
makemake

Statistical Computing &Statistical Computing &
ProgrammingProgramming

Shawn SantoShawn Santo

1 / 211 / 21

Supplementary materials

Full video lecture available in Zoom Cloud Recordings

Additional resources

minimal make by Karl Broman
Why Use Make by Mike Bostock
GNU make manual
Make for Windows

2 / 21

http://kbroman.org/minimal_make/
https://bost.ocks.org/mike/make/
https://www.gnu.org/software/make/manual/make.html
http://gnuwin32.sourceforge.net/packages/make.htm

make

Automatically build software / libraries / documents by specifying dependencies via a
file named Makefile

provide instructions for what you want to build and how it can be built

Originally created by Stuart Feldman in 1976 at Bell Labs

Almost universally available (all flavors of UNIX / Linux / OSX)

Check for make with

make --version

#> GNU Make 3.81
#> Copyright (C) 2006 Free Software Foundation, Inc.
#> This is free software; see the source for copying conditions.
#> There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A
#> PARTICULAR PURPOSE.
#>
#> This program built for i386-apple-darwin11.3.0

3 / 21

Makefile structure

target: prerequisite_1 prerequisite_2 ...
 recipe
 ...
 ...

target is the file you want to generate

prerequisite_* are the files the target file depends on

a recipe is an action that make carries out, commands you run in the terminal

Alternatively,

targetfile: sourcefile
 command
 ...
 ...

4 / 21

Makefile structure

A more realistic structure:

target: prerequisite_1 prerequisite_2 ...
 recipe
 ...
 ...

prerequisite_1: prerequisite_1a prerequisite_1b ...
 recipe
 ...
 ...

prerequisite_2: prerequisite_2a prerequisite_2b ...
 recipe
 ...
 ...

5 / 21

Example

paper.html: paper.Rmd Fig1/fig.png Fig2/fig.png
 Rscript -e "library(rmarkdown);render('paper.Rmd')"

Fig1/fig.png: Fig1/fig.R
 cd Fig1; Rscript fig.R

Fig2/fig.png: Fig2/fig.R
 cd Fig2; Rscript fig.R

What are the targets and dependencies?

The first target is the default goal of what make tries to create.

6 / 21

Another example

hd_cov_test_band.o: hd_cov_test_band.c
 export PKG_CFLAGS="-fopenmp"
 export PKG_LIBS="-lgomp"
 R CMD SHLIB hd_cov_test_band.c

clean:
 rm hd_cov_test_band.o
 rm hd_cov_test_band.so

.PHONY: clean

7 / 21

How make processes a Makefile

1. Once you have a Makefile written, type make in your terminal.

make

2. make looks for files named GNUmakefile, makefile, or Makefile.

3. The make program uses the Makefile data base and last-modification times of the
files to decide which of the files need to be updated.

4. For each file that needs to be updated, the recipes are executed.

hd_cov_test_band.o: hd_cov_test_band.c
 export PKG_CFLAGS="-fopenmp"
 export PKG_LIBS="-lgomp"
 R CMD SHLIB hd_cov_test_band.c

8 / 21

Understanding make

Consider the Makefile below. I run make. Later, I change some code in Fig2/fig.R
and save the file. What is updated when I run make again?

paper.html: paper.Rmd Fig1/fig.png Fig2/fig.png
 Rscript -e "library(rmarkdown);render('paper.Rmd')"

Fig1/fig.png: Fig1/fig.R
 cd Fig1;Rscript fig.R

Fig2/fig.png: Fig2/fig.R
 cd Fig2;Rscript fig.R

What if I only change some text in paper.Rmd and then save the file?

9 / 21

Makefile tips

1. Name your file Makefile.

2. Use tab to add recipes.

3. Use # to add comments to your Makefile.

4. Split long lines with \.

5. Have one target precede each :.

6. Remember, recipes are meant to be interpreted by the shell and thus are written using
shell syntax.

7. Use semicolons to specify a sequence of recipes to be executed in a single shell
invocation.

10 / 21

makemake demo demo

11 / 2111 / 21

Some advanced Some advanced makemake

12 / 2112 / 21

Variables

Like R, or other languages, we can define variables.

Fig1/fig.png: Fig1/fig.R
 cd Fig1;Rscript fig.R

R_OPTS=--no-save --no-restore --no-site-file --no-init-file --no-environ

Fig1/fig.png: Fig1/fig.R
 cd Fig1;Rscript $(R_OPTS) fig.R

Typically, we use uppercase letters for variable names.

Refer to a variable's value by ${MY_VARIABLE} or $(MY_VARIABLE).

Do not use :, #, =, or a white space in your variable's name.

13 / 21

Built-in variables

Variable Description

$@ the file name of the target

$< the name of the first dependency

$^ the names of all dependencies

$(@D) the directory part of the target

$(@F) the file part of the target

$(<D) the directory part of the first dependency

$(<F) the file part of the first dependency

14 / 21

Pattern rules

Often we want to build several files in the same way. For these cases we can use % as a
special wildcard character to match both targets and dependencies.

Rather than our Makefile be

Fig1/fig.png: Fig1/fig.R
 cd Fig1; Rscript fig.R

Fig2/fig.png: Fig2/fig.R
 cd Fig2; Rscript fig.R

we can use built-in variables and patterns to have

Fig%/fig.png: Fig%/fig.R
 cd $(<D);Rscript $(<F)

% can match any nonempty substring.

The substring that the % matches is called the stem.

A prerequisite with % has the same stem that was matched by the % in the target.

15 / 21

Phony targets

A phony target is one that is not really the name of a file; rather it is just a name for a recipe
to be executed when you make an explicit request. There are two reasons to use a phony
target: to avoid a conflict with a file of the same name, and to improve performance.

For example,

clean:
 rm *.log

would remove all .log files when make clean is run. However, a problem can arise if
we ever have a file named clean.

To make this more robust we can configure it as

.PHONY: clean
clean:
 rm *.log

Command make clean will remove the log files regardless of whether a file named
clean exists.

16 / 21

Another common phony target is all. Its prerequisites are all the individual programs we
want to build. For example:

.PHONY: all
all: prog1 prog2 prog3

prog1: prog1.o utils.o
 cc -o prog1 prog1.o utils.o

prog2: prog2.o
 cc -o prog2 prog2.o

prog3: prog3.o sort.o utils.o
 cc -o prog3 prog3.o sort.o utils.o

Use make to build all the programs. Or build a subset by specifying each program's name:
make prog1 prog2.

17 / 21

Fancy Makefile

Our original example:

paper.html: paper.Rmd Fig1/fig.png Fig2/fig.png
 Rscript -e "library(rmarkdown);render('paper.Rmd')"

Fig1/fig.png: Fig1/fig.R
 cd Fig1;Rscript fig.R

Fig2/fig.png: Fig2/fig.R
 cd Fig2;Rscript fig.R

paper.html: paper.Rmd Fig1/fig.png Fig2/fig.png
 Rscript -e "library(rmarkdown);render('paper.Rmd')"

Fig%/fig.png: Fig%/fig.R
 cd $(<D);Rscript $(<F)

clean:
 rm paper.html
 rm -f Fig*/*.png

.PHONY: clean

18 / 21

Another fancier Makefile

SRC = $(wildcard *.Rmd)
TAR_PDF = $(SRC:.Rmd=.pdf)
TAR_HTML = $(SRC:.Rmd=.html)

all: $(TAR_PDF) $(TAR_HTML)

%.pdf: %.html
 Rscript -e "pagedown::chrome_print('$(<F)')"

%.html: %.Rmd
 Rscript -e "rmarkdown::render('$(<F)')"

clean:
 rm *.pdf
 rm *.html

.PHONY: clean all

19 / 21

Exercise

Create a Makefile for the R project in the learn_make repository on GitHub. The target
goal should be learn_make.html. The below steps will help guide you in creating
Makefile.

1. Diagram the dependency structure on paper.

2. First, create a Makefile that only knits the Rmd file and produces the
learn_make.html file.

3. Next, add rules for the data dependencies.

4. Add phony clean_html and clean_data targets that delete the html file and
delete the rds files in data/, respectively.

5. Revise your Makefile with built-in variables or other useful features.

20 / 21

https://github.com/sta323-523-sp21/learn_make

References

1. Broman, K. (2020). minimal make. http://kbroman.org/minimal_make/.

2. GNU make. (2020). https://www.gnu.org/software/make/manual/make.html#toc-An-
Introduction-to-Makefiles.

21 / 21

http://kbroman.org/minimal_make/
https://www.gnu.org/software/make/manual/make.html#toc-An-Introduction-to-Makefiles

