Bigger than RAM data

Statistical Computing &
Programming

Shawn Santo

Supplementary materials

Full video lecture available in Zoom Cloud Recordings
Additional resources

disk.frame website
useR presentation - 2019
useR presentation slides - 2019

[]
[
[
o fst website

2/32

https://diskframe.com/
https://www.youtube.com/watch?v=3XMTyi_H4q4
https://www.beautiful.ai/player/-LphQ0YaJwRektb8nZoY
https://www.fstpackage.org/

Introduction to disk. frame

Whatis disk.frame?

e R package that will allow you to manipulate larger-than-RAM tabular data efficiently

e Rather than be limited by RAM, you are only limited by the amount of disk space you
have available

o In most cases you won't be able to bring objects into memory in R that exceed 4GB

Error: vector memory exhausted (limit reached?)

4/32

disk.frame versus data.frame

e A data frame is an in-memory list with attributes. Hence, it requires your computer's
RAM.

e disk.frame manipulates data on your hard drive. It employs a chunking strategy so
only small parts are loaded into RAM.

e Recall, with data frames we have a row limit of 231; there is no limit for disk. frame
objects other than your hard drive capacity.

5/32

How disk.frame works

disk. frame leverages the packages future and fst. It is also compatible with dplyr
and data.table syntax for data wrangling. The biggest challenge is getting set-up and
understanding how your code is processed.

It leverages two key concepts:

1. Split larger than RAM datasets into chunks and store these chunks in separate files
(. £st format)

2. Utilize an API to manipulate each of the chunks

6/32

A framework for efficient use

We are going to use dplyr to manipulate our data. If you know the data. table syntax
you can use that as well.

The general idea is as follows.

df %>%
some dplyr fcn()
another dplyr fcn
yet another dplyr fc
collect ()

—~ 0°

3 oe
—~ V

The collect () function will row-bind the results from the dp1lyr function calls and your
main session will receive the results. You should minimize the amount of data passed from
the workers to your main session.

The manipulations are done on each chunk.

7/32

Toy examples

Set-up

library (tidyverse)
library (nycflightsl3)
library (disk.frame)

setup disk.frame (workers = 4)
this will allow unlimited amount of data to be

passed from worker to worker
options (future.globals.maxSize = Inf)

9/32

Create a disk. frame

In this toy example, we'll create a disk. frame object from the in-memory data frame
f1lights and mimic some of our manipulations from the dp1lyr lecture.

flights disk <- as.disk.frame (df = flights, outdir = "tmp flights.df",
nchunks = 10, overwrite = TRUE)

class (flights disk)
#> [1] "disk.frame" "disk.frame.folder"
class (flights)

#> [1] "data.table" "data.frame"

10/32

Examples

nrow (flights disk)
#> [1] 336776

ncol (flights disk)
#> [1] 19

names (flights disk)

#> [1] "year" "month" "day" "dep time"

#> [5] "sched dep time" "dep delay" "arr time" "sched arr time"
#> [9] "arr delay" "carrier" "flight" "tailnum"

#> [13] "origin" "dest" "air time" "distance"

#> [17] "hour" "minute" "time hour"

11/32

flights disk %>%

filter (dest == "LAX" | dest == "RDU", month == 3) %>%
collect () %>%
tibble ()

#> # A tibble: 1,935 x 19

#> year month day dep time sched dep time dep delay arr time sched arr time
#> <int> <int> <int> <int> <int> <dbl> <int> <int>
#> 1 2013 3 1 607 610 -3 832 925
#> 2 2013 3 1 608 615 -7 737 750
#> 3 2013 3 1 623 630 =7 753 810
#> 4 2013 3 1 629 632 -3 844 952
#> 5 2013 3 1 657 700 -3 953 1034
#> o6 2013 3 1 714 715 -1 939 1037
#> 7 2013 3 1 716 710 6 958 1035
#> 8 2013 3 1 727 730 -3 1007 1100
#> 9 2013 3 1 803 810 =7 923 955
#> 10 2013 3 1 823 824 -1 954 1014
#> # .. with 1,925 more rows, and 11 more variables: arr delay <dbl>,

#> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>,

#> # air time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, time hour <dttm>

12/32

flights disk %>%

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

Why did we arrange after collect () ?

filter (month == 3, day ==
select (origin,

collect () %>%

arrange (desc (origin),

origin dest

1: LGA ATL
2 LGA ATL
3: LGA ATL
4: LGA ATL
5: LGA ATL
761: EWR TPA
762 : EWR TPA
763: EWR TPA
764 : EWR TPA
765: EWR TPA

dest,

tailnum
N928AT
N623DL
N680DA
NO996AT
N510MQ

N41135
N625JB
N37408
N569UA
N73291

tailnum)

dest)

13/32

flights disk %>%
group_ by (origin) %>%

summarize (
n=mnf(),
min dep delay = min(dep delay, na.rm = TRUE),
max dep delay = max(dep delay, na.rm = TRUE)
) %$>%
collect () %>%
as_tibble ()
#> # A tibble: 3 x 4
#> origin n min dep delay max dep delay
#> <chr> <int> <dbl>
#> 1 EWR 120835 1126
#> 2 JFK 111279 1301
#> 3 LGA 104662 911

Is this correct? How is this possible?

Before v0.3.0 of disk. frame, one-stage group-by was not possible, and the user had to
rely on two-stage group-by even for simple operations like mean. Some functions in

summarize will not work exactly.

14 /32

Check our answer with regards ton (), min (), and max () using flights.

flights %>%
group by (origin)

summarize (
n =mnf(),
min dep delay = min(dep delay, na.rm =
max dep delay = max(dep delay, = TRUE)
)
#> # A tibble: 3 x 4
#> origin n min dep delay max dep delay
#> <chr> <int> <dbl>
#> 1 EWR 120835 1126
#> 2 JFK 111279 1301
#> 3 LGA 104662 911

3>%

TRUE) ,

15/32

Exercises

1. Use £1lights disk and compute the mean, median, and IQR for departure delay for
each carrier. Arrange the carriers alphabetically. Compare your result to using
flights.

2. Run the following code. How do you think the sampling is being done?

flights disk %>%
sample frac(size = .01)
collect () %>%
as_tibble ()

oo

>

o

16 /32

Chunk distribution

disk. frame uses the sharding concept to distribute the data into chunks.

flights disk <- as.disk.frame(df = flights, outdir = "tmp flights.df",
shardby = "carrier", nchunks = 10,
overwrite = TRUE)

All flights with the same carrier are linked together.

17732

Example

flights disk %>%
group by (carrier)
summarise (med dep delay
collect () %>%
arrange (carrier)
slice(1:7)

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

#

<o O w N

A tibble: 7 x 2

carrier med dep delay
<dbl>

<chr>
9F
AA
AS
B6
DL
EV
F9

e}]
5>%

o) ¢}
5>%

flights %>%
group by (carrier)
summarise (med dep delay = mediar
collect () %>%
slice(1l:7)

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

#

o0 w N

A tibble: 7 x 2

[e) [
5>%

carrier med dep delay

<chr>
OE
AA
AS
B6
DL
EV
Fo

<dbl>

18/32

Joins

Joins also work, but the left data object must be a disk . frame and the right data object
can be a disk. frame or data frame.

flights disk %>%
left join(airlines, by = "carrier")

select (name,
as_tibble ()

#> # A tibble:

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#> 10

O 00 Jo Uk W N

#> # ..

No collect () is needed as the joins are evaluated eagerly.

name
<chr>

United
United
United
United
United
United
United
United

Air
Air
Air
Air
Air
Air
Air
Air

US Airways

United

Air

carrier,

Lines
Lines
Lines
Lines
Lines
Lines
Lines
Lines
Inc.

Lines

336,776 x 4

Inc.
Inc.
Inc.
Inc.
Inc.
Inc.
Inc.
Inc.

Inc.

ends with ("delay"))

carrier dep delay arr delay

<chr>

UA
UA
UA
UA
UA
UA
UA
UA
Uus
UA

with 336,766 more rows

<dbl>

<dbl>
11
20
12
7
-14
-8
-17
14
3

1

19/32

Supported dplyr verbs with
disk.frame

select ()
rename ()
filter ()
mutate ()
transmute ()
left join()
inner join ()
full join ()
seml join ()
anit join()

chunk arrange ()
chunk group by ()
chunk summarize ()
group_by ()
summarize ()

20/ 32

Realistic example

Set-up

library (tidyverse)
library (lubridate)
library (disk.frame)

setup disk.frame (workers = 6)

options (future.globals.maxSize = Inf)

We are going to use the 2009 TLC Trip Record Data. The yellow and green taxi trip records
include fields capturing pick-up and drop-off dates/times, pick-up and drop-off locations, trip
distances, itemized fares, rate types, payment types, and driver-reported passenger counts.

Each 2009 CSV file is about 2.4GB and contains about 14 million taxi trips.

Todd Schneider has a GitHub repo will shell files to download all the taxi data -- ~2.8 billion
trips in total.

22/32

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://github.com/toddwschneider/nyc-taxi-data

A disk.frame from many CSVs

After downloading the CSV files, save them in a folder data/taxi/.

file list <- list.files("data/taxi/", full.names

file list

#> [1] "data/taxi//yellow tripdata 2009-01.
#> [2] "data/taxi//yellow tripdata 2009-02.
#> [3] "data/taxi//yellow tripdata 2009-03.
#> [4] "data/taxi//yellow tripdata 2009-04.
#> [5] "data/taxi//yellow tripdata 2009-05.
#> [6] "data/taxi//yellow tripdata 2009-06.
#> [7] "data/taxi//yellow tripdata 2009-07.
#> [8] "data/taxi//yellow tripdata 2009-08.
#> [9] "data/taxi//yellow tripdata 2009-09.
#> [10] "data/taxi//yellow tripdata 2009-10.
#> [11] "data/taxi//yellow tripdata 2009-11.
#> [12] "data/taxi//yellow tripdata 2009-12.

csv"
csv"
csv"
csv"
csv"
csv
csv"
csv"
csv"
csv"
csv"
csv"

23/32

Read in 1 row of the January 2009 CSV to get the variable names.

header names <- read csv(file list[1],

janitor::clean names ()
names ()

header names

#>
#>
#>
#>
#>
#>

R R e

O WO JdJdbd

—

"vendor name"
"passenger count"
"start lat"

"end lon"

"fare amt"

"tip amt"

oe

>

o°

n max = 1)

"trip pickup date time"
"trip distance"

"rate code"

"end lat"

"surcharge"

"tolls amt"

"trip dropoff date time
"start lon"
"store and forward"
"payment type"

"mta tax"

"total amt"

24 /32

Convert all CSVs to a disk.frame with 100 chunks.

taxi disk <- csv to disk.frame(file list, outdir = "tmp taxi.df",
overwrite = TRUE, header = FALSE,
nchunks = 100, col.names = header names)

csv_to disk.frame: Reading multiple input files.

Converting CSVs to disk.frame -- Stage 1 of 2 took: 00:04:49 elapsed

Row-binding the 100 disk.frames together to form one large disk.frame:
Creating the disk.frame at tmp taxi.df

Appending disk.frames:
Stage 2 of 2 took: 00:03:20 elapsed

Stage 1 & 2 in total took: 00:08:09 elapsed

taxi disk

path: "tmp taxi.df"
nchunks: 100

nrow (at source): 170896055
ncol (at source): 18

25/32

Wrangle

Compute the mean tip percentage for each day in 2009. How many rows should our resulting
tibble contain?

taxi tips <- taxi disk %>%

srckeep (c("trip pickup date time", "tip amt", "total amt")) %$>%
mutate (trip pickup date = as date(trip pickup date time),

tip pct = tip amt / total amt) 3%>%
group by (trip pickup date) 3%>%
summarise (mean tip pct = mean(tip pct, na.rm = TRUE)) $>%
collect () %>%
as_tibble ()

Again, we only collect () atthe end to minimize the amount of data brought into
memory.

glimpse (taxi tips)

#> Rows: 365
#> Columns: 2
#> $ trip pickup date <date> 2009-01-01, 2009-01-02, 2009-01-03, 2009-01-04, 2009
#> $ mean tip pct <dbl> 0.02349496, 0.024444064, 0.02669761, 0.03000917, 0.030

26/32

Visualize

taxi tips %>%
ggplot (aes(x = trip pickup date, y = mean tip pct)) +

geom line() +
scale y continuous (labels = scales::percent) +
labs (x = "Pick-up date", y = "Mean tip percentage") +
theme minimal (base size = 18)
5.0%
QO
[
1]
Jar]
oy
3 4.0%
|
ib]
j=8
=
—
o
113
ik
= 3.0%
Jan 2009 Apr 2009 Jul 2009 Oct 2009 Jan 2010

Pick-up date

27732

Restrict columns for faster
processing

One can restrict which input columns to load into memory for each chunk; this can
significantly increase the speed of data processing. To restrict the input columns, use the
srckeep () function which only accepts column names as a string vector.

With srckeep ()

system.time ({
taxli tips <- taxi disk %>%

srckeep(c("trip pickup date time", "tip amt", "total amt")) %>%
mutate (trip pickup date = as date(trip pickup date time),

tip pct = tip amt / total amt) %>%
group by (trip pickup date) $>%
summarise (mean tip pct = mean(tip pct, na.rm = TRUE)) $%>%
collect () %>%
as_tibble ()

1)

user system elapsed
1.234 0.187 107.922

28 /32

Without srckeep ()

system.time ({

taxi tips <- taxi disk %>%
srckeep(c("trip pickup date time'", "tip amt'", "total amt")) %>%
mutate (trip pickup date = as date(trip pickup date time),

tip pct = tip amt / total amt) %>%
group by (trip pickup date) $>%
summarise (mean tip pct = mean(tip pct, na.rm = TRUE)) $>%
collect () %>%
as_tibble ()

1)

user system elapsed
1.698 0.155 205.543

29/32

Cleaning up

When you are done, delete () your disk.frame

delete (flights disk)
delete (taxi disk)

30/32

Exercise

On the server, copy the capital bikeshare datasets to your home directory with
cp -rf cbs data/ ~/
Create a disk . frame object using all the CSV files. Check how many rows and variables

you have. Finally, create a visualization showing the mean duration bike ride for each station
by member type. However, only show the 10 stations with the longest average.

31/32

References

1. "Larger-Than-RAM Disk-Based Data Manipulation Framework". Diskframe.Com,
2021, https://diskframe.com/index.html.

32/32

https://diskframe.com/index.html

