Hierarchical & Empirical Bayesian Analysis

Robert L. Wolpert
Department of Statistical Science
Duke University, Durham, NC, USA

1 Empirical Bayes

The Bayesian approach to making inference about the parameter \(\theta \) of a random sample \(\{X_i\} \overset{iid}{\sim} f_\theta(x) \) from a parametric family \(\mathcal{P} = \{f_\theta(x) : \theta \in \Theta\} \) begins by selecting a prior distribution \(\pi(\theta) \).

One “objective” approach is to let the data help with this prior selection. First, an example.

Normal Example

Let \(\{X_i\} \overset{iid}{\sim} \text{No}(\mu_i, 1) \) and let \(\mu_i \overset{iid}{\sim} \text{No}(\theta, \tau^2) \) for some indeterminant prior mean \(\theta \) and variance \(\tau^2 \).

The marginal distribution for the \(\{X_i\} \) is

\[
f(x) = \int_{\Theta} f_\mu(x | \mu) \pi(\mu) d\mu,
\]
easily shown to be \(X_i \sim \text{No}(\theta, \tau^2 + 1) \). For large enough sample size \(p \) we should expect that \(\theta \) and \(\tau^2 \) would be close to their MLEs \(\hat{\theta} = \bar{X}_p \) and \(\hat{\tau}^2 = \left[\frac{1}{p} \sum (X_i - \bar{X}_p)^2 - 1 \right]_+ \) (this used to be called “type-two maximum likelihood”, but one seldom hears that phrase nowadays). Empirical Bayes inference proceeds by doing ordinary Bayesian analysis with prior distribution \(\pi = \text{No}(\hat{\theta}, \hat{\tau}^2) \), as if this had been the choice all along.

Conditional on \(\theta \) and \(\tau^2 \), the Bayes posterior distribution of \(\bar{\mu} \) is \(\text{No}(M, V) \) with mean and variance

\[
M = \mathbb{E}[\mu | \bar{X}, \theta, \tau^2] = \frac{\tau^2}{1 + \tau^2} \bar{X} + \frac{1}{1 + \tau^2} \theta \quad \quad V = \mathbb{V}[\bar{\mu} | \bar{X}, \theta, \tau^2] = \frac{\tau^2}{1 + \tau^2}
\]
for sample-size \(n = 1 \), so the squared-error Bayes risk of the posterior mean is

\[
r = \mathbb{E} \sum_{i=1}^{p} (\mu_i - M)^2 = \mathbb{E} \sum_{i=1}^{p} V_i = \frac{p\tau^2}{1 + \tau^2}
\]
Marginally \(X_i \sim \text{No}(\theta, \tau^2 + 1) \) so \((X_i - \theta)/\sqrt{\tau^2 + 1} \) are iid \(\text{No}(0, 1) \) and \(\|X - \theta\|^2/(\tau^2 + 1) \sim \chi^2_p \) and \(\|X - \bar{X}_p\|^2/(\tau^2 + 1) \sim \chi^2_{p-1} \). The expected inverse of any \(Y \sim \text{Ga}(\alpha, \beta) \) random variable is \(\mathbb{E}[1/Y] = \beta/(\alpha - 1) \) for \(\alpha > 1 \), and in particular for \(\chi^2 \) variables we have \(\mathbb{E}[\|X - \theta\|^2] = 1/((p - 2)(1 + \tau^2)) \) and \(\mathbb{E}[\|X - \bar{X}_p\|^2 = 1/((p - 3)(1 + \tau^2)) \), so

\[
\mathbb{E} \left[1 - \frac{p - 2}{\|X - \theta\|^2} \right] = \frac{\tau^2}{1 + \tau^2} = \mathbb{E} \left[1 - \frac{p - 3}{\|X - \bar{X}\|^2} \right]
\]
Estimating \(\tau^2/(1 + \tau^2) \) by \(1 - (p - 2)/\|X - \theta\|^2 \) in the expression for \(M \) leads to the James-Stein estimator

\[
\delta_{JS}(X) = \left[1 - \frac{p - 2}{\|X - \theta\|^2} \right] \bar{X} + \left[\frac{p - 2}{\|X - \theta\|^2} \right] \theta = \bar{X} + \frac{p - 2}{\|X - \theta\|^2}(\theta - \bar{X})
\]

that shrinks towards \(\theta \) in \(p > 2 \) dimensions (most authors follow Stein in shrinking towards \(\theta = 0 \)), while estimating it by \(1 - (p - 3)/\|X - \bar{X}\|^2 \) leads to a related estimator

\[
\delta_{JS-\bar{X}}(X) = \bar{X} + \frac{p - 3}{\|X - \bar{X}\|^2}(\bar{X}_p - \bar{X})
\]

in dimensions four or more. One can show (and Young & Smith do) that the Bayes risk of \(\delta_{JS} \) is exceeding the risk of the Bayes estimator \(\delta^*_p \) for a known value of \(\tau^2 \) by an amount \(2/(\tau^2 + 1) \) that may be interpreted as the price for having to estimate \(\tau^2 \) from the data.

Binomial Example

Let \(X_i \overset{iid}{\sim} \text{Bi}(n_i, p_i) \) be independent Binomial random variables, the numbers of successes in known numbers \(n_i \) of trials with possibly different success probabilities \(\{p_i\} \), and assign conjugate Beta prior probability distribution \(\{p_i\} \overset{iid}{\sim} \text{Be}(\alpha, \beta) \). For specified values \(\alpha, \beta \) of the hyperparameters, the posterior distribution of \(p_i \) given \(x = \{X_i\} \) would be \(p_i \mid x \sim \text{Be}(\alpha^*_i, \beta^*_i) \) for \(\alpha^*_i = \alpha + x_i \) and \(\beta^*_i = \beta + n_i - x_i \), with mean \(E[p_i \mid x] = \alpha^*_i / (\alpha^*_i + \beta^*_i) \)— but what if we don’t wish to specify \(\alpha, \beta \)?

The marginal distribution of each \(X_i \) is the “beta-binomial” distribution with pmf

\[
m_i(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \left(\frac{n_i}{x} \right)^{\alpha + x - 1} \left(1 - \frac{x}{n_i} \right)^{\beta + n_i - x} \frac{dp}{p}
\]

\[
= \frac{\Gamma(\alpha + \beta)n_i\Gamma(\alpha + x)\Gamma(\beta + n_i - x)}{\Gamma(\alpha)\Gamma(\beta)\Gamma(n_i - x)\Gamma(\alpha + \beta + n_i)}
\]

(1)

with marginal mean \(E[X_i] = n_i\alpha/\beta \) and marginal variance \(V[X_i] = n_i\alpha\beta / (\alpha + \beta)(\alpha + \beta + 1) + n_i^2\alpha/\beta^2 \).

Using either Method of Moments with these means and variances, or maximizing \(\sum \log m_i(x_i) \) from (1), we can find data-dependent estimates \(\hat{\alpha}, \hat{\beta} \). With these in hand the estimated binomial means become

\[
\bar{\theta}_i = \frac{\hat{\alpha} + x_i}{\hat{\alpha} + \hat{\beta} + n_i} = \frac{\frac{n_i}{\hat{\alpha} + \hat{\beta} + n_i}x_i + \left\{ \frac{\hat{\alpha} + \hat{\beta}}{\hat{\alpha} + \hat{\beta} + n_i} \right\} \frac{\hat{\alpha}}{\hat{\alpha} + \hat{\beta}}}{\frac{n_i}{\hat{\alpha} + \hat{\beta} + n_i} + \left\{ \frac{\hat{\alpha} + \hat{\beta}}{\hat{\alpha} + \hat{\beta} + n_i} \right\} \frac{1}{\hat{\alpha} + \hat{\beta}}}
\]

shrunk from the MLE \(x_i/n_i \) towards an overall mean \(\hat{\alpha}/(\hat{\alpha} + \hat{\beta}) \).

Poisson Example

Let \(X_i \overset{iid}{\sim} \text{Po}(\theta_i) \) be independent Poisson-distributed random variables, and assign independent \(\{\theta_i\} \overset{iid}{\sim} \text{Ga}(\alpha, \beta) \) prior distributions to the Poisson means. The marginal distributions for the \(\{X_i\} \)
are negative binomial, with pmf

\[m_i(x) = \int_0^\infty \frac{\theta^x}{x!} e^{-\theta} \times \frac{\beta^{\alpha-1} \theta^{\alpha-1}}{\Gamma(\alpha)} e^{-\beta \theta} d\theta \]

\[= \frac{\Gamma(\alpha + x)}{\Gamma(\alpha) x!} \left(\frac{\beta}{\beta + 1} \right)^\alpha \left(\frac{1}{\beta + 1} \right)^x, \tag{2} \]

with mean \(\mathbb{E}[X_i] = \alpha/\beta \) and variance \(\alpha(\beta + 1)/\beta^2 \). By either using MOM with these moments or maximizing \(\sum \log m_i(x) \) from (2), we can find estimates \(\hat{\alpha}, \hat{\beta} \) for the hyper-parameters and, using them, find EB estimates of the Poisson means

\[\bar{\bar{\theta}}_i = \frac{\hat{\alpha} + x_i}{\beta + 1} \]

that are shrunk from the MLE \(x_i \) toward a common value \(\hat{\alpha}/\hat{\beta} \).

2 Hierarchical Bayes

An alternative to estimating the values of “hyper-parameters” like \(\theta \) and \(\tau^2 \) above is to model uncertainty about them and through a Bayesian prior distribution. To simplify the presentation let’s introduce the precision parameter \(\lambda = 1/\tau^2 \). A conjugate hierarchical model for the data of Section (1) would be

\[X_i \mid \mu_i \sim \text{No}(\mu_i, 1) \]

\[\mu_i \mid \theta, \lambda \sim \text{No}(\theta, \lambda^{-1}) \]

\[\theta, \lambda \sim \text{Ga}(\alpha, \beta) \]

an improper prior for \(a \) priori independent \(\theta \sim \text{Un}(\mathbb{R}) \) and \(\lambda \sim \text{Ga}(\alpha, \beta) \).

Notes still in-progress. Next steps: evaluate available conditional distributions, discuss MCMC approach to learning about the \(\{\mu_i\} \)s, contrast with the EB approach above. Another example: Re-parametrize the NB of (2) by \(p = \beta/(\beta + 1) \); fix \(\alpha \); and use \(p \sim \text{Be}(a, b) \) hyper-prior distribution. Discuss MCMC evaluation in hierarchical models. Perhaps discuss Morris correction and Robbins Miracle. Mention PEB has lower ensemble risk; better frequentist risk than the MLE despite its UMVUE properties. Make connection with Stein.

3 Bayesian Forecasting

Next steps: Make forecasts; illustrate with Pareto model for volcanic eruption durations.

Last edited: October 20, 2017