Unit 7: Multiple linear regression1. Introduction to multiple linear regression

Sta 101 - Spring 2019

Duke University, Department of Statistical Science

- Project questions?
- ► TEAMMATES Survey Due Tonight

Dr. Abrahamsen Slides posted at https://stat.duke.edu/courses/Spring19/sta101.002

(1) In MLR everything is conditional on all other variables in the model

All estimates in a MLR for a given variable are conditional on all other variables being in the model.

- Slope:
 - Numerical x: All else held constant, for one unit increase in x_i, y is expected to be higher / lower on average by b_i units.
 - Categorical *x*: All else held constant, the predicted difference in *y* for the baseline and given levels of x_i is b_i.

1

A random sample of 783 observations from the 2012 ACS.

- 1. income: Yearly income (wages and salaries)
- 2. employment: Employment status, not in labor force, unemployed, or employed
- 3. hrs_work: Weekly hours worked
- 4. race: Race, White, Black, Asian, or other
- 5. age: Age
- 6. gender: gender, male or female
- 7. citizens: Whether respondent is a US citizen or not
- 8. time_to_work: Travel time to work
- 9. lang: Language spoken at home, English or other
- 10. married: Whether respondent is married or not
- 11. edu: Education level, hs or lower, college, or grad
- 12. disability: Whether respondent is disabled or not
- 13. birth_qrtr: Quarter in which respondent is born, jan thru mar, apr thru jun, jul thru sep, or oct thru dec

- 1. Interpret the intercept.
- 2. Interpret the slope for hrs_work.
- 3. Interpret the slope for gender.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-15342.76	11716.57	-1.31	0.19
hrs_work	1048.96	149.25	7.03	0.00
raceblack	-7998.99	6191.83	-1.29	0.20
raceasian	29909.80	9154.92	3.27	0.00
raceother	-6756.32	7240.08	-0.93	0.35
age	565.07	133.77	4.22	0.00
genderfemale	-17135.05	3705.35	-4.62	0.00
citizenyes	-12907.34	8231.66	-1.57	0.12
time_to_work	90.04	79.83	1.13	0.26
langother	-10510.44	5447.45	-1.93	0.05
marriedyes	5409.24	3900.76	1.39	0.17
educollege	15993.85	4098.99	3.90	0.00
edugrad	59658.52	5660.26	10.54	0.00
disabilityyes	-14142.79	6639.40	-2.13	0.03
birth_qrtrapr thru jun	-2043.42	4978.12	-0.41	0.68
birth_qrtrjul thru sep	3036.02	4853.19	0.63	0.53
birth_qrtroct thru dec	2674.11	5038.45	0.53	0.60

- ► Each categorical variable, with *k* levels, added to the model results in k-1 parameters being estimated.
- ▶ It only takes k 1 columns to code a categorical variable with k levels as 0/1s.

Citizen: yes / Baseline	no (k = 2) e: no		Race: $(k = 4)$ Baseline: White				
		Respondent	race:black	race:asian	race:other		
Respondent	citizen·ves	1, White	0	0	0		
1 Oitizon	-	2, Black	1	0	0		
1, Ullizen		3, Asian	0	1	0		
Z, INOL-CILIZEN	0	4, Other	0	0	1		

4

Clicker question

All else held constant, how do incomes of those born January thru March compare to those born April thru June?

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-15342.76	11716.57	-1.31	0.19
hrs_work	1048.96	149.25	7.03	0.00
raceblack	-7998.99	6191.83	-1.29	0.20
raceasian	29909.80	9154.92	3.27	0.00
raceother	-6756.32	7240.08	-0.93	0.35
age	565.07	133.77	4.22	0.00
genderfemale	-17135.05	3705.35	-4.62	0.00
citizenyes	-12907.34	8231.66	-1.57	0.12
time_to_work	90.04	79.83	1.13	0.26
langother	-10510.44	5447.45	-1.93	0.05
marriedyes	5409.24	3900.76	1.39	0.17
educollege	15993.85	4098.99	3.90	0.00
edugrad	59658.52	5660.26	10.54	0.00
disabilityyes	-14142.79	6639.40	-2.13	0.03
birth_grtrapr thru jun	-2043.42	4978.12	-0.41	0.68
birth_grtrjul thru sep	3036.02	4853.19	0.63	0.53
birth_grtroct thru dec	2674.11	5038.45	0.53	0.60

All else held constant, those born Jan thru Mar make, on average,

(a) \$2,043.42 **(b)** \$2,043.42 **(d)** \$4978.12 (c) \$4978.12 less more less more than those born Apr thru Jun.

(3) Inference for MLR: model as a whole + individual slopes

- ▶ Inference for the model as a whole: F-test, $df_1 = p$, $df_2 = n - k - 1$
 - $H_0: \ \beta_1 = \beta_2 = \cdots = \beta_k = 0$
 - H_A : At least one of the $\beta_i \neq 0$
- ▶ Inference for each slope: T-test, df = n k 1

- HT:

 H_0 : $\beta_1 = 0$, when all other variables are included in the model H_A : $\beta_1 \neq 0$, when all other variables are included in the model

- CI: $b_1 \pm T_{dt}^{\star}SE_{b_1}$

Model output

Coefficients:						
		Estimate	Std. Error	t value	Pr(> t)	
(Intercept)		-15342.76	11716.57	-1.309	0.190760	
hrs_work		1048.96	149.25	7.028	4.63e-12	***
raceblack		-7998.99	6191.83	-1.292	0.196795	
raceasian		29909.80	9154.92	3.267	0.001135	**
raceother		-6756.32	7240.08	-0.933	0.351019	
age		565.07	133.77	4.224	2.69e-05	***
genderfemale		-17135.05	3705.35	-4.624	4.41e-06	***
citizenyes		-12907.34	8231.66	-1.568	0.117291	
time_to_work		90.04	79.83	1.128	0.259716	
langother		-10510.44	5447.45	-1.929	0.054047	
marriedyes		5409.24	3900.76	1.387	0.165932	
educollege		15993.85	4098.99	3.902	0.000104	***
edugrad		59658.52	5660.26	10.540	< 2e-16	***
disabilityyes		-14142.79	6639.40	-2.130	0.033479	*
birth_qrtrapr	thru jun	-2043.42	4978.12	-0.410	0.681569	
birth_qrtrjul	thru sep	3036.02	4853.19	0.626	0.531782	
birth_qrtroct	thru dec	2674.11	5038.45	0.531	0.595752	
Residual stand	lard erroi	r: 48670 oi	n 766 degre	es of fre	eedom	
(60 observat	ions dele	eted due to	o missingne:	ss)		
Multiple R-squ	ared: 0.	.3126,^^IAd	djusted R-s	quared:	0.2982	
F-statistic: 2	21.77 on 1	16 and 766	DF, p-val	ue: < 2.2	2e-16	

Clicker question

True / False: The F test yielding a significant result means the model fits the data well.

Significance also depends on what else is in the model

Model 1:	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-15342.76	11716.57	-1.309	0.190760	
hrs_work	1048.96	149.25	7.028	4.63e-12	
raceblack	-7998.99	6191.83	-1.292	0.196795	
raceasian	29909.80	9154.92	3.267	0.001135	
raceother	-6756.32	7240.08	-0.933	0.351019	
age	565.07	133.77	4.224	2.69e-05	
genderfemale	-17135.05	3705.35	-4.624	4.41e-06	
citizenyes	-12907.34	8231.66	-1.568	0.117291	
time_to_work	90.04	79.83	1.128	0.259716	
langother	-10510.44	5447.45	-1.929	0.054047	
marriedyes	5409.24	3900.76	1.387	0.165932	<
educollege	15993.85	4098.99	3.902	0.000104	
edugrad	59658.52	5660.26	10.540	< 2e-16	
disabilityyes	-14142.79	6639.40	-2.130	0.033479	
birth_qrtrapr thru ju	in -2043.42	4978.12	-0.410	0.681569	
birth_qrtrjul thru se	p 3036.02	4853.19	0.626	0.531782	
birth_qrtroct thru de	c 2674.11	5038.45	0.531	0.595752	
Model 2: Estimate	Std. Error	t value Pr	(> t)		
(Intercept) -22498.2	8216.2	-2.738 0	.00631		
hrs_work 1149.7	145.2	7.919 7.0	60e-15		
raceblack -7677.5	6350.8	-1.209 0	.22704		
raceasian 38600.2	8566.4	4.506 7.	55e-06		
raceother -7907.1	7116.2	-1.111 0	.26683		
age 533.1	131.2	4.064 5.1	27e-05		
genderfemale -15178.9	3767.4	-4.029 6.	11e-05		
marriedyes 8731.0	3956.8	2.207 0	.02762 <		
*					

Clicker question

True / False: The F test not yielding a significant result means individual variables included in the model are not good predictors of y.

(a) True(b) False

- When any variable is added to the model R^2 increases.
- But if the added variable doesn't really provide any new information, or is completely unrelated, adjusted R² does not increase.

Adjusted R^2

$$R_{adj}^2 = 1 - \left(\frac{SS_{Error}}{SS_{Total}} \times \frac{n-1}{n-k-1}\right)$$

where n is the number of cases and k is the number of sloped estimated in the model.

Analysis of	Analysis of Variance Table						
Response: in	come						
	Df	Sum Sq	Mean Sq	F value		Pr(>F)	
hrs_work	1	3.0633e+11	3.0633e+11	129.3025	<	2.2e-16	***
race	3	7.1656e+10	2.3885e+10	10.0821	1.	608e-06	***
age	1	7.6008e+10	7.6008e+10	32.0836	2.	090e-08	***
gender	1	4.8665e+10	4.8665e+10	20.5418	6.	767e-06	***
citizen	1	1.1135e+09	1.1135e+09	0.4700		0.49319	
time_to_work	1	3.5371e+09	3.5371e+09	1.4930		0.22213	
lang	1	1.2815e+10	1.2815e+10	5.4094		0.02029	*
married	1	1.2190e+10	1.2190e+10	5.1453		0.02359	*
edu	2	2.7867e+11	1.3933e+11	58.8131	<	2.2e-16	***
disability	1	1.0852e+10	1.0852e+10	4.5808		0.03265	*
birth_qrtr	3	3.3060e+09	1.1020e+09	0.4652		0.70667	
Residuals	766	1.8147e+12	2.3691e+09				
Total	782	2.6399e+12					

$$R_{adj}^2 = 1 - \left(\frac{1.8147e + 12}{2.6399e + 12} \times \frac{783 - 1}{783 - 16 - 1}\right) \approx 1 - 0.7018 = 0.2982$$

12

Clicker question

True / False: For a model with at least one predictor, R_{adj}^2 will always be smaller than R^2 .

Clicker question

True / False: Adjusted R^2 tells us the percentage of variability in the response variable explained by the model.

(a) True(b) False

Two predictor variables are said to be collinear when they are correlated, and this *collinearity* (also called *multicollinearity*) complicates model estimation.

Remember: Predictors are also called explanatory or independent variables, so they should be independent of each other.

- We don't like adding predictors that are associated with each other to the model, because often times the addition of such variable brings nothing to the table. Instead, we prefer the simplest best model, i.e. *parsimonious* model.
- In addition, addition of collinear variables can result in unreliable estimates of the slope parameters.
- While it's impossible to avoid collinearity from arising in observational data, experiments are usually designed to control for correlated predictors.
- 16

- ► If the goal is to find the set of statistically predictors of $y \rightarrow$ use p-value selection.
- If the goal is to do better prediction of y → use adjusted R² selection.
- ► Either way, can use backward elimination or forward selection.
- Expert opinion and focus of research might also demand that a particular variable be included in the model.

Clicker question

Using the p-value approach, which variable would you remove from the model first?

		0: I E		B (1:1)
	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-15342.76	11716.57	-1.31	0.19
hrs_work	1048.96	149.25	7.03	0.00
raceblack	-7998.99	6191.83	-1.29	0.20
raceasian	29909.80	9154.92	3.27	0.00
raceother	-6756.32	7240.08	-0.93	0.35
age	565.07	133.77	4.22	0.00
genderfemale	-17135.05	3705.35	-4.62	0.00
citizenyes	-12907.34	8231.66	-1.57	0.12
time_to_work	90.04	79.83	1.13	0.26
langother	-10510.44	5447.45	-1.93	0.05
marriedyes	5409.24	3900.76	1.39	0.17
educollege	15993.85	4098.99	3.90	0.00
edugrad	59658.52	5660.26	10.54	0.00
disabilityyes	-14142.79	6639.40	-2.13	0.03
birth_qrtrapr thru jun	-2043.42	4978.12	-0.41	0.68
birth_qrtrjul thru sep	3036.02	4853.19	0.63	0.53
birth_qrtroct thru dec	2674.11	5038.45	0.53	0.60

b race

(c) time_to_work

Clicker question

Using the p-value approach, which variable would you remove from the model next?

		Estimate	Std. Error	t value	Pr(> t)
	(Intercept)	-14022.48	11137.08	-1.26	0.21
	hrs_work	1045.85	149.05	7.02	0.00
	raceblack	-7636.32	6177.50	-1.24	0.22
	raceasian	29944.35	9137.13	3.28	0.00
	raceother	-7212.57	7212.25	-1.00	0.32
	age	559.51	133.27	4.20	0.00
	genderfemale	-17010.85	3699.19	-4.60	0.00
	citizenyes	-13059.46	8219.99	-1.59	0.11
	time_to_work	88.77	79.73	1.11	0.27
	langother	-10150.41	5431.15	-1.87	0.06
	marriedyes	5400.41	3896.12	1.39	0.17
	educollege	16214.46	4089.17	3.97	0.00
	edugrad	59572.20	5631.33	10.58	0.00
	disabilityyes	-14201.11	6628.26	-2.14	0.03
(a) married			(d) r	ace:bl	ack
b race			@ t	ime_tc	_work
© race:othe	-				

Model Selection

Given *k* predictors, there are 2^k possible models that can be fit. For small *k*, we can compare all possible models; however, when *k* is large fitting all possible models becomes computationally infeasible.

k	2^k
1	2
2	4
3	8
÷	÷
10	1024
÷	÷
20	1048576
÷	÷
100	1.267651e+30

There are several values, in addition to R_{adj}^2 , that are commonly used for model selection. Like R_{adj}^2 , they adjust the reduction in SSE (MSE) to account for the number of predictors in the model.

$$C_{\rho} = \frac{1}{n} \left(\mathsf{SSE} + 2\rho \mathsf{s}^2 \right),$$

 $AIC = \frac{1}{n\hat{\sigma}^2} \left(SSE + 2ps^2 \right),$

► <u>BIC:</u>

► AIC:

▶ Mallow's C_p :

$$BIC = \frac{1}{n} \left(SSE + \log(n)ps^2 \right),$$

where $s = \sqrt{MSE}$. Unlike R_{adj}^2 , smaller values are better for C_p , AIC and BIC.

20

Automated Model Selection

Step-wise model selection methods provide a computationally efficient alternative to trying to fit all possible models. For large k, step-wise methods fit a subset of models that is much smaller than the 2^k possible models.

Forward Step-wise Selection begins with a model consisting of no predictors, and then adds predictors to the model, one-at-a-time, until all of the predictors are in the model. In particular, at each step the variable that gives the greatest **additional** improvement to the fit of the model.

- Forward Step-wise Selection Algorithm:
- 1. Let M_0 denote the *null* model, which contains no predictors
- 2 For $m = 0, 1, \dots, k 1$:
 - (a) Fit the k m models that augment the predictors in M_k with one additional predictor.
 - (b) Choose the **best** among these k m models, and call it M_{m+1}. Here **best** is defined as having the smallest SSE or highest R².
- 3. Select a single best model from among M_1, \ldots, M_p , using R_{adj}^2 , C_p , *AIC* or *BIC*.

21

Step-wise Selection

This is the only left to fit, so we are finished.

The model with NOB and Weight as predictors has the largest R_{adj}^2 , and thus is the model we would select using forward selection.

Backward Step-wise Selection is another step-wise method, which is similar to forward selection. However, unlike forward step-wise selection, it begins will the full least squares model containing all *k* predictors, and then iteratively removes the least useful predictor, one-at-a-time.

Backwards Step-wise Selection Algorithm:

- 1. Let M_k , denote the full model, which contains all p predictors.
- 2. For m = k, k 1, ..., 1:
 - (a) Consider all the m models that contain all but one of the predictors in M_m , for a total of m-1 predictors.
 - (b) Choose the **best** among these *m* models, and call it M_{m-1} . Here **best** is defined as having the smallest *SSE* or highest R^2
- 3. Select a single best model among M_0, \ldots, M_m using R_{adj}^2, C_p , *AIC* or *BIC*.

28

Step 1: Fit the model with all predictors

▶ NOB, Weight, M:

Model Summary							
S	R-sq	R-sq(adj)	R-sq(pred)				
0.0107174	95.28%	94.10%	91.08%				

Backward Selection for BAC Data

Step 2: Fit each model by removing removing one predictor

► NOB, Weight:

Model Summary

S R-sq R-sq(adj) R-sq(pred) 0.0104104 95.18% 94.44% 92.01%

► NOB, M:

Model Summary

S R-sq R-sq(adj) R-sq(pred) 0.0181633 85.32% 83.07% 74.61%

► Weight, M

Model Summary

S R-sq R-sq(adj) R-sq(pred) 0.0470333 10.39% 0.00% 0.00%

The model with NOB and Weight has the largest R^2 so we keep that model.

Backward Selection for BAC Data

Step 3: Fit two models by removing each predictor from the NOB, Weight model

► NOB:

	Model Summary				
	S 0.0204410	R-sq 79.98%	R-sq(adj) 78.55%	R-sq(pred) 70.51%	
Weight:					
	Model Sum	nary			
	S 0.0451373	R−sq 2.40%	R-sq(adj) 0.00%	R-sq(pred) 0.00%	

NOB has the largest R^2 so that is the model we keep. We are down to the single predictor model, so we are done.

Summary:

Predictors	R^2_{adj}
NOB, Weight, M	94.10%
NOB, Weight	94.44%
NOB	78.55%

NOB, Weight has the largest R_{adj}^2 , thus it is the model chose by backward selection.

Remarks:

- Best subset (fitting all models), forward step-wise, and backward step-wise selection approaches generally give similar but not identical models.
- As another alternative, hybrid version of forward and backward stepwise selection are available, in which variables are added to the model sequentially, similar to forward selection.

However, after adding each new variable, the method may also remove any variables that no longer provide an improvement in the model fit.

Hybrid methods more closely mimic best subset selection while retaining the computational advantages of forward and backward stepwise selection.

32

(7) Conditions for MLR are (almost) the same as conditions for SLR

Important regardless of doing inference

► Linearity → randomly scattered residuals around 0 in the residuals plot

Important for doing inference

- ► Nearly normally distributed residuals → histogram or normal probability plot of residuals
- ► Constant variability of residuals (homoscedasticity) → no fan shape in the residuals plot
- ► Independence of residuals (and hence observations) → depends on data collection method, often violated for time-series data
- Also important to make sure that your explanatory variables are not collinear

Clicker question

Which of the following is the appropriate plot for checking the homoscedasticity condition in MLR?

- (a) scatterplot of residuals vs. \hat{y}
- (b) scatterplot of residuals vs. x
- (c) histogram of residuals
- (d) normal probability plot of residuals
- (a) scatterplot of residuals vs. order of data collection

- 1. In MLR everything is conditional on all other variables in the model
- 2. Categorical predictors and slopes for (almost) each level
- 3. Inference for MLR: model as a whole + individual slopes
- 4. Adjusted R^2 applies a penalty for additional variables
- 5. Avoid collinearity in MLR
- 6. Model selection criterion depends on goal: significance vs. prediction
- 7. Conditions for MLR are (almost) the same as conditions for SLR