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1 Empirical Bayes

The Bayesian approach to making inference about the parameter 6 of a random sample {X;} id
fo(z) from a parametric family P = {fp(z) : 0 € ©} begins by selecting a prior distribution 7 ().
One “objective” approach is to let the data help with this prior selection. First, an example.

Normal Example

Let {X;} Y No(u;, 1) and let p; Y No(6,72) for some indeterminant prior mean § and variance 72.

The marginal distribution for the {X;} is
Fa) = [ fule) ) d,

easily shown to be X; ~ No(f,72 +1). For large enough sample size p we should expect that  and
72 would be close to their MLEs § = X, and 72 = [I3(X — X)) — 1}+ (this used to be called
“type-two maximum likelihood”, but one seldom hears that phrase nowadays). Empirical Bayes
inference proceeds by doing ordinary Bayesian analysis with prior distribution © = No(é, 72), as if
this had been the choice all along.

Conditional on § and 72, the Bayes posterior distribution of ji is No(M, V') with mean and variance
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for sample-size n = 1, so the squared-error Bayes risk of the posterior mean is
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Marginally X; ~ No(6,7%+41) so (X; —0)/v72 + 1 are iid No(0,1) and || X —6]|?/(72 +1) ~ x3 and
X = Xp|12/ (72 +1) ~ X;%—l- The expected inverse of any Y ~ Ga(a, §) random variable is E[1/Y] =
B/(a — 1) for @ > 1, and in particular for x? variables we have E||X — 6|72 = 1/[(p — 2)(1 + 72)
and E[| X — X, |72 =1/[(p — 3)(1 + 72), so
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Estimating 72/(1 4+ 72) by 1 — (p — 2)/||X — 0||? in the expression for M leads to the James-Stein
estimator

p—2 - p—2 = p—2 -
X)=[1-L2=2 1%y | 272 lg_%4+ L= ph_%
%35 (X) [ HX—GHQ] *[HX—@H?]H Tix e )

that shrinks towards € in p > 2 dimensions (most authors follow Stein in shrinking towards 6 = 0),
while estimating it by 1 — (p — 3)/||X — X||? leads to a related estimator
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in dimensions four or more. One can show (and Young & Smith do) that the Bayes risk of d;g is
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exceeding the risk of the Bayes estimator 6% for a known value of 72 by an amount 2/(72 + 1) that
may be interpreted as the price for having to estimate 72 from the data.

Binomial Example

Let X; ind Bi(n4, p;) be independent Binomial random variables, the numbers of successes in known
numbers n; of trials with possibly different success probabilities {p;}, and assign conjugate Beta
prior probability distribution {p;} id Be(a, B). For specified values «, 5 of the hyperparameters,
the posterior distribution of p; given x = {X;} would be p; | x ~ Be(a}, ;) for af = o + z; and
B = B+ n; — x;, with mean E[p; | x] = af /(o + BF)— but what if we don’t wish to specify a, 57

The marginal distribution of each X; is the “beta-binomial” distribution with pmf
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with marginal mean E[X;] = n;a/8 and marginal variance V[X;] = n;aB/(a+8)(a+B+1)+n?a/32.

Using either Method of Moments with these means and variances, or maximizing » - log m;(x;) from
(1), we can find data-dependent estimates &, S. With these in hand the estimated binomial means
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shrunk from the MLE x;/n; towards an overall mean &/(é& + f3).

Poisson Example

Let X; nd Po(0;) be independent Poisson-distributed random variables, and assign independent
{6;} i Ga(a, ) prior distributions to the Poisson means. The marginal distributions for the {X;}



are negative binomial, with pmf
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with mean E[X;] = a/f and variance a(3 + 1)/%. By either using MOM with these moments or

maximizing »  logm;(x) from (2), we can find estimates &, 8 for the hyper-parameters and, using
them, find EB estimates of the Poisson means
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that are shrunk from the MLE x; toward a common value &/ A.

2 Hierarchical Bayes

An alternative to estimating the values of “hyper-parameters” like # and 72 above is to model
uncertainty about them and through a Bayesian prior distribution. To simplify the presentation
let’s introduce the precision parameter A = 1/72. A conjugate hierarchical model for the data of
Section (1) would be

Xi | i ~ No(p;, 1)
pi | 6, A ~ No(6, A7)
0, ~ A% A,

an improper prior for a priori independent 6 ~ Un(R) and A ~ Ga(a, ).

Notes still in-progress. Next steps: evaluate available conditional distributions, discuss MCMC
approach to learning about the {u;}s, contrast with the EB approach above. Another example:
Re-parametrize the NB of (2) by p = 8/(8+1); fix «; and use p ~ Be(a, b) hyper-prior distribution.
Discuss MCMC evaluation in hierarchical models. Perhaps discuss Morris correction and Robbins
Miracle. Mention PEB has lower ensemble risk; better frequentist risk than the MLE despite its
UMVUE properties. Make connection with Stein.

3 Bayesian Forecasting

Next steps: Make forecasts; illustrate with Pareto model for volcanic eruption durations.
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