
Databases and SQLDatabases and SQL

Statistical Computing &Statistical Computing &
ProgrammingProgramming

Shawn SantoShawn Santo

1 / 331 / 33

Supplementary materials

Full video lecture available in Zoom Cloud Recordings

Additional resources

dbplyr vignette

2 / 33

https://dbplyr.tidyverse.org/index.html

Databases

A database is a collection of data typically stored in a computer system. It is controlled by a
database management system (DBMS). There may be applications associated with them,
such as an API.

Types of DBMS: MySQL, Microsoft Access, Microsoft SQL Server, FileMaker Pro, Oracle
Database, and dBASE.

Types of databases: Relational, object-oriented, distributed, NoSQL, graph, and more.

3 / 33

DBMS bene�ts

Lower storage and retrieval costs

Easy data access

Backup and recovery

Data consistency

4 / 33

Relational database management
system

A system that governs a relational database, where data is identified and accessed in
relation to other data in the database.

Relational databases generally organize data into tables comprised of fields and
records.

Many relational database management systems (RDBMS) use SQL to access data. More
on SQL in the next slide.

5 / 33

SQL

SQL stands for Structured Query Language.

It is an American National Standards Institute standard computer language for accessing
and manipulating RDBMS.

There are different versions of SQL, but to be compliant with the American National
Standards Institute the version must support the key query verbs (functions).

6 / 33

Big picture

Source: https://www.w3resource.com/sql/tutorials.php
7 / 33

https://www.w3resource.com/sql/tutorials.php

Translation to SQLTranslation to SQL

8 / 338 / 33

Package dbplyr

Package dbplyr allows you to query a database by automatically generating SQL queries.
We'll use it as a starting point to see the connection between dplyr verbs (functions) and
SQL verbs before we transition using SQL.

To get started, load the packages.

library(dplyr)
library(dbplyr)
library(DBI)

We'll use data from nycflights13::airports to create a table in a temporary in-
memory database.

9 / 33

Creating an in-memory database

We'll create an in-memory SQLite database and copy the airports tibble as a table into the
database.

con <- dbConnect(RSQLite::SQLite(), dbname = ":memory:")

copy_to(con, df = nycflights13::airports, name = "airports")
dbListTables(con)

#> [1] "airports" "sqlite_stat1" "sqlite_stat4"

Retrieve a single table from our in-memory database.

airports_db <- tbl(con, "airports")

10 / 33

airports_db

#> # Source: table<airports> [?? x 8]
#> # Database: sqlite 3.33.0 [:memory:]
#> faa name lat lon alt tz dst tzone
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
#> 1 04G Lansdowne Airport 41.1 -80.6 1044 -5 A America/New_Yo…
#> 2 06A Moton Field Municipal A… 32.5 -85.7 264 -6 A America/Chicago
#> 3 06C Schaumburg Regional 42.0 -88.1 801 -6 A America/Chicago
#> 4 06N Randall Airport 41.4 -74.4 523 -5 A America/New_Yo…
#> 5 09J Jekyll Island Airport 31.1 -81.4 11 -5 A America/New_Yo…
#> 6 0A9 Elizabethton Municipal … 36.4 -82.2 1593 -5 A America/New_Yo…
#> 7 0G6 Williams County Airport 41.5 -84.5 730 -5 A America/New_Yo…
#> 8 0G7 Finger Lakes Regional A… 42.9 -76.8 492 -5 A America/New_Yo…
#> 9 0P2 Shoestring Aviation Air… 39.8 -76.6 1000 -5 U America/New_Yo…
#> 10 0S9 Jefferson County Intl 48.1 -123. 108 -8 A America/Los_An…
#> # … with more rows

What is different when compared to a tibble object?

11 / 33

Example

NYC flights to airports by time zone.

airport_timezone <- airports_db %>%
 group_by(tzone) %>%
 summarise(count = n())

airport_timezone

#> # Source: lazy query [?? x 2]
#> # Database: sqlite 3.33.0 [:memory:]
#> tzone count
#> <chr> <int>
#> 1 <NA> 3
#> 2 America/Anchorage 239
#> 3 America/Chicago 342
#> 4 America/Denver 119
#> 5 America/Los_Angeles 176
#> 6 America/New_York 519
#> 7 America/Phoenix 38
#> 8 America/Vancouver 2
#> 9 Asia/Chongqing 2
#> 10 Pacific/Honolulu 18

12 / 33

airport_timezone %>%
 show_query()

#> <SQL>
#> SELECT `tzone`, COUNT(*) AS `count`
#> FROM `airports`
#> GROUP BY `tzone`

airports_db %>%
 group_by(tzone) %>%
 summarise(count = n())

#> # Source: lazy query [?? x 2]
#> # Database: sqlite 3.33.0 [:memory:]
#> tzone count
#> <chr> <int>
#> 1 <NA> 3
#> 2 America/Anchorage 239
#> 3 America/Chicago 342
#> 4 America/Denver 119
#> 5 America/Los_Angeles 176
#> 6 America/New_York 519
#> 7 America/Phoenix 38
#> 8 America/Vancouver 2
#> 9 Asia/Chongqing 2
#> 10 Pacific/Honolulu 18

Translation to SQL

What are the dplyr translations to SQL?

13 / 33

Exercise

What are the corresponding SQL verbs based on the dplyr structure below?

airports_db %>%
 filter(lat >= 33.7666, lat <= 36.588,
 lon >= -84.3201, lon <= -75.4129) %>%
 arrange(desc(alt)) %>%
 select(name, alt)

14 / 33

Limitations

airports_db %>%
 filter(lat >= 33.7666, lat <= 36.588,
 lon >= -84.3201, lon <= -75.4129) %>%
 arrange(desc(alt)) %>%
 select(name, alt) %>%
 slice(1:3)

Error in UseMethod("slice_") :
 no applicable method for 'slice_' applied to an object of class
 "c('tbl_SQLiteConnection', 'tbl_dbi', 'tbl_sql', 'tbl_lazy', 'tbl')"

airports_db %>%
 filter(lat >= 33.7666, lat <= 36.588,
 lon >= -84.3201, lon <= -75.4129) %>%
 select(name, alt) %>%
 filter(stringr::str_detect(name, pattern = "Raleigh"))

Error in stri_detect_regex(string, pattern, negate = negate, opts_regex =
 object 'name' not found

15 / 33

Lazy remote queries

airport_car <- airports_db %>%
 filter(lat >= 33.7666, lat <= 36.588,
 lon >= -84.3201, lon <= -75.4129) %>%
 arrange(desc(alt)) %>%
 select(name, alt) %>%
 collect()

Data is never pulled into R unless you explicitly ask for it with collect().

Work is delayed until the moment it is required. Until I ask for airport_car,
nothing is communicated to the database.

16 / 33

Close connection

DBI::dbDisconnect(con)

17 / 33

SQL and RSQL and R

18 / 3318 / 33

Create a database

Set up a relational database management system and include some baseball data from
package Lahman.

library(DBI)
library(Lahman)

con <- dbConnect(RSQLite::SQLite(), ":memory:")
dbWriteTable(con, name = "batting", value = Batting)
dbWriteTable(con, name = "pitching", value = Pitching)
dbWriteTable(con, name = "teams", value = Teams)

19 / 33

Seeing tables and �elds

dbListTables(con)

#> [1] "batting" "pitching" "teams"

dbListFields(con, name = "teams") %>% head()

#> [1] "yearID" "lgID" "teamID" "franchID" "divID" "Rank"

dbListFields(con, name = "pitching")

#> [1] "playerID" "yearID" "stint" "teamID" "lgID" "W"
#> [7] "L" "G" "GS" "CG" "SHO" "SV"
#> [13] "IPouts" "H" "ER" "HR" "BB" "SO"
#> [19] "BAOpp" "ERA" "IBB" "WP" "HBP" "BK"
#> [25] "BFP" "GF" "R" "SH" "SF" "GIDP"

20 / 33

Common SQL query structure

Main verbs to query data tables:

SELECT columns or computations
 FROM table
 WHERE condition
 GROUP BY columns
 HAVING condition
 ORDER BY column [ASC | DESC]
 LIMIT offset, count

WHERE, GROUP BY, HAVING, ORDER BY, LIMIT are all optional. Primary computations:
MIN, MAX, COUNT, SUM, AVG.

We can perform these queries with dbGetQuery() and paste().

21 / 33

Verb connections

SQL dplyr

SELECT select()

FROM Pipe in data frame

WHERE filter() pre-aggregation/calculation

GROUP_BY group_by()

HAVING filter() post-aggregation/calculation

ORDER BY arrange() with possibly a desc()

LIMIT slice(1:n)

22 / 33

Examples

Pull some attendance numbers

dbGetQuery(con, paste("SELECT yearID, franchID, attendance",
 "FROM teams",
 "LIMIT 5"))

#> yearID franchID attendance
#> 1 1871 BNA NA
#> 2 1871 CNA NA
#> 3 1871 CFC NA
#> 4 1871 KEK NA
#> 5 1871 NNA NA

dbGetQuery(con, paste("SELECT yearID, franchID, attendance",
 "FROM teams",
 "WHERE yearID >= 2000",
 "LIMIT 5"))

#> yearID franchID attendance
#> 1 2000 ANA 2066982
#> 2 2000 ARI 2942251
#> 3 2000 ATL 3234304
#> 4 2000 BAL 3297031
#> 5 2000 BOS 2585895

23 / 33

What happens if we change the order or query structure?

dbGetQuery(con, paste("FROM teams",
 "SELECT yearID, franchID, attendance",
 "WHERE yearID >= 2000",
 "LIMIT 5"))

#> Error: near "FROM": syntax error

24 / 33

Get the average yearly attendance for each franchise since 2010 and show the top 10.

dbGetQuery(con, paste("SELECT franchID, AVG(attendance)",
 "FROM teams",
 "WHERE yearID >= 2010",
 "ORDER BY AVG(attendance) DESC",
 "LIMIT 10"))

#> franchID AVG(attendance)
#> 1 ARI 2422734

What went wrong?

25 / 33

Get the average yearly attendance for each franchise since 2010 and show the top 10.

dbGetQuery(con, paste("SELECT franchID, AVG(attendance)",
 "FROM teams",
 "WHERE yearID >= 2010",
 "GROUP BY franchID",
 "ORDER BY AVG(attendance) DESC",
 "LIMIT 10"))

#> franchID AVG(attendance)
#> 1 LAD 3641336
#> 2 STL 3386500
#> 3 NYY 3383453
#> 4 SFG 3240634
#> 5 ANA 3068207
#> 6 CHC 2988555
#> 7 BOS 2950688
#> 8 COL 2796172
#> 9 MIL 2726686
#> 10 PHI 2686706

Note that we do not need yearID and attendance in our SELECT line. When do you
think the SELECT clause is evaluated?

26 / 33

SQL order of execution

Order Verb

1 FROM

2 WHERE

3 GROUP BY

4 HAVING

5 SELECT

6 ORDER BY

7 LIMIT

How is this different from dplyr?

27 / 33

Which players had at least 300 strikeouts (SO) in a season between 1960 and 1990?

dbGetQuery(con, paste("SELECT playerID, yearID, MAX(SO) as maxK",
 "FROM pitching",
 "WHERE yearID >= 1960 AND yearID <= 1990",
 "GROUP BY playerID, yearID",
 "HAVING maxK > 300",
 "ORDER BY maxK DESC"))

#> playerID yearID maxK
#> 1 ryanno01 1973 383
#> 2 koufasa01 1965 382
#> 3 ryanno01 1974 367
#> 4 ryanno01 1977 341
#> 5 ryanno01 1972 329
#> 6 ryanno01 1976 327
#> 7 mcdowsa01 1965 325
#> 8 koufasa01 1966 317
#> 9 richajr01 1979 313
#> 10 carltst01 1972 310
#> 11 lolicmi01 1971 308
#> 12 koufasa01 1963 306
#> 13 scottmi03 1986 306
#> 14 mcdowsa01 1970 304
#> 15 richajr01 1978 303
#> 16 bluevi01 1971 301
#> 17 ryanno01 1989 301

Can we restructure the query?

28 / 33

Which players had at least 300 strikeouts (SO) in a season between 1960 and 1990?

dbGetQuery(con, paste("SELECT playerID, yearID, MAX(SO) as maxK",
 "FROM pitching",
 "HAVING maxK > 300",
 "GROUP BY playerID, yearID",
 "WHERE yearID >= 1960 AND yearID <= 1990",
 "ORDER BY maxK DESC"))

#> Error: near "GROUP": syntax error

dbGetQuery(con, paste("SELECT yearID, franchID, attendance",
 "FROM teams",
 "HAVING yearID >= 2000",
 "LIMIT 5"))

#> Error: a GROUP BY clause is required before HAVING

29 / 33

SQL arithmetic and comparison
operators

SQL supports the standard +, -, *, /, and % (modulo) arithmetic operators and the following
comparison operators.

Operator Description

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

30 / 33

SQL logical operators

Operator Description

ALL TRUE if all of the subquery values meet the condition

AND TRUE if all the conditions separated by AND is TRUE

ANY TRUE if any of the subquery values meet the condition

BETWEEN TRUE if the operand is within the range of comparisons

EXISTS TRUE if the subquery returns one or more records

IN TRUE if the operand is equal to one of a list of expressions

LIKE TRUE if the operand matches a pattern

NOT Displays a record if the condition(s) is NOT TRUE

OR TRUE if any of the conditions separated by OR is TRUE

SOME TRUE if any of the subquery values meet the condition

31 / 33

Exercises

1. Add Salaries from package Lahman as a table to your in-memory database.

2. Compute the team salaries for each team in 2016 and display the 5 teams with the
highest payroll. Which team had the lowest payroll in that year?

3. Who were the top 10 teams according to win percentage since 1990? Hint:
https://www.w3schools.com/sql/func_sqlserver_cast.asp

4. How would you combine the batting and salaries tables to match up the players and
years? Take a look at ?dplyr::join. Try to combine the R data frame objects
Batting and Salaries.

32 / 33

https://www.w3schools.com/sql/func_sqlserver_cast.asp

References

1. Introduction to dbplyr. (2021). https://cran.r-
project.org/web/packages/dbplyr/vignettes/dbplyr.html

2. SQL Tutorial - w3resource. (2021). https://www.w3resource.com/sql/tutorials.php.

33 / 33

https://cran.r-project.org/web/packages/dbplyr/vignettes/dbplyr.html
https://www.w3resource.com/sql/tutorials.php

