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1 Motivation

A common flexible way to construct stationary time series (discrete-time stochastic processes) is
to begin with an iid sequence {ζi : i ∈ Z} from an arbitrary distribution and a suitable set {bi} of
coefficients and set

f(i) :=
∑

bi−jζj

for i ∈ Z. These “moving average” or MA processes may be used as prior distributions for uncertain
functions on (any subset of) Z; their means, covariances, ch.f.s, etc. are all easily computed from
those of the {ζi}.

A natural extension of this idea to continuous time would be to set

f(t) :=

∫

R

b(t− s)ζ(ds)

for a suitable function b and random measure ζ(ds). The analogue of “iid” for the {ζi} above
is that ζ(ds) should assign independent random variables to disjoint sets, whose distributions are
translation-invariant.

The requirements that
ζ(A) ⊥⊥ ζ(B) ζ(t+B) ∼ ζ(B)

for disjoint A, B and t ∈ R imply that ζt ≡ ζ
(

(0, t]
)

is an SII process. This can be extended
immediately to non-stationarity (replacing b(t − s) with k(t, s), not necessarily a function only of
(t− s)), and beyond R for both t and (separately) for s.

2 Eg 1: Nonlinear Regression

Let X be a compact interval in R
1 or rectangle in R

2 (or any other Polish space) and consider the
problem of estimating some unknown function f : X → R, from noisy measurements

Yi
ind
∼ No

(

f(xi), 1
)

, i ∈ I

at specified design points {xi}i∈I with known variance (say, one)1. One way to proceed is to model
the uncertain function f(x) with a “LARK” model (Wolpert et al., 2011) for the prior. In that

1In fact, any measurement error model will do— all we need is a family of distributions g(dy | θ) for Y , completely
determined by some parameter θ, all with density functions (“likelihoods”, for us) g(y | θ). In our nonlinear regression
context, the parameter θ is taken to be an uncertain function f(xi) of the explanatory variable vector x.
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approach one chooses a family of basis or kernel functions such as

k(x, ω) = e−λ(x−χ)1{χ<x}

on X × Ω for some convenient space Ω (here ω = (χ, λ) ∈ Ω = X × R+, for locations χ ∈ X and
decay rates λ ≥ 0) and represents f(x) in the form

f(x) =
∑

υjk(x, ωj) (1a)

as a linear combination of the kernel functions with random coefficients υj and parameters ωj

(typically determining the location and shape)— or, a little more generally, the form

=

∫

Ω
k(x, ω) ζ(dω) (1b)

for a random measure ζ(dω) on some Polish space Ω. Choose a family {k(·, ω)} to make (1a)
efficient.

The original motivation (mimicing MA time series— see Section (1)) led to ID random measures
ζ(dω) on R; even in the present more general setting (where X and Ω are arbitrary “lccb” spaces,
not necessarily R, and where k(x, ω) need not be of convolution form), it’s convenient to consider
measures ζ(dω) that assign independent ID random variables to disjoint sets in Ω. One way to
achieve that is to select a Lévy measure ν(dυ dω) on R×Ω that satisfies

∫

R×K

(

1 ∧ |υ|
)

ν(dυ dω) < ∞ (2)

for each compact K ⊂ Ω, construct a Poisson random measure H ∼ Po
(

ν(dυ dω)
)

on R × Ω, and
set

f(x) =

∫

Ω
k(x, ω) ζ(dω)

=

∫

R×Ω
k(x, ω)υ H(dυ dω). (3)

This will of course have ch.f.

E exp {iωf(x)} = exp

{
∫

R×Ω

(

eiωk(x,ω) υ − 1
)

ν(dυ dω)

}

(4)

from which means, variances, etc. are available; also, this shows that the distribution of f(x) itself
is also ID. For example, we can arrange for ζ(A) ∼ Ga(α(A), β) for some σ-finite measure α(dω)
on Ω, some β > 0, and all A ⊂ Ω of finite α-measure by taking

ν(dυ dω) = α(dω)e−βυυ−11{υ>0}dυ.

If k(x, ω) = b1B(x, ω) is constant on some set B in R×Ω and zero elsewhere then f(x) will have a
Gamma distribution too (figure out the parameters), but in general it would be a linear combination
of Gammas with different rate parameters.
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Or, we can arrange for ζ(A) ∼ StA

(

α, β, γ(A), δ(A)
)

for some constants 0 < α < 1 and −1 ≤
β ≤ 1 and σ-finite measures γ(dω) and δ(dω) by taking

ν(dυ dω) = cα(1 + β sgn υ)α|υ|−1−αdυ γ(dω)

for cα = 1
π
Γ(α) sin πα

2 , in which case f(x) will have an α-stable distribution too (find the parameters;
note that if δ 6= 0 we must add the non-random offset

∫

Ω k(x, ω)δ(dω) to Eqn (1b)).
SO, think of f as the sum Eqn (1a), with a random number of terms each of which has a random

coefficient υj and attribute (location, shape, etc.) ωj.

2.1 Generating f from the Prior Distribution

If ν is finite then Eqn (3) already shows just how to draw random functions f from this distribution.
For infinite ν, both approximation methods we’ve discussed in class will work— either draw the υj
in monotonically decreasing order of absolute value using the ILM algorithm, or fix a “cut-off” ǫ > 0
and approximate f by f ǫ based on the finitely-many (say, Jǫ) mass points of H on Bc

ǫ × Ω. The
martingale methods we’ve used for computing bounds on the approximation errors carry through.
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Figure 1: Top: sample draw from ζ(dt) ∼ Ga(α dt, β) random measure on unit interval [0, 1], with
α = 10, β = 1. Middle: SII Gamma process Xt = ζ(0, t]. Bottom: Stationary LARK process
f(t) =

∫ t

0 e
−λ(t−s)ζ(ds), with λ = 10.

More interesting is:

2.2 Posterior Distributions

Consider a data-set {(xi, Yi)}i∈I with the iid Normal error model described above. If we fix a space
Ω, a kernel k(x, ω), and a Lévy measure ν(dυ dω), we have a complete Bayesian model for f . How
can we find the posterior distribution?
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Usually in Bayesian analysis we begin with some observation vector Y (we’ve got one!) and a
parametric family of probability distributions {f(y | θ)} for Y (still okay— the iid normal model),
indexed by a parameter vector θ from some set Θ of possible values (uh oh, what’s θ here?).
Then we need a prior probability distribution π(dθ) on Θ (all this ID distribution stuff must have
something to do with that, right?), and must do some integration (or simulation) to evaluate (or
draw samples from) the posterior distribution.

Nonparametric Bayesian analysis is more involved because the space Θ is big and sometimes
unwieldy, and the business of building priors on big sets Θ is more challenging.

What is Θ here? Somehow it’s the space of “all possible regression functions f”, but we’ll need
to be much more explicit and specific.

For the ǫ approximations to the LARK models above, each possible f ǫ is determined by:

• Jǫ, the number of terms to include in the sum Eqn (1a);

• {υj}j≤Jǫ
, the magnitudes of the terms;

• {ωj}j≤Jǫ
, the attributes of the terms.

The set of all possible values “θ” of this form is:

Θ = ∪∞
J=0

[

R× Ω
]J
,

the union over all possible values of J (including zero) of all the configurations with exactly J

terms.
Now we need to specify the prior density on Θ, evaluate the likelihood function on Θ, and

implement an MCMC scheme to draw replicated samples from the posterior distribution. For that,
take a look at the class notes “mh.pdf”, Metropolis-Hastings for Lévy Random Fields.
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