̂).

Poisson Example

Let Xi
ind∼ Po(θi) be independent Poisson-distributed random variables, and assign independent

{θi} iid∼ Ga(α, β) prior distributions to the Poisson means. The marginal distributions for the {Xi}
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are negative binomial, with pmf

mi(x) =

∫

∞

0

θx

x!
e−θ × βαθα−1

Γ(α)
e−βθ dθ

=
Γ(α+ x)

Γ(α)x!

(

β

β + 1

)α( 1

β + 1

)x

, (2)

with mean E[Xi] = α/β and variance α(β + 1)/β2. By either using MOM with these moments or
maximizing

∑

logmi(x) from (2), we can find estimates α̂, β̂ for the hyper-parameters and, using
them, find EB estimates of the Poisson means

θ̄i =
α̂+ xi

β̂ + 1

that are shrunk from the MLE xi toward a common value α̂/β̂.

2 Hierarchical Bayes

An alternative to estimating the values of “hyper-parameters” like θ and τ2 above is to model

uncertainty about them and through a Bayesian prior distribution. To simplify the presentation
let’s introduce the precision parameter λ = 1/τ2. A conjugate hierarchical model for the data of
Section (1) would be

Xi | µi ∼ No(µi, 1)

µi | θ, λ ∼ No(θ, λ−1)

θ, λ ∼ λα−1βαe−βλ,

an improper prior for a priori independent θ ∼ Un(R) and λ ∼ Ga(α, β).

Notes still in-progress. Next steps: evaluate available conditional distributions, discuss MCMC
approach to learning about the {µi}s, contrast with the EB approach above. Another example:
Re-parametrize the NB of (2) by p = β/(β+1); fix α; and use p ∼ Be(a, b) hyper-prior distribution.
Discuss MCMC evaluation in hierarchical models. Perhaps discuss Morris correction and Robbins
Miracle. Mention PEB has lower ensemble risk; better frequentist risk than the MLE despite its
UMVUE properties. Make connection with Stein.

3 Bayesian Forecasting

Next steps: Make forecasts; illustrate with Pareto model for volcanic eruption durations.
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