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3 Parametri
 Inferen
e I

We now turn attention to statisti
al models in whi
h the family F of possible pdfs for the observable

X 2 X are a k-dimensional parametri
 family F = ff(x j �) : � 2 �g for some parameter spa
e

� � R

k

and fun
tion f : X � � ! R

+

. Examples in
lude the Poisson distribution Po(�) with

� = R

+

and the Be(�; �) distribution with � = (�; �) 2 � � R

2

+

. Other examples in
lude the

univariate normal distribution No(�; �

2

), with k = 2 and � = R � R

+

with � = (�; �

2

), and the p-

dimensional multivariate normal distribution No(�;�) with k = p(p+ 3)=2-dimensional parameter

� = (�;�), with mean ve
tor � 2 R

p

and p� p positive-de�nite 
ovarian
e matrix � 2 S

p

+

.

3.1 Change of Parameters

Any k-dimensional parametri
 family F = fF (� j �) : � 2 �g with � � R

k


an also be written as

F = fG(� j �) : � 2 �g for a di�erent parameter �, also k-dimensional, with � = H(�), � = H

�1

(�)

for any invertible 1:1 transformation H : � ! �. The statisti
ian is free to use whi
hever

parameterization is most 
onvenient. For example, we will use the \shape/rate" parameterization

for the Gamma distribution Ga(�; �), with mean �=� and pdf on the left in (1), while some authors

use the \shape/s
ale" parameterization in whi
h the Ga(�; �) distribution has mean �� and the pdf

given on the right. The two are related by the invertible transformation H(�; �) = (�; � = 1=�),

while their pdfs at x > 0 are

�

�

x

��1

�(�)

e

��x

=

x

��1

�

�

�(�)

e

�x=�

: (1)

3.2 Likelihood Fun
tions

When evaluated at the observed value X = x of the data, and viewed as a fun
tion only of � 2 �,

the fun
tion

L(� j x) / f(x j �) (2)

(or any positive multiple of it) is 
alled the \likelihood fun
tion" (LH). Some have argued that all

inferen
e about � 2 � should depend on the sampling model and the data X = x only through

this fun
tion (Birnbaum, 1962; Berger and Wolpert, 1988), a proposition known as the Likelihood

Prin
iple (LP). As we 
onsider various ways of estimating or making other inferen
e about � below,

try to see whi
h ones are 
onsistent with LP and whi
h aren't.
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3.3 Parameters of Interest & Nuisan
e Parameters

Often some feature of � is \interesting", i.e., of use in a parti
ular analysis, while the rest of � is

un
ertain but not interesting. For example, in No(�; �

2

) problems, often it is only the mean that is

interesting and not the varian
e. We 
an always write the parameter ve
tor in the form � = (�; �)

with \parameter of interest" � and \nuisan
e parameter" �.

Fisherian and Bayesian pra
titioners di�er in how they dispose of the � in order to make inferen
e

about � (Berger et al., 1999). Typi
ally the Fisherian approa
h is to repla
e the LH of (2) with

the \pro�le likelihood"

L

P

(� j x) = sup

�

f

�

x j (�; �)

�

(3a)

while the Bayesian approa
h is to determine a \
onditional prior distribution" �(� j �) quantifying

the plausibility of various possible values of the nuisan
e parameter �, possibly depending on the

parameter of interest �, and then base inferen
e about � on the \marginal likelihood"

L

M

(� j x) =

Z

f(x j �; �) �(� j �) d� (3b)

We'll see examples below, on
e we've introdu
ed and 
ompared estimation for these two approa
hes.

3.4 Methods of Estimation

Here we present four possible ways of estimating an un
ertain parameter � 2 � on the basis of a

sequen
e T

n

(X) of statisti
s based on a random sample of size n from an un
ertain distribution

F (� j �). As an example, 
onsider estimating the rate parameter � for a sequen
e of n iid draws

fX

i

g

iid

� Ga(�; �) from a gamma distribution with known shape parameter � (for example, perhaps

� = 1 in whi
h 
ase the data are iid Ex(�)). The joint pdf for X

1

� � �X

n

at a point x 2 (0;1)

n

is:

f

n

(x) =

n

Y

i=1

�

�

�

x

��1

i

�(�)

e

��x

i

�

=

�

n�

�

Q

x

i

�

��1

�(�)

n

exp

n

��

X

x

i

o

(4)

3.4.1 Method of Moments

The Method of Moments (MoM) pro
edure is to estimate � 2 � � R

k

by that value (if any exists)

^

�

n

su
h that the �rst k moments of the parametri
 and empiri
al distributions agree, i.e.,

E

^

�

n

X

m

=

1

n

n

X

i=1

(X

i

)

m

; 1 � m � k:

For the Ga(�; �) example with � known, k = 1 and the mean is E

�

[X℄ = �=� so the MoM estimate

is

~

�

n

= �n=

n

X

i=1

X

i

= �=

�

X

n

:
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For any one-dimensional inferen
e problem the MoM estimator of any parameter � 2 � � R is just

the solution

~

� to the equation

E

�

[X℄ =

�

X

n

:=

1

n

n

X

i=1

X

i

(5a)

equating the population and sample means. For example, the MoM estimator of � for fX

i

g

iid

�

Un

�

[0; �℄

�

is 2

�

X

n

, sin
e E

�

X = �=2. For k = 2 the MoM is the value

~

� 2 � � R

2

satisfying both

(5a) and E

�

X

2

= (1=n)

P

X

2

i

or, equivalently, (5a) and

V

�

[X℄ = S

2

n

:=

1

n

n

X

i=1

(X

i

�

�

X

n

)

2

: (5b)

Note it is

1

n

and not

1

n�1

that appears in (5b) for the varian
e of the empiri
al distribution

^

F

n

.

For example, if fX

i

g � Ga(�; �) with both � and � unknown, the population mean and varian
e

are � = E[X

i

℄ = (�=�) and �

2

= V[X

i

℄ = �=�

2

. We 
an solve to �nd � and � as fun
tions of the

population mean and varian
e, to �nd � = �=�

2

and � = �

2

=�

2

, so the MoM estimators for the

shape � and rate � are

~�

n

= (

�

X

n

)

2

=S

2

n

~

�

n

=

�

X

n

=S

2

n

:

Under a 
hange of parameters � = H(�) as in Se
tion (3.1), the MoM estimators

~

� = H(

~

�) 
hange

with the same transformation. For example, with H(�; �) = (�; 1=�), the MoM estimators for the

shape � and s
ale � = 1=� are (~�

n

;

~

�

n

) = H(~�

n

;

~

�

n

), or

~�

n

= (

�

X

n

)

2

=S

2

n

~

�

n

= S

2

n

=

�

X

n

:

3.4.2 Maximum Likelihood

The Maximum Likelihood Estimator (MLE) is whatever fun
tion value

^

�

n

(X) 2 � maximizes the

likelihood fun
tion (2). In our example, the LH is any fun
tion proportional to the joint pdf (4).

Su
h a fun
tion will attain its maximum at the same pla
e as its logarithm `(� j X) := logL(� j X)

does. This is a very general and useful observation, be
ause typi
ally the log LH is easier to

maximize.

For the example of X

i

iid

� Ga(�; �) with known �, the log LH and its derivative are:

`

n

(� j x) = n� log �+ �

X

log(x

i

)� n log �(�) � �

X

x

i

(6)

�

��

`

n

(� j x) = n�=��

X

x

i

so the MLE is again

^

�

n

= �=

�

X

n

, the same as the MoM.

Finding the MLE for Ga(�; �) with both parameters unknown is a bit more involved. For ea
h

�xed � > 0 the optimal rate is

^

�

n

(�) = �=

�

X

n

, but we must also maximize

`

n

�

�;

^

�(�)

�

= n� log(�=

�

X

n

) + �

X

log(x

i

)� n log �(�)� (�=

�

X

n

)n

�

X

n
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by �nding the unique solution �̂

n

to the equation 0 = (�=��)`

n

�

�;

^

�(�)

�

,

0 = n log(�=

�

X

n

) + n+

X

log(X

i

)� n (�) � n;

i.e., by setting �̂ to the unique solution of

 (�) � log� =

1

n

X

log(X

i

=

�

X

n

): (7)

Here  (z) := (d=dz) log �(z) = �

0

(z)=�(z) is the \digamma fun
tion", given for integer arguments

by

 (n) = �


e

+

n�1

X

k=1

1

k

where 


e

� 0:577216 is Euler's gamma 
onstant. Equation (7) always has a unique solution,

be
ause [ (�) � log�℄ in
reases monotoni
ally from �1 to 0 as � in
reases from 0 to 1, and

P

log(X

i

=

�

X

n

) < 0 by the arithmeti
-geometri
 mean inequality.

Under a 
hange of parameters � = H(�) as in Se
tion (3.1), the MLEs

^

� = H(

^

�) 
hange with the

same transformation. For example, with � known the MLE for � = 1=� is

^

�

n

= 1=

^

�

n

=

�

X

n

=�,

while when both � and � are unknown the MLEs are

^

�

n

= 1=

^

�

n

and

^

�

n

=

�

X

n

=�̂

n

for the solution

�̂

n

to (7).

Other Examples:

� The MLE for the mean of fX

i

g

iid

� Po(�) is

^

�

n

=

�

X

n

;

� The MLE for the su

ess probability of fX

i

g

iid

� Ge(p) is p̂

n

= 1=(1 +

�

X

n

);

� The MLE for the mean and varian
e of fX

i

g

iid

� No(�; �

2

) are �̂

n

=

�

X

n

:= (1=n)

P

X

i

and

�̂

2

n

= S

2

n

:= (1=n)

P

(X

i

�

�

X

n

)

2

. The MLE for the pre
ision � = 1=�

2

is �̂

n

= 1=S

2

n

.

3.4.3 Bayesian Inferen
e

In the Bayesian approa
h the data pdf f(x j �) is treated as a 
onditional pdf for X, given the

parameter ve
tor �. If the investigator 
an identify in some way a marginal pdf �(�) for � unrelated

to the data X, 
alled the prior pdf, then the joint pdf for X and � will be f(x j �)�(�) and the


onditional (given X = x) or posterior pdf for �, given the observed data, will be given by the

elementary probability 
al
ulation

�(� j x) =

f(x j �) �(�)

R

�

f(x j �) �(�) d�

=

L(� j x) �(�)

R

�

L(� j x) �(�) d�

/ L(� j x) �(�) (8a)


alled Bayes' Formula. The denominator in (8a) is just a normalizing 
onstant to ensure that

�(� j x) integrates to one; usually it needn't be 
omputed expli
itly (see examples below).

The estimator Æ(x) that minimizes the expe
ted squared error

E

�

jÆ(x) � �j

2

j x

�

=

Z

�

jÆ(x) � �j

2

�(� j x) d�
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an easily be shown to be the mean of the posterior distribution, Æ(x) =

�

� given by

�

� :=

Z

� �(� j x) d�: (8b)

Under a 
hange of parameters � = H(�) as in Se
tion (3.1), Bayesian posterior means

�

� are not

simply the transformed values H(

�

�); rather, a Ja
obian enters with the 
hange of variables in the

integral of (8b).

For example, if fX

i

g

iid

� Ga(�; �) with known � as in (4), and we represent un
ertainty about �

before observing X = fX

i

: 1 � i � ng using a Ga(a; b) distribution, then

�(� j x) /

�

n�

Q

(x

i

)

�

�(�)

n

exp

n

��

X

x

i

o

�

b

a

�

a�1

�(a)

exp f�b�g

/ �

a+n��1

exp

n

��

�

b+

X

x

i

)

o

� Ga

�

a+ n�; b+

X

x

i

�

with mean

�

�

n

=

a+ n�

b+

P

x

i

=

a=n+ �

b=n+

�

X

n

; (9)

the same asymptoti
ally as n!1 but a bit di�erent for small n from the MoM andMLE estimators

�=

�

X

n

. Note we didn't need to 
al
ulate the normalizing 
onstant, be
ause we re
ognized the form

of �(� j x) as that of a gamma pdf. The posterior mean of � := E[X℄, or ��

n

:= E[�=� j fX

i

g℄, is

not just �=

�

�

n

; 
an you 
al
ulate what ��

n

is? Suggestion: First �nd E[X

p

℄ for X � Ga(�; �), for all

�1 < p <1 (you'll need it for p < 0).

3.4.4 Obje
tive Bayes Inferen
e

How 
an an investigator �nd the prior or marginal density �(�) needed to 
ompute the posterior

density �(� j x) in (8a)? We'll see more about this in Week 5 of the 
ourse, but for now here are

three suggestions:

� Histori
al Re
ords: If similar analyses have been performed in the past, the values f�

j

g (true

or estimated) may be available to o�er a guide for what is the distribution of possible values

of � in the 
urrent study;

� Personal Opinion: An experien
ed investigator may have informed opinions about whi
h

values of � are plausible and whi
h are not. This subje
tive approa
h is parti
ularly well-

suited to problems of personal �nan
e, sports bets, and other situations where long-term

histori
al eviden
e isn't available even in prin
iple. It's not well-suited to problems in s
ienti�


exploration, litigation, or other areas where obje
tivity is paramount.

� Obje
tive Bayesian Analysis: In the earliest days of Bayesian analysis, Lapla
e (1774) and

Bayes (1763) himself used uniform (or \
at") prior densities to represent ignoran
e about a

parameter. In our example this would be �(�) � 1 on R

+

, a prior that is \improper" in the
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sense that

R

�(�) d� = 1 but whi
h nevertheless leads to the proper posterior distribution

with density �(� j x) � Ga

�

1 + n�;

P

x

i

�

distribution with well-de�ned posterior mean

�

�

n

= (� + 1=n)=

�

X

n

. This approa
h is not invariant under 
hanges of parameters.

A modern approa
h that is invariant would re
ommend the \Je�reys" or \Referen
e" prior

�

R

(�) / 1=� leading to posterior distribution �

R

(� j x) � Ga

�

n�;

P

x

i

�

, with mean

�

�

n

=

�=

�

X

n

identi
al in this example (but not always) to the MLE and MoM (Je�reys, 1961;

Bernardo, 1979; Berger et al., 2009). This is a Bayesian approa
h that 
an be used in

problems where obje
tivity is key.

We'll see more about this in Week 5.
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