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3 Parametric Inference 1

We now turn attention to statistical models in which the family § of possible pdfs for the observable
X € X are a k-dimensional parametric family § = {f(x | 0) : 6 € ©} for some parameter space
© C R* and function f : X x © — R,. Examples include the Poisson distribution Po(f) with
© = R; and the Be(a, ) distribution with § = (a, 8) € © C R2. Other examples include the
univariate normal distribution No(u,0?), with k =2 and © = R x Ry with 6 = (u, 0?), and the p-
dimensional multivariate normal distribution No(u,¥) with k& = p(p 4 3)/2-dimensional parameter
0 = (1, %), with mean vector p € RP and p X p positive-definite covariance matrix ¥ € S%.

3.1 Change of Parameters

Any k-dimensional parametric family § = {F(- | ) : 0 € ©} with © C R* can also be written as
F=1{G(- | ¢): ¢ € ®} for a different parameter ¢, also k-dimensional, with ¢ = H(0), § = H~'(¢)
for any invertible 1:1 transformation H : © — ®. The statistician is free to use whichever
parameterization is most convenient. For example, we will use the “shape/rate” parameterization
for the Gamma distribution Ga(a, \), with mean /A and pdf on the left in (1), while some authors
use the “shape/scale” parameterization in which the Ga(c, ) distribution has mean «f and the pdf
given on the right. The two are related by the invertible transformation H(a, \) = (o, f = 1/A),
while their pdfs at > 0 are

2\ xa—l hw xa—l /B
T ¢ ~FI@’ o

3.2 Likelihood Functions

When evaluated at the observed value X = x of the data, and viewed as a function only of 8 € O,
the function

L0 ] ) o fx]0) (2)

(or any positive multiple of it) is called the “likelihood function” (LH). Some have argued that all
inference about # € © should depend on the sampling model and the data X = x only through
this function (Birnbaum, 1962; Berger and Wolpert, 1988), a proposition known as the Likelihood
Principle (LP). As we consider various ways of estimating or making other inference about 6 below,
try to see which ones are consistent with LP and which aren’t.



STA 532 Week 3 R L Wolpert
3.3 Parameters of Interest & Nuisance Parameters

Often some feature of # is “interesting”, i.e., of use in a particular analysis, while the rest of 0 is
uncertain but not interesting. For example, in No(u, 02) problems, often it is only the mean that is
interesting and not the variance. We can always write the parameter vector in the form 6 = (n, \)
with “parameter of interest” n and “nuisance parameter” .

Fisherian and Bayesian practitioners differ in how they dispose of the A in order to make inference
about 7 (Berger et al., 1999). Typically the Fisherian approach is to replace the LH of (2) with
the “profile likelihood”

Lp(n|x) = St;pf(x | (1, 0) (3a)

while the Bayesian approach is to determine a “conditional prior distribution” 7(A | 77) quantifying
the plausibility of various possible values of the nuisance parameter \, possibly depending on the
parameter of interest 7, and then base inference about 7 on the “marginal likelihood”

Cu(n|z) = / F [ A w(x | ) dn (3b)

We’ll see examples below, once we’ve introduced and compared estimation for these two approaches.

3.4 Methods of Estimation

Here we present four possible ways of estimating an uncertain parameter € © on the basis of a
sequence T),(X) of statistics based on a random sample of size n from an uncertain distribution
F(-]0). As an example, consider estimating the rate parameter A for a sequence of n iid draws
{X;} i Ga(a, A\) from a gamma distribution with known shape parameter « (for example, perhaps
a =1 in which case the data are iid Ex(\)). The joint pdf for Xj --- X, at a point x € (0,00)" is:

moaeret ) A ([a)
fn(l‘):il:[l{we A }:%QXP{_)\Z%} (4)

3.4.1 Method of Moments

The Method of Moments (MoM) procedure is to estimate §# € © C RF by that value (if any exists)

0, such that the first k¥ moments of the parametric and empirical distributions agree, i.e.,

1
E; X" ==> (X)", 1<m<k
=1

For the Ga(a, \) example with a known, & = 1 and the mean is Ey[X] = a/\ so the MoM estimate
is

n
Ap = an/ZXZ- =a/X,.
i=1
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For any one-dimensional inference problem the MoM estimator of any parameter ¢ € © C R is just
the solution # to the equation

Eg[X] = X, := % X (5a)
=1

equating the population and sample means. For example, the MoM estimator of 6 for {X;} &Y

Un([0,6]) is 2X,,, since EgX = 6/2. For k = 2 the MoM is the value § € © C R? satisfying both
(5a) and EgX? = (1/n) Y. X? or, equivalently, (5a) and

Vo[X] = S2 = % 3O (X — K2 (5b)
=1

Note it is % and not ﬁ that appears in (5b) for the variance of the empirical distribution E,.
For example, if {X;} ~ Ga(a, \) with both @ and A unknown, the population mean and variance
are i = E[X;] = (a/)\) and 0% = V[X;] = a/)\2. We can solve to find a and \ as functions of the
population mean and variance, to find A = u/0? and a = p?/0?, so the MoM estimators for the
shape « and rate A are

an = (Xn)%/S2 A = X, /S2.

Under a change of parameters ¢ = H(#) as in Section (3.1), the MoM estimators ¢ = H(f) change
with the same transformation. For example, with H(a, A) = (a,1/)), the MoM estimators for the
shape a and scale 3 = 1/\ are (&, Bn) = H (G, Ap), Or

3.4.2 Maximum Likelihood

The Maximum Likelihood Estimator (MLE) is whatever function value 6, (X) € © maximizes the
likelihood function (2). In our example, the LH is any function proportional to the joint pdf (4).
Such a function will attain its maximum at the same place as its logarithm ((6 | X) :=1log L(0 | X)
does. This is a very general and useful observation, because typically the log LH is easier to
maximize.

For the example of X; Y Ga(a, \) with known «, the log LH and its derivative are:
()\|:L‘)—nozlog)\+a210g x;) —nlog'(a )\Zml (6)
En()\ | z) = na/\ — Z:L‘i

so the MLE is again 5\n = a/)_(n, the same as the MoM.

Finding the MLE for Ga(a, A) with both parameters unknown is a bit more involved. For each
fixed @ > 0 the optimal rate is \,(a) = o/ X,,, but we must also maximize

ln(a, 3\(04)) = nalog(a/X,) + aZlog(:L‘i) —nlogl(a) — (a/Xp)nX
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by finding the unique solution &, to the equation 0 = (9/9a)l, (v, 5\(04)),

0 =nlog(a/Xy,) +n+ Y log(X;) — ny(a) — n,

i.e., by setting & to the unique solution of

v(a) ~loga = = 3 log(Xi/ X, (7

Here ¢(z) := (d/dz)log '(z) =I"(z)/I'(z) is the “digamma function”, given for integer arguments
by

n—1
Y ==+ 31
k=1

where v, = 0.577216 is Euler’s gamma constant. Equation (7) always has a unique solution,
because [¢)(a) — loga] increases monotonically from —oo to 0 as « increases from 0 to oo, and
> log(X;/Xy) < 0 by the arithmetic-geometric mean inequality.

Under a change of parameters ¢ = H(f) as in Section (3.1), the MLEs ¢ = H(f) change with the
same transformation. For example, with o known the MLE for 8 = 1/X is 3, = 1/\, = X,/
while when both « and § are unknown the MLEs are Bn = 1/;\,1 and Bn = X,,/d, for the solution
Gy, to (7).

Other Examples:

e The MLE for the mean of {X;} by Po(\) is Ay = Xp;

e The MLE for the success probability of {X;} Y Ge(p) is pn = 1/(1 + X,);
e The MLE for the mean and variance of {X;} i No(u,0?) are i, = X,, := (1/n) Y. X; and
62 =52:=(1/n) Y (X; — X,)% The MLE for the precision T =1/0% is 7, = 1/S2.

3.4.3 Bayesian Inference

In the Bayesian approach the data pdf f(x | 0) is treated as a conditional pdf for X, given the
parameter vector 6. If the investigator can identify in some way a marginal pdf 7(6) for 6 unrelated
to the data X, called the prior pdf, then the joint pdf for X and 6 will be f(x | #)m(f) and the
conditional (given X = x) or posterior pdf for 6, given the observed data, will be given by the
elementary probability calculation

fla]0) (6) L0 ] x) (0)

O = 0y w(8) a8~ Ty 28] ) n(eyan <1 T (82)

called Bayes” Formula. The denominator in (8a) is just a normalizing constant to ensure that
7(0 | =) integrates to one; usually it needn’t be computed explicitly (see examples below).

The estimator §(x) that minimizes the expected squared error
E[l6(z) — 0] | <] :/ 16(2) — 012 7(60 | 2) db
e
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can easily be shown to be the mean of the posterior distribution, d(x) = 6 given by
0 = /9%(9 | ) df. (8b)

Under a change of parameters ¢ = H(f) as in Section (3.1), Bayesian posterior means ¢ are not
simply the transformed values H(6); rather, a Jacobian enters with the change of variables in the
integral of (8b).

For example, if {X;} g Ga(a, \) with known « as in (4), and we represent uncertainty about A
before observing X = {X; : 1 <i < n} using a Ga(a,b) distribution, then

1

T\ | z) Wexp{—)\Zl‘i} X ba)Ea; exp {—bA}

L(a)™ I(a
oc ATl exp {—)\(b + Z .TZ)}
~ Ga(d-l—noc,b—l—Z:ri)

with mean

< a+ na a/n+

b+> x  b/n+X, )

the same asymptotically as n — oo but a bit different for small n from the MoM and MLE estimators
a/X,. Note we didn’t need to calculate the normalizing constant, because we recognized the form
of m(\ | ) as that of a gamma pdf. The posterior mean of p := E[X], or u, := E[a/\ | {X;}], is
not just a/\,; can you calculate what fi,, is? Suggestion: First find E[X?] for X ~ Ga(a, \), for all
—o0 < p < oo (you'll need it for p < 0).

3.4.4 Objective Bayes Inference

How can an investigator find the prior or marginal density 7(6) needed to compute the posterior
density w(6 | x) in (8a)? We'll see more about this in Week 5 of the course, but for now here are
three suggestions:

e Historical Records: If similar analyses have been performed in the past, the values {f;} (true
or estimated) may be available to offer a guide for what is the distribution of possible values
of 0 in the current study;

e Personal Opinion: An experienced investigator may have informed opinions about which
values of 6 are plausible and which are not. This subjective approach is particularly well-
suited to problems of personal finance, sports bets, and other situations where long-term
historical evidence isn’t available even in principle. It’s not well-suited to problems in scientific
exploration, litigation, or other areas where objectivity is paramount.

e Objective Bayesian Analysis: In the earliest days of Bayesian analysis, Laplace (1774) and
Bayes (1763) himself used uniform (or “flat”) prior densities to represent ignorance about a
parameter. In our example this would be 7(A) =1 on Ry, a prior that is “improper” in the
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sense that [ m(\)d\ = oo but which nevertheless leads to the proper posterior distribution
with density 7(A | z) ~ Ga(l + na, > ;) distribution with well-defined posterior mean
An, = (v +1/n)/X,,. This approach is not invariant under changes of parameters.

A modern approach that is invariant would recommend the “Jeffreys” or “Reference” prior
Tr(A) o< 1/ leading to posterior distribution 7mr(\ | ) ~ Ga(na, Y @;), with mean A, =
a/X,, identical in this example (but not always) to the MLE and MoM (Jeffreys, 1961;
Bernardo, 1979; Berger et al., 2009). This is a Bayesian approach that can be used in
problems where objectivity is key.

We’ll see more about this in Week 5.
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