
SQLite, sqlite3, and moreSQLite, sqlite3, and more

Statistical Computing &Statistical Computing &
ProgrammingProgramming

Shawn SantoShawn Santo

1 / 401 / 40

Supplementary materials

Full video lecture available in Zoom Cloud Recordings

Additional resources

Databases using R
SQL Tutorial
Package nodbi vignette

2 / 40

https://db.rstudio.com/
https://www.w3resource.com/sql/tutorials.php
https://docs.ropensci.org/nodbi/

RecallRecall

3 / 403 / 40

Databases

A database is a collection of data typically stored in a computer system. It is controlled by a
database management system (DBMS). There may be applications associated with them,
such as an API.

Types of DBMS: MySQL, Microsoft Access, Microsoft SQL Server, FileMaker Pro, Oracle
Database, and dBASE.

Types of databases: Relational, object-oriented, distributed, NoSQL, graph, and more.

4 / 40

Big picture

Source: https://www.w3resource.com/sql/tutorials.php
5 / 40

https://www.w3resource.com/sql/tutorials.php

Common SQL query structure

Main verbs to get data:

SELECT columns or computations
 FROM table
 WHERE condition
 GROUP BY columns
 HAVING condition
 ORDER BY column [ASC | DESC]
 LIMIT offset, count

WHERE, GROUP BY, HAVING, ORDER BY, LIMIT are all optional. Primary computations:
MIN, MAX, COUNT, SUM, AVG.

We can perform these queries in R with dbGetQuery() and paste(). This can be done
after setting up an in-memory database or connecting to a remote database.

6 / 40

SQL arithmetic and comparison
operators

SQL supports the standard +, -, *, /, and % (modulo) arithmetic operators and the following
comparison operators.

Operator Description

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

7 / 40

SQL logical operators

Operator Description

ALL TRUE if all of the subquery values meet the condition

AND TRUE if all the conditions separated by AND is TRUE

ANY TRUE if any of the subquery values meet the condition

BETWEEN TRUE if the operand is within the range of comparisons

EXISTS TRUE if the subquery returns one or more records

IN TRUE if the operand is equal to one of a list of expressions

LIKE TRUE if the operand matches a pattern

NOT Displays a record if the condition(s) is NOT TRUE

OR TRUE if any of the conditions separated by OR is TRUE

SOME TRUE if any of the subquery values meet the condition

8 / 40

SQLite and SQLite and sqlite3sqlite3

9 / 409 / 40

SQLite and sqlite3

SQLite is a software library that provides a relational database management system. The lite
in SQLite means light weight in terms of setup, database administration, and required
resource.

This is available on the DSS servers. In your terminal

[sms185@numeric1 ~]$ which sqlite3
/usr/bin/sqlite3

Check out

man sqlite3

From the summary:

sqlite3 is a terminal-based front-end to the SQLite library that can evaluate
queries interactively and display the results in multiple formats.
sqlite3 can also be used within shell scripts and other applications to provide
batch processing features.

10 / 40

Today's data

From your home directory, copy sql_databases/ from my home directory on the DSS
home file system.

cp -rf /home/fac/sms185/sql_databases ~/

You should see the following in sql_databases/:

[sms185@geometry2 sql_databases]$ ls
taxi.sqlite vet.sqlite

11 / 40

Load sqlite3

Load sqlite3 with the database vet.sqlite.

[sms185@geometry2 sql_databases]$ sqlite3 vet.sqlite
SQLite version 3.26.0 2018-12-01 12:34:55
Enter ".help" for usage hints.
sqlite>

12 / 40

Commands in sqlite3

1. Query commands: sqlite3 just reads lines of input and passes them on to the
SQLite library for execution. This will be the typical command you provide when you
want to access, update, and merge data tables.

2. Dot commands: these are lines that begin with a dot (".") and are interpreted by the
sqlite3 program itself. These commands are typically used to change the output
format of queries, or to execute certain prepackaged query statements.

Both sets of the commands are entered at the prompt: sqlite>.

13 / 40

Help

Typing .help at the prompt will reveal some of the help features and functions.

sqlite> .help
.archive ... Manage SQL archives
.auth ON|OFF Show authorizer callbacks
.backup ?DB? FILE Backup DB (default "main") to FILE
.bail on|off Stop after hitting an error. Default OFF
.binary on|off Turn binary output on or off. Default OFF
.cd DIRECTORY Change the working directory to DIRECTORY
.changes on|off Show number of rows changed by SQL
.check GLOB Fail if output since .testcase does not match
.clone NEWDB Clone data into NEWDB from the existing database

.trace FILE|off Output each SQL statement as it is run

.vfsinfo ?AUX? Information about the top-level VFS

.vfslist List all available VFSes

.vfsname ?AUX? Print the name of the VFS stack

.width NUM1 NUM2 ... Set column widths for "column" mode

14 / 40

Navigating sqlite3

View the current settings

sqlite> .show
 echo: off
 eqp: off
 explain: auto
 headers: off
 mode: list
 nullvalue: ""
 output: stdout
colseparator: "|"
rowseparator: "\n"
 stats: off
 width:
 filename: vet.sqlite

15 / 40

List all names and files of attached databases

sqlite> .databases
main: /home/fac/sms185/sql_databases/vet.sqlite

List all the tables in the current database

sqlite> .tables
owners pets procedure_details procedure_history

16 / 40

sqlite> .schema owners
CREATE TABLE `owners` (
 `owner_id` REAL,
 `name` TEXT,
 `surname` TEXT,
 `street_address` TEXT,
 `city` TEXT,
 `state` TEXT,
 `state_full` TEXT,
 `zip_code` REAL
);

sqlite> .schema procedure_details
CREATE TABLE `procedure_details` (
 `procedure_type` TEXT,
 `procedure_sub_code` TEXT,
 `description` TEXT,
 `price` REAL
);

sqlite> .schema pets
CREATE TABLE `pets` (
 `pet_id` TEXT,
 `name` TEXT,
 `kind` TEXT,
 `gender` TEXT,
 `age` REAL,
 `owner_id` REAL
);

sqlite> .schema procedure_history
CREATE TABLE `procedure_history` (
 `pet_id` TEXT,
 `date` REAL,
 `procedure_type` TEXT,
 `procedure_sub_code` TEXT
);

Table details

Show the CREATE statements matching the specified table

Note the ; at the end.

17 / 40

QueriesQueries

18 / 4018 / 40

Query commands

Get the first 5 rows from table owners. Every query must end with a semicolon.

sqlite> SELECT * FROM owners
 LIMIT 5;
6049.0|Debbie|Metivier|315 Goff Avenue|Grand Rapids|MI|Michigan|49503.0
2863.0|John|Sebastian|3221 Perry Street|Davison|MI|Michigan|48423.0
3518.0|Connie|Pauley|1539 Cunningham Court|Bloomfield Township|MI|Michigan|48302.0
3663.0|Lena|Haliburton|4217 Twin Oaks Drive|Traverse City|MI|Michigan|49684.0
1070.0|Jessica|Velazquez|3861 Woodbridge Lane|Southfield|MI|Michigan|48034.0

How about a nicer output? Change the mode and headers settings.

sqlite> .mode column
sqlite> .headers on
sqlite> SELECT * FROM owners
 LIMIT 5;
owner_id name surname street_address city state state_full zip_code
---------- ------- ---------- --------------- ------------ ------ ---------- ----------
6049.0 Debbie Metivier 315 Goff Avenue Grand Rapids MI Michigan 49503.0
2863.0 John Sebastian 3221 Perry Stre Davison MI Michigan 48423.0
3518.0 Connie Pauley 1539 Cunningham Bloomfield T MI Michigan 48302.0
3663.0 Lena Haliburton 4217 Twin Oaks Traverse Cit MI Michigan 49684.0
1070.0 Jessica Velazquez 3861 Woodbridge Southfield MI Michigan 48034.0

19 / 40

Revist .show

sqlite> .show
 echo: off
 eqp: off
 explain: auto
 headers: on
 mode: column
 nullvalue: ""
 output: stdout
colseparator: "|"
rowseparator: "\n"
 stats: off
 width:
 filename: vet.sqlite

20 / 40

Examples

How many owners exist for each zip code? Sort the results in descending order and only
show the zip codes with at least 3 owners.

sqlite> SELECT zip_code, COUNT(zip_code) AS count
 FROM owners
 GROUP BY zip_code
 HAVING count >= 3
 ORDER BY count DESC;
zip_code count
---------- ----------
48075.0 11
49503.0 10
48933.0 5
48034.0 4
48219.0 4
48302.0 4
49855.0 4
48342.0 3
48607.0 3

21 / 40

How many of each kind of pet exist? Only output a table with the type of pet and the
respective count.

sqlite> SELECT kind, COUNT(kind) as n FROM pets
 GROUP BY kind;
kind n
---------- ----------
Cat 31
Dog 57
Parrot 12

22 / 40

Exercise

Which procedure types had an average price exceed $20? Sort them in descending order by
average price. Only output a table with the procedure types and their average price.

procedure_type avg_price
----------------- ----------------
GENERAL SURGERIES 312.526315789474
ORTHOPEDIC 196.333333333333
OFFICE FEES 52.0
HOSPITALIZATION 25.0

23 / 40

Creating new tables from
existing tables

Create with command CREATE TABLE

sqlite> CREATE TABLE owners_lansing(
 owner_id REAL,
 name TEXT,
 surname TEXT);

We are specifying the table name, owners_lansing, variables names, and their type.

Add data with command INSERT INTO

sqlite> INSERT INTO owners_lansing
 SELECT owner_id, name, surname
 FROM owners
 WHERE city = "Lansing";

24 / 40

Verify our result is correct

sqlite> .tables
owners pets procedure_history
owners_lansing procedure_details

sqlite> SELECT * FROM owners_lansing;
owner_id name surname
---------- ---------- ----------
7663.0 Julia Gowan
1653.0 Carolyn Crane
4793.0 Thomas Arnold
4110.0 Gregory Aucoin
3691.0 Richard Duke
5447.0 Arthur Reed

sqlite> SELECT owner_id, name, surname, city
 FROM owners
 WHERE city = "Lansing";
owner_id name surname city
---------- ---------- ---------- ----------
7663.0 Julia Gowan Lansing
1653.0 Carolyn Crane Lansing
4793.0 Thomas Arnold Lansing
4110.0 Gregory Aucoin Lansing
3691.0 Richard Duke Lansing
5447.0 Arthur Reed Lansing

25 / 40

JoinsJoins

26 / 4026 / 40

sqlite> SELECT owner_id, name, surname
 FROM owners
 ORDER BY owner_id
 LIMIT 10;
owner_id name surname
---------- ---------- ----------
1070.0 Jessica Velazquez
1132.0 Rosa Quarles
1202.0 Susan Jackson
1306.0 Benjamin Spears
1312.0 Charles Chidester
1319.0 Joe Custer
1334.0 Jason Cantwell
1546.0 Joseph Blow
1653.0 Carolyn Crane
1766.0 Doris Ray

sqlite> SELECT name, kind, owner_id
 FROM pets
 ORDER BY owner_id
 LIMIT 10;
name kind owner_id
---------- ---------- ----------
Biscuit Dog 1070.0
Stowe Cat 1132.0
Enyo Cat 1202.0
Danger Dog 1306.0
Collette Dog 1306.0
Rumba Cat 1312.0
Heisenberg Dog 1319.0
Crockett Dog 1334.0
Blackie Dog 1546.0
Cookie Cat 1653.0

Join tables

We can see that Biscuit belongs to Jessica and Benjamin owns two pets - Danger and
Collette.

How can we merge these two tables?

27 / 40

Some joins visualized

28 / 40

Default join

What happened with this join? Do you see anything wrong with our result?

By default, a cross join was used, and it combines every row from the first table with every
row from the second table to form the resulting table.

sqlite> SELECT *
 ...> FROM owners
 ...> JOIN pets
 ...> LIMIT 10;
owner_id name surname street_address city state state_full zip_
---------- ---------- ---------- --------------- ------------ ---------- ---------- ----
6049.0 Debbie Metivier 315 Goff Avenue Grand Rapids MI Michigan 4950
6049.0 Debbie Metivier 315 Goff Avenue Grand Rapids MI Michigan 4950
6049.0 Debbie Metivier 315 Goff Avenue Grand Rapids MI Michigan 4950
6049.0 Debbie Metivier 315 Goff Avenue Grand Rapids MI Michigan 4950
6049.0 Debbie Metivier 315 Goff Avenue Grand Rapids MI Michigan 4950
6049.0 Debbie Metivier 315 Goff Avenue Grand Rapids MI Michigan 4950
6049.0 Debbie Metivier 315 Goff Avenue Grand Rapids MI Michigan 4950
6049.0 Debbie Metivier 315 Goff Avenue Grand Rapids MI Michigan 4950
6049.0 Debbie Metivier 315 Goff Avenue Grand Rapids MI Michigan 4950
6049.0 Debbie Metivier 315 Goff Avenue Grand Rapids MI Michigan 4950

29 / 40

sqlite> .schema owners
CREATE TABLE `owners` (
 `owner_id` REAL,
 `name` TEXT,
 `surname` TEXT,
 `street_address` TEXT,
 `city` TEXT,
 `state` TEXT,
 `state_full` TEXT,
 `zip_code` REAL
);

sqlite> .schema pets
CREATE TABLE `pets` (
 `pet_id` TEXT,
 `name` TEXT,
 `kind` TEXT,
 `gender` TEXT,
 `age` REAL,
 `owner_id` REAL
);

Natural join

What happened with this join?

In the NATURAL JOIN, all the columns from both tables with the same names will be
matched against each other. It automatically tests for equality between the values of every
column that exists in both tables.

sqlite> SELECT * FROM owners
 NATURAL JOIN pets;
owner_id name surname street_address city state state_full zip
---------- ---------- ---------- ----------------- ------------ ---------- ---------- --
2809.0 Bruce Dunne 4119 Kimberly Way Grand Rapids MI Michigan 49

30 / 40

Be explicit on your (inner) join

Inner join conditions can be set with the USING verb.

sqlite> SELECT owner_id, name, surname, name, kind
 FROM owners
 JOIN pets
 USING (owner_id)
 ORDER BY owner_id
 LIMIT 10;
Error: ambiguous column name: name

sqlite> SELECT owner_id, owners.name, surname, pets.name, kind
 FROM owners
 JOIN pets
 USING (owner_id)
 ORDER BY owner_id
 LIMIT 10;
owner_id name surname name kind
---------- ---------- ---------- ---------- ----------
1070.0 Jessica Velazquez Biscuit Dog
1132.0 Rosa Quarles Stowe Cat
1202.0 Susan Jackson Enyo Cat
1306.0 Benjamin Spears Collette Dog
1306.0 Benjamin Spears Danger Dog
1312.0 Charles Chidester Rumba Cat
1319.0 Joe Custer Heisenberg Dog
1334.0 Jason Cantwell Crockett Dog
1546.0 Joseph Blow Blackie Dog
1653.0 Carolyn Crane Cookie Cat

31 / 40

Left join

Perform a left join with owners and pets.

sqlite> SELECT *
 ...> FROM owners
 ...> LEFT JOIN pets
 ...> ON owners.owner_id = pets.owner_id
 ...> ORDER BY owner_id
 ...> LIMIT 10;
owner_id name surname street_address city sta
---------- ---------- ---------- -------------------- ---------- ---
1070.0 Jessica Velazquez 3861 Woodbridge Lane Southfield MI
1132.0 Rosa Quarles 4791 Tennessee Avenu Southfield MI
1202.0 Susan Jackson 3677 Daylene Drive Livonia MI
1306.0 Benjamin Spears 1507 Twin Oaks Drive Clam River MI
1306.0 Benjamin Spears 1507 Twin Oaks Drive Clam River MI
1312.0 Charles Chidester 4086 Cottonwood Lane Dutton MI
1319.0 Joe Custer 2765 Wildrose Lane Westland MI
1334.0 Jason Cantwell 2372 Don Jackson Lan Southfield MI
1546.0 Joseph Blow 556 D Street Southfield MI
1653.0 Carolyn Crane 3952 Jarvisville Roa Lansing MI

32 / 40

SQLite does not support a RIGHT JOIN.

sqlite> SELECT *
 ...> FROM pets
 ...> LEFT JOIN owners
 ...> USING (owner_id)
 ...> ORDER BY owner_id
 ...> LIMIT 10;
pet_id name kind gender age owner_id n
---------- ---------- ---------- ---------- ---------- ---------- -
U8-6473 Biscuit Dog female 3.0 1070.0 J
T2-2142 Stowe Cat female 15.0 1132.0 R
N7-6805 Enyo Cat female 12.0 1202.0 S
F2-3235 Danger Dog male 8.0 1306.0 B
L2-1834 Collette Dog female 4.0 1306.0 B
L4-4205 Rumba Cat male 5.0 1312.0 C
J2-3320 Heisenberg Dog male 3.0 1319.0 J
J0-7893 Crockett Dog male 12.0 1334.0 J
U6-4890 Blackie Dog male 6.0 1546.0 J
P9-6519 Cookie Cat female 6.0 1653.0 C

33 / 40

Exercises

Which owners have multiple pets? Sort your table so the count is in descending order. Only
output a table with the owners' name, surname and number of pets.

owner_name owner_surname pet_count
---------- ------------- ----------
Lee McKenzie 3
Charles Swarey 3
Stacey Randolph 3
Benjamin Spears 2
Robert Partridge 2
Mario Riddle 2
Elvia Warren 2
Gary Snider 2

Which pet under the age of 10 had the most procedures according to the procedure history?
Only return a table with the pet's name, kind, age, and number of procedures.

name kind age procedure_count
---------- ---------- ---------- ---------------
Bonaparte Dog 4.0 3

34 / 40

Finer detailsFiner details

35 / 4035 / 40

SQL statement processing

What happens in the background when a SQL statement is sent to the RDBMS?

1. The SQL statement is parsed around key words.

2. The statement is validated. Do all tables and fields exist? Are names unambiguous?

3. The RDBMS optimizes and eventually generates an access plan - how best to retrieve
the data, update the data, or delete the data.

4. The access plan is executed.

36 / 40

Subqueries

A subquery may occur in a

SELECT clause
FROM clause
WHERE clause

The inner (sub) query executes first before its parent query so that the results of an inner
query can be passed to the outer query.

sqlite> SELECT *
 FROM pets
 WHERE pet_id IN (
 SELECT pet_id FROM procedure_history
 WHERE procedure_type = "ORTHOPEDIC"
);

What are we trying to get with the above query?

37 / 40

Tips

On very large datasets use indices to speed up searches.

Use CAST to change data types in a query.

Attach databases to perform JOIN operations on tables across databases.

See your query and improve performance with EXPLAIN QUERY PLAN followed by
your query.

38 / 40

Beyond SQL: NoSQL

Document
Graph stores
Key-value stores
Wide-column stores

R package nodbi provides a single user interface for interacting with many NoSQL
databases. This is similar to package DBI for interacting with relational databases that use
SQL.

R package nodbi supports:

MongoDB
Redis (server based)
CouchDB
Elasticsearch
SQLite

Check out their vignette for more information: https://docs.ropensci.org/nodbi/

39 / 40

https://docs.ropensci.org/nodbi/

References

1. SQL Join Types — SQL Joins Explained. (2021). http://www.sql-join.com/sql-join-
types.

2. SQL Tutorial - w3resource. (2021). https://www.w3resource.com/sql/tutorials.php.

3. What is NoSQL? NoSQL Databases Explained. (2021).
https://www.mongodb.com/nosql-explained.

40 / 40

http://www.sql-join.com/sql-join-types
https://www.w3resource.com/sql/tutorials.php
https://www.mongodb.com/nosql-explained

