
Web APIsWeb APIs

Statistical Computing &Statistical Computing &
ProgrammingProgramming

Shawn SantoShawn Santo

1 / 241 / 24

Supplementary materials

Full video lecture available in Zoom Cloud Recordings

Additional resources

HTTP tutorial
httr vignette
Public APIs

2 / 24

https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-1--net-31177
https://cran.r-project.org/web/packages/httr/vignettes/quickstart.html
https://github.com/public-apis/public-apis

IntroductionIntroduction

3 / 243 / 24

Application Programming
Interface

An API is a messenger that takes requests and returns responses. It allows for interaction
between applications, databases, and devices.

If you want to

embed a map on your website, you'll probably use Google's API

embed a tweet on your website, you'll probably use Twitter's API

trade stocks in Python or R, you'll probably use your broker's API

create 54 repositories named exam_01-[github_name], you'll probably use GitHub's
API

There are thousands of APIs that exist. Most are integrated in a client-server framework.

4 / 24

https://www.programmableweb.com/apis/directory

Traditional framework

Requests return HTML pages that are relatively easy to scrape.

5 / 24

Client-server framework with an
API

The API facilitates communication between the web app and server/database.

6 / 24

ProtocolsProtocols

7 / 247 / 24

Protocols

A computer protocol is a set of rules that govern how multiple computers communicate.

IP: Internet Protocol

FTP: File Transfer Protocol

HTTP: Hyper Text Transfer Protocol

The key protocol that governs data transfer over the internet
Allows HTML, CSS, JS to be transferred from a server to your browser

HTTPS: Hyper Text Transfer Protocol Secure

Why do we care?

Web APIs are built on HTTP. Since so much of what we do is built over the web it is
natural for web APIs to follow this protocol.

8 / 24

A client makes a request and includes

a uniform resource locator (URL)

https://stat.duke.edu/

a method

GET, POST, PUT, DELETE, ...

headers

meta-information about the
request

a body

possible data to send to the server

Source: https://zapier.com/learn/apis/

HTTP requests

9 / 24

https://zapier.com/learn/apis/

HTTP request, a closer look

URL and method

Request URL: https://stat.duke.edu/
Request Method: GET

Headers

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,
 image/avif,image/webp,image/apng,*/*;
 q=0.8,application/signed-exchange;v=b3;q=0.9
Accept-Encoding: gzip, deflate, br
Accept-Language: en-US,en;q=0.9
Cache-Control: max-age=0
Connection: keep-alive
Cookie: _ga=GA1.2.1417829868.1601583943;
 _gid=GA1.2.1516354824.1601583943;
 _gat_gtag_UA_8078579_35=1
Host: stat.duke.edu
If-None-Match: "1601583940"
Sec-Fetch-Dest: document
Sec-Fetch-Mode: navigate
Sec-Fetch-Site: none
Sec-Fetch-User: ?1
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)
 AppleWebKit/537.36 (KHTML, like Gecko)
 Chrome/85.0.4183.121 Safari/537.36 10 / 24

A server response includes

a three-digit status code

1xx indicates an informational
message only
2xx indicates success of some
kind
3xx redirects the client to another
URL
4xx indicates an error on the
client's part
5xx indicates an error on the
server's part

headers

meta-information about the
response

a body

data from the server

Source: https://zapier.com/learn/apis/

HTTP responses

11 / 24

https://zapier.com/learn/apis/

HTTP response, a closer look

Status code

Status Code: 200 OK

Headers

Cache-Control: max-age=1800, public
Connection: Keep-Alive
Content-language: en
Content-Type: text/html; charset=UTF-8
Date: Mon, 08 Mar 2021 21:22:11 GMT
ETag: "1601583940"
Expires: Sun, 19 Nov 1978 05:00:00 GMT
Keep-Alive: timeout=5, max=87
Last-Modified: Mon, 08 Mar 2021 21:22:11 GMT
Link: <https://stat.duke.edu/>; rel="shortlink",
 <https://stat.duke.edu/>; rel="canonical"
Link: <https://stat.duke.edu/front>; rel="revision"
Server: Apache
 ⋮
X-Frame-Options: SAMEORIGIN
X-Generator: Drupal 8 (https://www.drupal.org)
X-UA-Compatible: IE=edge

12 / 24

Example with package httr

library(httr)

resp <- GET("https://stat.duke.edu")
str(resp, max.level = 1)

#> List of 10
#> $ url : chr "https://stat.duke.edu"
#> $ status_code: int 200
#> $ headers :List of 18
#> ..- attr(*, "class")= chr [1:2] "insensitive" "list"
#> $ all_headers:List of 1
#> $ cookies :'data.frame': 0 obs. of 7 variables:
#> $ content : raw [1:95073] 3c 21 44 4f ...
#> $ date : POSIXct[1:1], format: "2021-03-08 21:41:02"
#> $ times : Named num [1:6] 0 0.00136 0.00389 0.01872 0.05689 ...
#> ..- attr(*, "names")= chr [1:6] "redirect" "namelookup" "connect" "pretransfe
#> $ request :List of 7
#> ..- attr(*, "class")= chr "request"
#> $ handle :Class 'curl_handle' <externalptr>
#> - attr(*, "class")= chr "response"

13 / 24

content(resp, "parsed")

#> {html_document}
#> <html lang="en" dir="ltr" prefix="content: http://purl.org/rss/1.0/modules/cont
#> [1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UTF-8
#> [2] <body class="exclude-node-title layout-no-sidebars page-node-27 path-fron

If you are unable to scrape data with rvest, package httr is a great alternative before
using RSelenium.

14 / 24

More on web APIsMore on web APIs

15 / 2415 / 24

RESTful APIs

REpresentational State Transfer

describes an architectural style for web services (not a standard)

6 guiding principles (constraints)

all communication via http requests

a REST API should specify what it can provide and how to use it, details such as query
parameters, response format, request limitations, public use/API keys, method
(GET/POST/PUT/DELETE), language support, etc

16 / 24

Methods

GET - fetch a resource

POST - create a new resource

PUT - update a resource

DELETE - delete a resource

Less common verbs: HEAD, TRACE, OPTIONS

17 / 24

More on URLs

Source: HTTP: The Protocol Every Web Developer Must Know

also for https

default port is 80 for http and 443 for https, typically not displayed

resource path is the local path to the resource on the server

Examples:

https://api.openbrewerydb.org/breweries

https://api.openbrewerydb.org/breweries?by_state=new+york
18 / 24

http://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-1--net-31177

Query strings

Provides named parameter(s) and value(s) that modify the behavior of the resulting page.

Format generally follows:

field1=value1&field2=value2&field3=value3

Some quick examples,

https://api.petfinder.com/v2/animals?type=dog&page=2

https://app.ticketmaster.com/discovery/v2/events.json?
attractionId=K8vZ917Gku7&countryCode=CA&apikey=RpD2faqwk2uio290

19 / 24

URL encoding

This will often be handled automatically by your web browser or other tool, but it is useful to
know a bit about what is happening.

Spaces will get encoded as '+' or '%20'.

https://api.openbrewerydb.org/breweries?
by_state=new+york

Certain characters are reserved and will be replaced with the percent-encoded version
within a URL.

! # $ & ' ()

%21 %23 %24 %26 %27 %28 %29

* + , / : ; =

%2A %2B %2C %2F %3A %3B %3D

? @ []

%3F %40 %5B %5D

Characters that cannot be converted are replaced with HTML numeric character
references 20 / 24

URLencode("https://api.openbrewerydb.org/breweries?by_state=new york")

#> [1] "https://api.openbrewerydb.org/breweries?by_state=new%20york"

URLdecode("https://api.openbrewerydb.org/breweries?by_state=new%20york")

#> [1] "https://api.openbrewerydb.org/breweries?by_state=new york"

URLencode("!#$&'()*+,/]", reserved = TRUE)

#> [1] "%21%23%24%26%27%28%29%2A%2B%2C%2F%5D"

URLdecode(URLencode("!#$&'()*+,/]", reserved = TRUE))

#> [1] "!#$&'()*+,/]"

URLencode("μ")

#> [1] "%CE%BC"

URLdecode("%CE%BC")

#> [1] "μ"

21 / 24

JSON: JavaScript Object Notation

When exchanging data between a browser and a server, the data can only be text. JSON is
the typical format and it is conveniently structured to be human and machine readable.

R package jsonlite has some functions that will make it easy to get JSON data into
a workable form in R.

read_json() - read in JSON data as a list

fromJSON() - read in JSON trying to simplify it to a data frame

To preview JSON data in your browser, check out https://codebeautify.org/jsonviewer

22 / 24

https://codebeautify.org/jsonviewer

Exercise

Use the Open Brewery API to answer the following questions.

1. How many breweries are located in Durham, NC?

2. Which city in North Carolina has the most micro breweries? How many micro
breweries do they have?

3. In what cities are Founders, Yuengling, and Boulevard brewed?

23 / 24

https://www.openbrewerydb.org/

References

1. An Introduction to APIs. (2021). https://zapier.com/learn/apis/

2. Podila, P. (2013). HTTP: The Protocol Every Web Developer Must Know - Part 1.
https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-
part-1--net-31177

3. Tools for Working with URLs and HTTP. (2021). https://httr.r-lib.org////index.html

24 / 24

https://zapier.com/learn/apis/
https://code.tutsplus.com/tutorials/http-the-protocol-every-web-developer-must-know-part-1--net-31177
https://httr.r-lib.org////index.html

