Unit 3: Foundations for inference 4. MT 1 Review

Sta 101 - Spring 2019

Duke University, Department of Statistical Science

Exam Details:

- ▶ When: Thursday, Feb 14 in Class
- ▶ What to bring:
 - Scientific calculator (graphing calculator ok, No Phones!)
 - Cheat sheet (can be typed Definitions and equations only!)
- ► Provided: Z table

Exam Format:

- ▶ 4 written questions 60 pts
- ▶ 5 T/F 2pts each
- ▶ 10 Multiple choice 3pts each

Dr. Abrahamsen Slides posted at https://stat.duke.edu/courses/Spring19/sta101.002

Key Terms

- Population
- ► Parameter
- ► Statistic
- ► Simple Random Sample
- Stratified Sample
- ► Cluster Sample
- Multistage Sample
- ► Experiment
- Observational Study
- Control
- Placebo
- ► Confounding Variable

Data Collection, Observational Studies & Experiments

ideal experiment	Random assignment	No random assignment	observational studies		
Random sampling	Causal conclusion, generalized to the whole population.	No causal conclusion, correlation statement generalized to the whole population.	Generalizability		
No random sampling	Causal conclusion, only for the sample.	No causal conclusion, correlation statement only for the sample.	No generalizability		
most experiments	Causation	Correlation	bad observational		

Describing Distributions of Numerical Variables:

- Shape: skewness, modality
- Center: an estimate of a typical observation in the distribution (mean, median, mode, etc.)
 - Notation: μ : population mean, \bar{x} : sample mean
- Spread: measure of variability in the distribution (standard deviation, IQR, range, etc.)
- Unusual observations: observations that stand out from the rest of the data that may be suspected outliers

Robust statistics:

- Mean and standard deviation are easily affected by extreme observations since the value of each data point contributes to their calculation.
- ▶ Median and IQR are more robust.
- Therefore we choose median & IQR (over mean & SD) when describing skewed distributions.

4

Clicker question

Which of the following is <u>false</u>?

- (a) The box plot would have outliers only on the lower end.
- (b) The median is between 70 and 80.
- (c) More than 25% of the data is above 90.
- (d) More than 50% of the data have positive Z scores.
- (a) The mean is likely to be smaller than the median.

More Exploratory Data Analysis

Use segmented bar plots for visualizing relationships between 2 categorical variables

What do the heights of the segments represent? Is there a relationship between class year and relationship status? What descriptive statistics can we use to summarize these data? Do the widths of the bars represent anything?

... or use a mosaic plot

What do the widths of the bars represent? What about the heights of the boxes? Is there a relationship between class year and relationship status? What other tools could we use to summarize these data?

Use side-by-side box plots to visualize relationships between a numerical and categorical variable

How do drinking habits of vegetarian vs. non-vegetarian students compare?

9

Randomization Test

Introduction to Statistical Inference

Key Ideas:

- Observed differences may be due to random chance
- ▶ Test whether difference is significant using simulations

CPR is a procedure commonly used on individuals suffering a heart attack when other emergency resources are not available. The chest compressions involved with this procedure can also cause internal injuries. Blood thinners that are often given to help release a clot that is causing the heart attack may also negatively affect such internal injuries. An experiment was designed to evaluate if blood thinners have an impact on survival after a heart attack. Patients were randomly divided into a treatment group (received a blood thinner) or the control group (no blood thinner). The outcome variable of interest was whether the patients survived for at least 24 hours.

Clicker question

Given these hypotheses, what is the sample statistic?

$$H_0: p_t - p_c = 0 \qquad H_A: p_t - p_c \neq 0$$

Survived	Died	Total
11	39	50
14	26	40
25	65	90
	Survived 11 14 25	Survived Died 11 39 14 26 25 65

(a) (11 / 25) - (39 / 65) = -0.16

(b) (14 / 40) - (11 / 50) = 0.13

(a) (14 / 90) - (11 / 90) = 0.033

(a) (40 / 90) - (50 / 90) = -0.111

12

Clicker question

A randomization test was conducted to evaluate these hypotheses. Based on the randomization distribution below, what is the conclusion?

Form hypotheses for this study in plain and statistical language. Let p_c represent the true survival proportion in the control group and p_t

 H_0 : Blood thinners do not have an overall survival effect, i.e. the

 H_A : Blood thinners do have an impact on survival. $p_t - p_c \neq 0$.

survival proportions are the same in each group. $p_t - p_c = 0$.

represent the survival proportion for the treatment group.

These data

- (a) provide convincing evidence that blood thinners
- b provide convincing evidence that blood thinners do not
- (c) do not provide convincing evidence that blood thinners
- (d) do not provide convincing evidence that blood thinners do not

have an impact on survival.

Disjoint (mutually exclusive) events cannot happen at the same time

- For disjoint A and B: P(A and B) = 0
- If A and B are *independent events*, having information on A does not tell us anything about B (and vice versa)
 - If A and B are independent:
 - $P(A \mid B) = P(A)$
 - $P(A \text{ and } B) = P(A) \times P(B)$
- ► General addition rule: P(A or B) = P(A) + P(B) P(A and B)
- ► Bayes' theorem: $P(A | B) = \frac{P(A \text{ and } B)}{P(B)}$

Probability and Conditional Probability

Clicker question

Which of the following is true?

(e) P(neither A nor B) = 1 - 0.06

- Probability trees are useful for organizing information in conditional probability calculations
- They're especially useful in cases where you know P(A | B), along with some other information, and you're asked for P(B | A)
- Using Bayes' theorem

$$P(hypothesis \mid data) = \frac{P(hypothesis and data)}{P(data)}$$
$$= \frac{P(data \mid hypothesis) \times P(hypothesis)}{P(data)}$$

17

Normal and Binomial Distributions

About 30% of human twins are identical and the rest are fraternal. Identical twins are necessarily the same sex – half are males and the other half are females. One-quarter of fraternal twins are both male, one-quarter both female, and one-half are mixes: one male, one female. You have just become a parent of twins and are told they are both girls. Given this information, what is the posterior probability that they are identical?

- ► Two types of probability distributions: discreet and continuous
- Normal distribution is unimodal, symmetric and follows the 68-95-99.7 rule
- ► Z scores serve as a ruler for any distribution

$$Z = \frac{obs - mean}{SD}$$

 Z score: number of standard deviations the observation falls above or below the mean

The Binomial distribution describes the probability of having exactly k successes in n independent trials with probability of success p.

$$P(k \text{ successes in } n \text{ trials}) = \binom{n}{k} p^k (1-p)^{(n-k)}$$

- ► Expected Value: np
- Standard Deviation: $\sqrt{np(1-p)}$
- Shape of the binomial distribution approaches normal when the S-F rule is met

Clicker question

Which of the following probabilities should be calculated using the Binomial distribution?

Probability that

- (a) a basketball player misses 3 times in 5 shots
- (b) train arrives on the time on the third day for the first time
- (c) height of a randomly chosen 5 year old is greater than 4 feet
- (d) a randomly chosen individual likes chocolate ice cream best

20

Why Binomial?

Suppose the probability of a miss for this basketball player is 0.40. What is the probability that she misses 3 times in 5 shots?

One possible scenario is that she misses the first three shots, and makes the last two. The probability of this scenario is:

$$0.4^3 \times 0.6^2 \approx 0.023$$

▶ But this isn't the only possible scenario:

- ► Each one of these scenarios has 3 *M*s and 2 Hs, therefore the probability of each scenario is 0.023.
- Then, the total probability is $10 \times 0.023 = 0.23$.

Suppose the probability of a miss for this basketball player is 0.40. What is the probability that she misses 3 times in 5 shots?

$$\binom{5}{3} \times 0.4^3 \times 0.6^2 = \frac{5!}{3! \times 2!} \times 0.4^3 \times 0.6^2$$

= 10 × 0.023
= 0.23

21

... concisely

Clicker question

Which of the following highlights the correct outcomes for "at most 3 misses in 5 shots"?

- (a) {0, 1, 2, 3, 4, 5}
 (b) {0, 1, 2, 3, 4, 5}
 (c) {0, 1, 2, 3, 4, 5}
 (d) {0, 1, 2, 3, 4, 5}
- (i) {0, 1, 2, 3, 4, 5}

Clicker question

Which of the following is the correct calculation for "P(at most 3 misses in 5 shots)"?

Note: P(k) means P(k misses in 5 shots), calculated using the binomial formula.

(a) P(0) + P(1) + P(2)
(b) P(3) + P(4) + P(5)
(c) 1 - P(0)
(d) 1 - [P(0) + P(1) + P(2)]
(e) 1 - [P(4) + P(5)]

24

Variability in Estimates and CLT

- ► Sample Statistics vary from sample to sample
- CLT describes the shape, center and spread of sampling distributions

$$\bar{x} \sim N\left(\text{mean} = \mu, \text{SE} = \frac{\sigma}{\sqrt{n}}\right)$$

 CLT only applies when independence and sample size/skew conditions are met A housing survey was conducted to determine the price of a typical home in Topanga, CA. The mean price of a house was roughly \$1.3 million with a standard deviation of \$300,000. There were no houses listed below \$600,000 but a few houses above \$3 million.

Clicker question

Can we estimate the probability that the mean of 60 randomly chosen houses in Topanga is more than \$1.4 million?

A housing survey was conducted to determine the price of a typical home in Topanga, CA. The mean price of a house was roughly \$1.3 million with a standard deviation of \$300,000. There were no houses listed below \$600,000 but a few houses above \$3 million.

What is the probability that the mean of 60 randomly chosen houses in Topanga is more than \$1.4 million?

In order to calculate $P(\bar{X} > 1.4 \text{ mil})$, we need to first determine the distribution of \bar{X} . According to the CLT,

$$\bar{X} \sim N\left(\text{mean} = 1.3, \text{SE} = \frac{0.3}{\sqrt{60}} = 0.0387\right)$$

$$P(\bar{X} > 1.4) = P\left(Z > \frac{1.4 - 1.3}{0.0387}\right)$$

= $P(Z > 2.58)$
= $1 - 0.9951 = 0.0049$

- Statistical inference methods based on the CLT require the same conditions as the CLT
- Cl: point estimate \pm margin of error
- Calculate the sample size a priori to achieve desired margin or error

Solve for *n*:

$$ME = z^* \frac{s}{\sqrt{n}}$$