
Futures and furrrFutures and furrr

Statistical Computing &Statistical Computing &
ProgrammingProgramming

Shawn SantoShawn Santo

1 / 271 / 27

Supplementary materials

Full video lecture available in Zoom Cloud Recordings

Additional resources

A Future for R: A Comprehensive Overview
Future Topologies
furrr
Futureverse

2 / 27

https://cran.r-project.org/web/packages/future/vignettes/future-1-overview.html
https://cran.r-project.org/web/packages/future/vignettes/future-3-topologies.html
https://furrr.futureverse.org/
https://www.futureverse.org/

FuturesFutures

3 / 273 / 27

What is a future?

A concept first introduced in 1977 in a paper by Henry Baker and Carl Hewitt. It is an
abstraction for a value that may be available at some point in the future.

Futures have two states: resolved or unresolved.

Once a future is resolved, it is immediately available for use.

4 / 27

The future package

The future package provides a simple way to evaluate R expressions asynchronously
or in the current R session. It is similar to what we did with mcparallel() and
mccollect() in the parallel package.

Package provides a lot of flexibility

Serves as the foundation for a few other packages we will work with: furrr and
disk.frame

5 / 27

Creating futures

Futures can be created implicitly or explicitly. Both styles work well, and you may find the
implicit style more natural.

library(future)

Implicit future creation

a %<-% {
 cat("This value came from an implicit future", "\n")
 20
}

a

#> This value came from an implicit future

#> [1] 20

The %<-% operator creates a future and a promise to its value.

6 / 27

Creating futures (continued)

Futures can be created implicitly or explicitly. Both styles work well, and you may find the
implicit style more natural.

library(future)

Explicit future creation

a <- future({
 cat("This value came from an explicit future", "\n")
 20
})

value(a)

#> This value came from an explicit future

#> [1] 20

Function future() creates a future and function value() gets the value.

7 / 27

Choosing a plan()

Futures are useful because you can evaluate the "future" expression in a separate R process
simply by changing your plan() of execution. The plan() defines how futures are
resolved.

Strategy Style OS compatibility Machines

sequential sequentially all single

multisession in parallel all single

multicore in parallel not on Windows single

cluster in parallel all many

The default is sequential. As such, the main R process is blocked until the future is
resolved.

8 / 27

Strategy consistency

Regardless of which strategy (see previous slide) you choose, the following hold:

1. All future expression evaluation is done in a local environment.

2. When a future is constructed, global variables are identified. For asynchronous
evaluation, globals are exported to the R process/session that will be evaluating the
future expression.

3. Future expressions are only evaluated once.

This consistency makes it easy to go from sequential to parallel processing and be
compatible in a variety of computing environments.

9 / 27

Exercises

Try the following examples. What do you notice?

plan(sequential)
ls() # show objects in current environment
Sys.getpid()

ex_1 %<-% {
 cat("The system PID is", Sys.getpid(), "\n")
 b <- sapply(mtcars, is.na)
 sum(b)
}
ls()

plan(multisession(workers = 2))
ls()
Sys.getpid()
X <- matrix(rnorm(1000 * 1000), nrow = 1000, ncol = 1000)

ex_2 <- future({
 cat("The system PID is", Sys.getpid(), "\n")
 solve(X)
})
X_inverse <- value(ex_2)

10 / 27

Exercises (continued)

plan(multisession(workers = 2))
library(ggplot2)
library(plotly)

ex_3_a %<-% {
 Sys.sleep(5)
 plot_ly(data = diamonds,
 x = ~price, y = ~carat, z = ~table,
 type = "scatter3d", mode = "markers", color = ~cut)
}

ex_3_b %<-% {
 Sys.sleep(5)
 ggplot(diamonds, aes(x = carat, y = sqrt(price), color = cut)) +
 geom_point(alpha = 0.2) +
 geom_smooth() +
 theme_minimal()
}

ex_3_c %<-% {
 Sys.sleep(5)
 ggplot(diamonds, aes(x = price)) +
 geom_histogram() +
 theme_minimal()
}

11 / 27

Asynchronous futures and
blocking

These futures are non-blocking by default

Blocking can still happen if the future is not yet resolved or if all background sessions
are still busy (see example on last slide)

A future can be checked without blocking by using resolved() (explicit futures) or
futureOf() (implicit futures)

12 / 27

Example - checking futures

plan(multisession(workers = 2))

ftr_1 %<-% {
 cat("Implicit future on process", Sys.getpid(), "\n")
 Sys.sleep(5)
 getwd()
}

ftr_2 <- future({
 cat("Explicit future on process", Sys.getpid(), "\n")
 Sys.sleep(5)
 getwd()
})

convert implicit to explicit future
ftr_1_check <- futureOf(ftr_1)
resolved(ftr_1_check) # check if ftr_1 is resolved

resolved(ftr_2) # check if ftr_2 is resolved

13 / 27

Other odds and ends

View and adjust the options associated with futures by checking out
help("future.options")

Futures do relay output from cat(), print(), str() regardless of the strategy

Relayed output can be captured with capture.output()

Futures can be nested, i.e. one future can create another future, which can create another
future

14 / 27

furrrfurrr

15 / 2715 / 27

purrr and furrr

map_*() future_map_*()

map() future_map()

map2() future_map2()

pmap() future_pmap()

walk() future_walk()

imap() future_imap()

modify() future_modify()

furrr uses future. The default backend for future (and through it, furrr) is a sequential
one. This means that the above code will run out of the box, but it will not be in parallel.
The design of future makes it incredibly easy to change this so that your code will run in
parallel.

16 / 27

Examples

library(furrr)
library(tidyverse)

map_dbl(mtcars, mean)

#> mpg cyl disp hp drat wt qsec
#> 20.090625 6.187500 230.721875 146.687500 3.596563 3.217250 17.848750
#> vs am gear carb
#> 0.437500 0.406250 3.687500 2.812500

future_map_dbl(mtcars, mean)

#> mpg cyl disp hp drat wt qsec
#> 20.090625 6.187500 230.721875 146.687500 3.596563 3.217250 17.848750
#> vs am gear carb
#> 0.437500 0.406250 3.687500 2.812500

17 / 27

plan(multisession, workers = 4)
future_map_dbl(mtcars, mean)

#> mpg cyl disp hp drat wt qsec
#> 20.090625 6.187500 230.721875 146.687500 3.596563 3.217250 17.848750
#> vs am gear carb
#> 0.437500 0.406250 3.687500 2.812500

Not sure we are running in parallel?

system.time({map_dbl(mtcars, ~ {Sys.sleep(1); mean(.x)})})

#> user system elapsed
#> 0.006 0.000 11.032

system.time({future_map_dbl(mtcars, ~ {Sys.sleep(1); mean(.x)})})

#> user system elapsed
#> 0.052 0.002 3.147

plan(sequential)

18 / 27

Examples (continued)

Recall our data from Homework 03:

library(jsonlite)
library(janitor)
events_json <- read_json("data/events_england.json")

Suppose we have lots of games of data.

events_json <- rep(events_json, 100)

Some helper functions:

set_start_position_names <- function(x, y) {
 names(x$positions[[1]]) <- y
 x
}

set_tag_names <- function(x) {
 if (!is_empty(x$tags)) {
 names(x$tags) <- str_c("id_", 1:length(x$tags))
 }
 x
}

19 / 27

system.time({
events <- events_json %>%
 modify(set_start_position_names, c("start_y", "start_x")) %>%
 modify(set_tag_names) %>%
 map_df(unlist) %>%
 clean_names() %>%
 rename(
 start_y = positions_start_y,
 start_x = positions_start_x,
 end_y = positions_y,
 end_x = positions_x
)
})

 user system elapsed
 6.713 0.111 6.912

20 / 27

plan(multisession, workers = 4)

system.time({
events_parallel <- events_json %>%
 modify(set_start_position_names, c("start_y", "start_x")) %>%
 modify(set_tag_names) %>%
 future_map_dfr(unlist) %>%
 clean_names() %>%
 rename(
 start_y = positions_start_y,
 start_x = positions_start_x,
 end_y = positions_y,
 end_x = positions_x
)
})

plan(sequential)

 user system elapsed
 33.098 0.655 55.894

all_equal(events, events_parallel)

TRUE

What happened?

21 / 27

Chunking input

Chunking is the process of breaking up your vector into smaller pieces that can be sent
off to different workers to be processed in parallel.

Once a worker gets a chunk of your vector, it maps over it calling .f on each element.

The results from the workers are returned to the main R session once all chunks have
been processed to be combined and returned from future_map().

Internal function that controls chunking:

make_chunks <- furrr:::make_chunks

22 / 27

Default chunking strategy

make_chunks(n_x = 20, n_workers = 4)

#> [[1]]
#> [1] 1 2 3 4 5
#>
#> [[2]]
#> [1] 6 7 8 9 10
#>
#> [[3]]
#> [1] 11 12 13 14 15
#>
#> [[4]]
#> [1] 16 17 18 19 20

make_chunks(n_x = 20, n_workers = 3)

#> [[1]]
#> [1] 1 2 3 4 5 6 7
#>
#> [[2]]
#> [1] 8 9 10 11 12 13
#>
#> [[3]]
#> [1] 14 15 16 17 18 19 20

23 / 27

Default chunking strategy
(continued)

make_chunks(n_x = 20, n_workers = 1)

#> [[1]]
#> [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

24 / 27

Dynamic chunking strategy

make_chunks(n_x = 16, n_workers = 2, scheduling = 2L)

#> [[1]]
#> [1] 1 2 3 4
#>
#> [[2]]
#> [1] 5 6 7 8
#>
#> [[3]]
#> [1] 9 10 11 12
#>
#> [[4]]
#> [1] 13 14 15 16

Components 1 to 4 are sent to worker 1, and components 5 to 8 are sent to worker 2, the
rest wait

The first worker that is done will get components 9 to 12, components 13 to 16 wait

The next worker that is done will get the last components 13 to 16

These chunking strategies can be set with furrr_options().

25 / 27

Exercise

Suppose you have decided on the below as your final model.

lm(mpg ~ wt + hp, data = mtcars)

Use target shuffling and extract the metric for 1000 shuffles to assess the relationship.
Compare the performance of doing this with map_dbl() and future_map_dbl(). Use
the microbenchmark package.

R
2

26 / 27

References

1. "Apply Mapping Functions In Parallel Using Futures". Furrr.Futureverse.Org, 2021,
https://furrr.futureverse.org/.

2. "Unified Parallel And Distributed Processing In R For Everyone".
Future.Futureverse.Org, 2021, https://future.futureverse.org/.

27 / 27

https://furrr.futureverse.org/
https://future.futureverse.org/

