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1 Models & Inference

Introduction

In this introductory lecture we get a brief glimpse of most of the topics to be covered in the course
STA 532, as a sort of preview.

In Probability Theory, we begin with a known probability distribution (perhaps one with a famous
name, like Binomial or Poisson, or perhaps just the CDF F (x) = P[X ≤ x] in some convenient
form) and we try to make predictions about properties of one or many random variables {Xj} with
that distribution.

Statistics addresses the Inverse Problem: we begin with observations {Xj} of a collection of
random variables, and then we try to guess (properties of) their distribution, like the CDF F (·).

Parametric & Nonparametric Models

Two Principal Paradigms

Fisherian

A central 90% interval estimate for a real-valued parameter θ ∈ Θ ⊆ R is a pair of statistics (i.e.,
functions of the data) L(X) and R(X) with the properties that

(∀θ)Pθ[θ < L(X)] ≤ 0.05 (∀θ)Pθ[θ > R(X)] ≤ 0.05

from which it follows that
(∀θ)Pθ {θ ∈ [L(X), R(X)] } ≥ 0.90

where “Pθ” means we compute the probability of different possible values of X for the specified
value of the parameter θ. This is in some sense a separate statement for every possible θ ∈ Θ, and
the probability bounds must hold for all of them. The parameter θ is a fixed real number in each
statement, while X and hence L(X) and R(X) are random variables.

Bayesian

In the Bayesian perspective (Bayes, 1763; Laplace, 1774) both θ and X are “random”, with a joint
distribution that may have a density function of the form π(θ) f(x | θ). A central 90% interval for
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θ is now a pair of statistics L(X), R(X) with the property that

P[θ < L(X) | X] ≤ 0.05 P[θ > R(X) | X] ≤ 0.05

and hence
P[θ ∈ [L(X), R(X)] | X] ≥ 0.90

where, here, “P” represents the joint probability distribution for X and θ.

Comparing These

The difference is just what we treat as known (we “condition” on these) and what we treat as
random (we “quantify” over these). The Fisherian treats the parameter θ as known, and quantifies
over possible values of the observable data X; the Bayesian treats the observed data X as known,
and quantifies over the uncertain parameter values.

In this course we will present both views, and note where they agree and where they do not. We
will sometimes encounter other related paradigms, like “Neyman-Pearson” and “fiducial” (also due
to Fisher) and “likelihoodist”, but none of these is as commonly used and scientifically important
in this century as the Bayesian and Fisherian. The Fisherian and Neyman-Pearson approaches are
sometimes lumped together and called called “frequentist” or “sampling based” or, a bit ironically
in view of their mid-twentieth century introduction (Fisher, 1922, 1925, 1935; Neyman and Pearson,
1933), “classical”.

Fundamental Concepts

A Statistical Model for an observation vector X is a family of probability distributions on the
“outcome space” X of all possible values that X might take.

The outcome space X might be discrete (typically finite or countable) or continuous; it may be
scalar or vector or even infinite-dimensional. The cases we will see most often are finite sets X ,
the integers (N = {1, 2, ...} or Z+ = {0, 1, ...} or Z = {...,−1, 0, 1, ...}), the reals (R+ = [0,∞) or
R = (−∞,∞)), or intervals (often [0, 1]), or Cartesian powers or products of any of these.

Recall that a probability distribution on X is an assignment to subsets E ⊂ X of numbers P(E) ∈
[0, 1] such that the probability of the union of disjoint subsets is the sum of the individual proba-
bilities. Typically (always, in this class) these arise from probability mass functions (pmfs) p(·) for
discrete X and probability density functions (pdfs) f(·) for continuous X via the relations

P[E] =
∑

{p(x) : x ∈ E} or P[E] =

∫

E
f(x) dx

The CDF of X and the expectation of any function g(X) can be written

F (x) =
∑

{p(t) : t ≤ x} F (x) =

∫ x

−∞

f(x) dx

E[g(X)] =
∑

{g(x) p(x) : x ∈ R} E[g(X)] =

∫

R

g(x) f(x) dx

=

∫

R

g(x) dF (x) =

∫

R

g(x) dF (x)
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The Riemann-Stieltjes notation for these expectations (shown in the last line) are identical for
discrete, continuous, or indeed any other distribution (such as mixtures of discrete and continuous,
which arise with censored observations). One way to define them for continuous g() is

∫

R

g(x) dF (x) := lim
n→∞

n2
∑

i=−n2

g(i/n)
[

F
(

(i+ 1)/n
)

− F
(

i/n
)]

provided that the limit exists. The measure-theoretic notation
∫

R
g(x)F (dx) is also used for this

same expression, simplifying and clarifying expressions when F might depend on another variable
(perhaps y) as well and extending to non-continuous g(). To avoid writing everything twice, once for
continuous and once for discrete distributions, we will typically use this Stieltjes notation whenever
it is unspecified whether a distribution with CDF F might be continuous or discrete.

Statistical models come in two varieties:

• Parametric, in which the CDFs F (x | θ) (or, equivalently, the pmfs p(x | θ) or pdfs f(x | θ))
are indexed by a low-dimensional set θ ∈ Θ ⊂ R

d for some modest d ∈ N; or

• Nonparametric, in which they aren’t. In this case tools from functional analysis, like
Sobolev and Besov spaces, are commonly used.

We’ll spend about a week looking at some nonparametric ideas, but most of this course will focus on
familiar parametric families, like the Normal, Gamma, Exponential, Geometric, Negative Binomial,
Weibull, etc., often with Θ ⊂ R or Θ ⊂ R

2 so the distribution is determined by just one or two
numbers. A list of common parametric distributions along with their notation, pdf or pmf, mean,
variance, etc. is available at course PDF sheet (also available from the course syllabus page). Often
the components Xi of the observation vector X will be modeled as independent and identically
distributed from one of these distributions.

Typically we will assume that X is a realization of a random vector from a distribution with pdf
f(x | θ) or pmf p(x | θ) for some particular parameter value θ ∈ Θ that is unknown to us.

Point Estimates

One possible objective of inference would be to determine which value θ ∈ Θ gave rise to X ∈ X .
An estimator is some function T : X → Θ intended to have a value T (X) that is equal to, or
at least close to, θ. Often we consider sequences {Xi} of iid random variables all with the same
distribution, i.e., the same pdf f(x | θ), and corresponding sequences Tn : X n → Θ of estimators in
the hope that with more and more data we will have a better and better estimate in the sense that

Tn gets closer and closer to θ as n increases. For example, if Xi
iid∼ No(θ, 1) are all independent and

normally distributed with known variance σ2 > 0 and uncertain mean θ ∈ R, we know from the
Law of Large Numbers that the sample mean X̄n = (X1 + · · · +Xn)/n converges to θ as n → ∞.
So does the sample median X̊n and many other estimators we will compare later.

A “statistic” is any function of the data, i.e., any function on the space X ; thus an “estimator” is
just a Θ-valued statistic. There are a variety of ways to quantify how close the random variable
T (X) is to θ, typically:
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• The bias of an estimator T (X) is its expected error,

bias(θ) := Eθ

[

T (X)− θ
]

,

or (by the LLN) the long-term average discrepancy. If bias(θ) is identically zero, T is called
“unbiased”. In this case the errors could still be quite large, but the positive and negative
errors cancel out on average.

• The mse or Mean Squared Error of an estimator is the long-term average of its squared error,

mse(θ) := Eθ

[

|T (X)− θ|2
]

.

• The se or Standard Error of an estimator is the square root of its variance,

se(θ) := Vθ

[

T (X)
]1/2

.

• By elementary probability,
mse(θ) = bias(θ)2 + se(θ)2

• Corollary: A family {Tn} of estimators is “mean square consistent”, i.e., has msen converging
to zero, if and only if (1) It is asymptotically unbiased, biasn(θ) → 0; and (2) Its standard
error (or, equivalently, its variance) shrinks to zero, sen(θ) → 0.

• Example: ifXj
iid∼ Po(λ) and Tn(X) := Xn = n−1

∑

iXi, then E[Tn(X)] = λ so Tn is unbiased.
The variance V(Tn) = λ/n converges to zero, so {Tn} is MS consistent.

• Example: if Xj
iid∼ Po(λ) and Sn(X) := (β + n)−1

[

α +
∑

iXi

]

for any fixed α, β ≥ 0, then

E[Sn(X)] = α+nλ
β+n = (λ + α/n)/(1 + β/n) → λ so Sn is asymptotically unbiased. The bias

biasn(λ) = α−βλ
β+n and variance V(Sn) = nλ

(n+β)2
≤ λ/n converges to zero, so {Sn} is MS

consistent.

• Example: if Xj
iid∼ Ex(λ) and Un(X) := n

/
∑

iXi (the “MLE”— more on these later), then
E[Un(X)] = nλ/(n− 1) so Un is asymptotically unbiased. The bias biasn(λ) = λ/(n− 1) and
variance V(Un) = λ2n2/(n− 1)2(n− 2) converge to zero, so {Un} is MS consistent.

Interval Estimates

One way to quantify how close an estimator is in a one-dimensional problem (where Θ ⊆ R) is
to give a plus-or-minus range with a probability bound— or, equivalently, to give two statistics,
a lower one L(X) and an upper one U(X), with the intention that typically L(X) < θ < U(X).
Commonly a probability bound γ is specified (95% is common) and bounds L, U are found for
which, in some sense,

P[L(X) ≤ θ ≤ U(X)] ≥ γ.

We have already seen that Frequentist and Bayesian approaches to inference will both want an
inequality of this sort, but the probabilities will have different interpretations— in the Frequentist
approach the quantity θ is fixed and the statement is about the random values of L(X) and R(X),

Page 4Page 4Page 4



STA 532 Week 1 R L WolpertSTA 532 Week 1 R L WolpertSTA 532 Week 1 R L Wolpert

while in the Bayesian approach the observed value of X is fixed and the statement is about the
random value of θ. In either case one seeks interval estimates [L(X), U(X)] with the two conflicting
goals that (1) P {θ ∈ [L(X), U(X)]} is large and (2) that the interval [L(X), U(X)] is short.

In problems with vector values of θ ∈ Θ one can still offer interval estimates for individual
components θj, or one can construct set-valued statistics C : X → 2Θ with the property that
P[θ ∈ C(X)] ≥ γ. Again one seeks sets with P[θ ∈ C(X)] large yet C(X) small.

Frequently a family of estimators Tn(X) is both asymptotically unbiased and asymptotically normal

with variance proportional to 1/n, i.e.,
√
n[Tn(X) − θ] has approximately a No(0, σ2) normal

distribution in one dimension, or multivariate normal No(0,Σ) in d > 1 dimensions, for some
constant σ > 0 or positive-definite matrix Σ. In that case the confidence interval

L(X) = Tn(X)− σzγ√
n
, U(X) = Tn(X) +

σzγ√
n

will be an approximate 100γ% “confidence interval” if Φ(zγ) = (1 + γ)/2, in one dimension, or

C(X) = {θ : (θ − Tn(X))′Σ−1(θ − Tn(X)) ≤ ζ/n}

will be a 100γ% confidence set (an ellipsoid) with Θ ⊂ R
d, if ζ is the γ’th quantile of the χ2

d

distribution with d degrees of freedom, i.e., the Γ(d/2, 1/2) distribution. We’ll see more about that
in a few weeks.
Example

Let X ∼ Ex(λ) be a single observation from the exponential distribution with rate λ > 0. How can
we find a one-sided confidence interval satisfying

(∀λ > 0) P
{

λ ∈ [L(X),∞)
}

≥ γ

for fixed 0 < γ < 1? The mean and median of the Ex(λ) distribution are 1/λ and log(2)/λ,
respectively, so we should anticipate that L(X) may be a multiple of 1/X— if X is a distance
measured in centimeters cm for example then λ has units cm−1. A switch to kilometers km would
re-scale X by a factor of 10−5 and hence re-scale λ by 105, so L(X) should also be rescaled by
105. Sometimes dimension arguments can help us guess the form functions must have, and help us
discover our own errors when the dimensions don’t work out.

We’re looking for a statistic L(X) that satisfies P[L(X) ≤ λ] = γ. One approach would begin by
noting that, for any x > 0,

P[X > x] = exp(−λx)

For this probability to be γ > 0, take x = − log(γ)/λ; then

P

{

X >
− log γ

λ

}

= exp

{

−λ
− log γ

λ

}

= γ, i.e.,

P[λ > − log(γ)/X] = γ.

SO, the interval [L(X),∞) contains λ with probability exactly γ for the statistic L(X) := − log(γ)/X.
For γ = 0.90, for example, the one-sided interval is about

[

0.105
X ,∞

)

.
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A similar two-sided interval can be constructed:

P

{

− log(1+γ
2 )

X
≤ λ ≤ − log(1−γ

2 )

X

}

= γ

For γ = 0.90, for example, the two-sided interval is about
[

0.05
X , 3.0X

]

.

Hypothesis Tests

Another traditional approach to inference is to consider whether or not some assertion about θ is
true. This is equivalent to the question of whether or not θ lies in some subset H0 ⊂ Θ, namely, the
set H0 of all those θ ∈ Θ for which the assertion is true. Such a subset is called an “hypothesis”,
or “Null Hypothesis”, and its complement H1 = {θ ∈ Θ : θ /∈ H0} is called the “alternate”.

The Frequentist and Bayesian approaches will have different ways of quantifying how plausible H0

is after observing X ∈ X . The Bayesian approach is simply to report the probability P[θ ∈ H0 | X].
In the Frequentist approach, where θ isn’t treated as random, this probability can take only two
values— one, if in fact θ ∈ H0, and zero if θ /∈ H0, but the investigator can’t tell which of these is
true. Instead, the Frequentist approach is to identify a region R ⊂ X of possible outcome values
that are not particularly likely for θ ∈ H0, called the “rejection region”, and to report whether or
not X lies in this region. The “size” of such a test,

α = sup {Pθ[X ∈ R] : θ ∈ H0} ,

is a measure of the strength of evidence against H0 represented by an observation X ∈ R: if α is
small, then an observation X ∈ R is a near-miracle if θ ∈ H0, while it may be rather expected if
θ /∈ H0. Since miracles are rare, it seems reasonable to “reject H0” if we observe X ∈ R. We will
see this in much more detail soon, and see some variations (like “P -values”).

Regression

Sometimes we observe pairs of quantities (Yi,Xi) from some product space Y × X and hope to
discover how they are related. Commonly the “explanatory variables” {Xi} are treated as known
with certainty (often they are specified by the investigator, and are not random at all) while
some mystery surrounds the distributions of the “response variables” {Yi}, which may depend on
the corresponding {Xi}. The simplest case is to imagine that Yi ≈ g(Xi) for some “regression
function” g(·) : X → Y that is either entirely unknown or, more often, is thought to be from
some low-dimensional family of functions G = {gβ(·) : β ∈ B}, like linear functions gβ(X) = X ′β.
Commonly the approximation errors ei :=

(

Yi − g(Xi)
)

are taken to be iid with mean zero from
some small parametric family, usually No(0, σ2). More generally one may model

Yi
ind∼ f

(

y | gβ(Xi)
)

for some family of pdfs or pmfs f(y | θ) and some family of regression functions gβ : X → Θ
indexed by an uncertain “regression vector” β ∈ B. For example, the Yi might be integer counts
with Poisson distributions whose means gβ(Xi) = exp(X ′

iβ) have a log-linear dependence on the

explanatory variables. In the most common example the Yi
ind∼ No(X ′

iβ, σ
2) are normal with mean

gβ(Xi) = exp(X ′

iβ) and constant unknown variance σ2.

Page 6Page 6Page 6



STA 532 Week 1 R L WolpertSTA 532 Week 1 R L WolpertSTA 532 Week 1 R L Wolpert

Now interest may center on point or interval estimates for the parameter vector β, or on prediction
of future observations {Y ∗

j : j ∈ J} for specified vectors at new “design” locations {X∗

j : j ∈ J},
or on the selection of those design points (the “design of experiments”) in an effort to learn as
much as possible about β from as few new observations {(Y ∗

j ,X
∗

j ) : j ∈ J} as possible.

Last edited: October 20, 2017
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