
Spark & sparklyr part ISpark & sparklyr part I

Programming for StatisticalProgramming for Statistical
ScienceScience

Shawn SantoShawn Santo

1 / 411 / 41

Supplementary materials

Full video lecture available in Zoom Cloud Recordings

Additional resources

sparklyr: R interface for Apache Spark
R Front End for Apache Spark
Mastering Spark with R

2 / 41

https://spark.rstudio.com/
http://spark.apache.org/docs/latest/api/R/index.html
https://therinspark.com/

Installing Spark

Install and load sparklyr.

install.packages("sparklyr")

library(sparklyr)
library(tidyverse)
packageVersion("sparklyr")

#> [1] '1.6.2'

Check the available versions of Spark to install.

spark_available_versions()

#> spark
#> 1 1.6
#> 2 2.0
#> 3 2.1
#> 4 2.2
#> 5 2.3
#> 6 2.4
#> 7 3.0
#> 8 3.1

3 / 41

Installing Spark

Install version 3.0 with

spark_install("3.0")

Do this on your home directory on the server or on your own machine. Once installed, you
should see a directory spark/ in your home directory.

4 / 41

OverviewOverview

5 / 415 / 41

Spark timeline

The amount of digital information surpasses analog information around 2003.
Managing this data at scale becomes a real and present problem.

Google presents a research paper in 2003 on the Google File System - this system
allowed them to split information into several files and store them across multiple
machines.

In 2004 Google publishes a paper describing how to processes on the Google File
System, this approach came to be known as MapReduce.

Shortly after Google's above publications, Yahoo begins work on an open source
version of the Google File System and MapReduce algorithm.

In 2006 Yahoo releases Hadoop and the Haddop Distributed File System (HDFS).
Hadoop provides distributed storage (through the HDFS) and parallel processing of data
(through a MapReduce algorithm) managed by a job scheduler and cluster manager
(YARN).

Facebook releases the Hive project in 2008 as way to bring SQL support to Hadoop.
This alleviated the need of MapReduce operations to be written with JAVA code.

6 / 41

Spark timeline (continued)

In 2009 Apache Spark begins as a research project at UC Berkeley. Its goal is to
improve on MapReduce, and facilitate and optimize code to be run on multiple
machines.

Shortly after, Spark supports loading data in-memory, making it much faster than
Hadoop's on-disk storage.

In 2010, Spark was released as an open source project and then donated to the Apache
Software Foundation in 2013. Spark is licensed under Apache 2.0, which allows you to
freely use, modify, and distribute it.

In 2013 and 2016 Spark sets records for sorting speeds. How much faster is Spark than
Hadoop? It takes 72 minutes and 2,100 computers to sort 100 terabytes of data
using Hadoop, but only 23 minutes and 206 computers using Spark.

7 / 41

https://en.wikipedia.org/wiki/Apache_License
https://databricks.com/blog/2014/11/05/spark-officially-sets-a-new-record-in-large-scale-sorting.html

What is Apache Spark?

As described by Databricks, "Spark is a unified computing engine and a set of libraries
for parallel data processing on computing clusters".

Spark's goal is to support data analytics tasks within a single ecosystem: data loading,
SQL queries, machine learning, and streaming computations.

Spark is written in Scala and runs on Java. However, Spark can be used from R, Python,
SQL, Scala, or Java.

8 / 41

The Spark ecosystem

9 / 41

Spark's key features

In-memory computation

Fast and scalable

Efficiently scale up from one to many thousands of compute nodes

Access data on a multitude of platforms

SQL and NoSQL databses
Cloud storage
Hadoop Distributed File System

Real-time stream processing

Libraries

Spark SQL
MLlib
Spark streaming
GraphX

10 / 41

What is sparklyr?

Package sparklyr provides an R interface for Spark. It works with any version of Spark.

Use dplyr to translate R code into Spark SQL

Work with Spark's MLlib

Interact with a stream of data

The interface between R and Spark is young. If you know Scala, a great project would be to
contribute to this R and Spark interaction by making Spark libraries available as an R
package.

11 / 41

Connecting to SparkConnecting to Spark

12 / 4112 / 41

Con�gure and connect

add some custom configurations
conf <- list(
 sparklyr.cores.local = 4,
 `sparklyr.shell.driver-memory` = "16G",
 spark.memory.fraction = 0.5
)

sparklyr.cores.local - defaults to using all of the available cores

sparklyr.shell.driver-memory - limit is the amount of RAM available in the
computer minus what would be needed for OS operations

spark.memory.fraction - default is set to 60% of the requested memory per executor

create a spark connection
sc <- spark_connect(master = "local", version = "3.0", config = conf)

13 / 41

Analysis with Analysis with sparklyrsparklyr

14 / 4114 / 41

Overview

Source: https://therinspark.com/ 15 / 41

https://therinspark.com/

Adding data that exists in R

Use dplyr's copy_to() to add data from R into Spark.

diamonds_tbl <- copy_to(sc, diamonds)

You should see diamonds in your connections tab as a Spark DataFrame. In your
environment you should see a list object named diamonds_tbl. This is our R reference to
diamonds in Spark.

16 / 41

Data preview

diamonds_tbl

Source: spark<diamonds> [?? x 10]
 carat cut color clarity depth table price x y z
 <dbl> <chr> <chr> <chr> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
 2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
 3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
 4 0.290 Premium I VS2 62.4 58 334 4.2 4.23 2.63
 5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
 6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
 7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
 8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
 9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
10 0.23 Very Good H VS1 59.4 61 338 4 4.05 2.39
… with more rows

17 / 41

Adding external data

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

taxi_path <- str_c("/home/fac/sms185/.public_html/data/taxi/",
 "yellow_tripdata_2009-01.csv")

taxi_tbl <- spark_read_csv(sc, name = "yellow_taxi_2009",
 path = taxi_path)

Data can also be read into Spark DataFrames with spark_read_json(),
spark_read_parquet(), and a few other functions for various types of file formats.

18 / 41

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Data preview

glimpse(taxi_tbl)

Rows: ??
Columns: 18
Database: spark_connection
$ vendor_name <chr> "VTS", "VTS", "VTS", "DDS", "DDS", "DDS", "DDS", "V…
$ Trip_Pickup_DateTime <dttm> 2009-01-04 02:52:00, 2009-01-04 03:31:00, 2009-01-…
$ Trip_Dropoff_DateTime <dttm> 2009-01-04 03:02:00, 2009-01-04 03:38:00, 2009-01-…
$ Passenger_Count <int> 1, 3, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, …
$ Trip_Distance <dbl> 2.63, 4.55, 10.35, 5.00, 0.40, 1.20, 0.40, 1.72, 1.…
$ Start_Lon <dbl> -73.99196, -73.98210, -74.00259, -73.97427, -74.001…
$ Start_Lat <dbl> 40.72157, 40.73629, 40.73975, 40.79095, 40.71938, 4…
$ Rate_Code <chr> "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA…
$ store_and_forward <chr> "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA…
$ End_Lon <dbl> -73.99380, -73.95585, -73.86998, -73.99656, -74.008…
$ End_Lat <dbl> 40.69592, 40.76803, 40.77023, 40.73185, 40.72035, 4…
$ Payment_Type <chr> "CASH", "Credit", "Credit", "CREDIT", "CASH", "CASH…
$ Fare_Amt <dbl> 8.9, 12.1, 23.7, 14.9, 3.7, 6.1, 5.7, 6.1, 8.7, 5.9…
$ surcharge <dbl> 0.5, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.0, 0…
$ mta_tax <chr> "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA…
$ Tip_Amt <dbl> 0.00, 2.00, 4.74, 3.05, 0.00, 0.00, 1.00, 0.00, 1.3…
$ Tolls_Amt <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
$ Total_Amt <dbl> 9.40, 14.60, 28.44, 18.45, 3.70, 6.60, 6.70, 6.60, …

19 / 41

Basic wrangling

diamonds_tbl %>%
 group_by(cut) %>%
 summarise(mean_price = mean(price, na.rm = TRUE))

Source: spark<?> [?? x 2]
 cut mean_price
 <chr> <dbl>
1 Premium 4584.
2 Ideal 3458.
3 Good 3929.
4 Fair 4359.
5 Very Good 3982.

The data is not being imported back into R. We can do that with collect().

20 / 41

Basic wrangling

diamonds_tbl %>%
 group_by(cut) %>%
 summarise(mean_price = mean(price, na.rm = TRUE)) %>%
 collect()

A tibble: 5 x 2
 cut mean_price
 <chr> <dbl>
1 Premium 4584.
2 Ideal 3458.
3 Good 3929.
4 Fair 4359.
5 Very Good 3982.

21 / 41

What's happening under the
hood?

diamonds_tbl %>%
 group_by(cut) %>%
 summarise(mean_price = mean(price, na.rm = TRUE)) %>%
 show_query()

<SQL>
SELECT `cut`, AVG(`price`) AS `mean_price`
FROM `diamonds`
GROUP BY `cut`

This is the SQL statement that sparklyr and dplyr created and sent to Spark. We could
write the SQL ourselves, but dplyr is easier.

22 / 41

R limitations

Rather than compute the mean, let's try to compute the 75th percentile.

diamonds_tbl %>%
 group_by(cut) %>%
 summarise(q_75 = quantile(price, probs = .75))

The problem is that there is no translation for function quantile().

Error: org.apache.spark.sql.catalyst.parser.ParseException:
no viable alternative at input 'GROUP ('(line 1, pos 49)

== SQL ==
SELECT `cut`, PERCENTILE_CONT(0.75) WITHIN GROUP (ORDER BY `price`) AS `q
---^^^
FROM `diamonds`
GROUP BY `cut`

23 / 41

Hive SQL functions

Spark SQL is based on Hive SQL conventions and functions. If sparklyr and dplyr
can't do the translation we need, we can use Hive functions directly in our R code that will
ultimately get passed on to Spark SQL. A list of available Hive functions can be found here.

diamonds_tbl %>%
 group_by(cut) %>%
 summarise(q_75 = percentile(price, 0.75))

Source: spark<?> [?? x 2]
 cut q_75
 <chr> <dbl>
1 Premium 6296
2 Ideal 4678.
3 Good 5028
4 Fair 5206.
5 Very Good 5373.

Function percentile() is not an R function. It's a Hive function!

24 / 41

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF

Show query result

diamonds_tbl %>%
 group_by(cut) %>%
 summarise(q_75 = percentile(price, 0.75)) %>%
 show_query()

<SQL>
SELECT `cut`, percentile(`price`, 0.75) AS `q_75`
FROM `diamonds`
GROUP BY `cut`

25 / 41

January 2009 Yellow CabJanuary 2009 Yellow Cab
AnalysisAnalysis

26 / 4126 / 41

Data recall

taxi_tbl

taxi_tbl
Source: spark<yellow_taxi_2009> [?? x 18]
 vendor_name Trip_Pickup_DateTi… Trip_Dropoff_DateT… Passenger_Count Tr
 <chr> <dttm> <dttm> <int>
 1 VTS 2009-01-04 02:52:00 2009-01-04 03:02:00 1
 2 VTS 2009-01-04 03:31:00 2009-01-04 03:38:00 3
 3 VTS 2009-01-03 15:43:00 2009-01-03 15:57:00 5
 4 DDS 2009-01-01 20:52:58 2009-01-01 21:14:00 1
 5 DDS 2009-01-24 16:18:23 2009-01-24 16:24:56 1
 6 DDS 2009-01-16 22:35:59 2009-01-16 22:43:35 2
 7 DDS 2009-01-21 08:55:57 2009-01-21 09:05:42 1
 8 VTS 2009-01-04 04:31:00 2009-01-04 04:36:00 1
 9 CMT 2009-01-05 16:29:02 2009-01-05 16:40:21 1
10 CMT 2009-01-05 18:53:13 2009-01-05 18:57:45 1
… with more rows, and 12 more variables: Start_Lat <dbl>, Rate_Code <ch
store_and_forward <chr>, End_Lon <dbl>, End_Lat <dbl>, Payment_Type <
surcharge <dbl>, mta_tax <chr>, Tip_Amt <dbl>, Tolls_Amt <dbl>, Total

27 / 41

Clean up the variable names

Try to clean the names up with janitor::clean_names().

janitor::clean_names(taxi_tbl)

Error in clean_names.default(taxi_tbl) :
 clean_names() must be called on a data.frame.
 Consider janitor::make_clean_names() for other
 cases of manipulating vectors of names.

What's happening?

names(taxi_tbl)

[1] "src" "ops"

Object taxi_tbl is a list specifying the connection. What can we do?

28 / 41

Fix names

Function colnames() seems to work.

colnames(taxi_tbl)

Create a function, fix_names(), that provides a more uniform structure given our
taxi_tbl object

fix_names <- function(x) {
 colnames(x) %>%
 tolower() %>%
 stringr::str_remove(pattern = "trip_") %>%
 setNames(x, .)
}

 [1] "vendor_name" "Trip_Pickup_DateTime" "Trip_Dropoff_DateTi
 [5] "Trip_Distance" "Start_Lon" "Start_Lat"
 [9] "store_and_forward" "End_Lon" "End_Lat"
[13] "Fare_Amt" "surcharge" "mta_tax"
[17] "Tolls_Amt" "Total_Amt"

29 / 41

taxi_tbl <- fix_names(taxi_tbl)

colnames(taxi_tbl)

 [1] "vendor_name" "pickup_datetime" "dropoff_datetime"
 [4] "passenger_count" "distance" "start_lon"
 [7] "start_lat" "rate_code" "store_and_forward"
[10] "end_lon" "end_lat" "payment_type"
[13] "fare_amt" "surcharge" "mta_tax"
[16] "tip_amt" "tolls_amt" "total_amt"

taxi_tbl

Source: spark<yellow_taxi_2009> [?? x 18]
 vendor_name pickup_datetime dropoff_datetime passenger_count di
 <chr> <dttm> <dttm> <int>
 1 VTS 2009-01-04 02:52:00 2009-01-04 03:02:00 1
 2 VTS 2009-01-04 03:31:00 2009-01-04 03:38:00 3
 3 VTS 2009-01-03 15:43:00 2009-01-03 15:57:00 5
… with more rows, and 13 more variables: start_lon <dbl>, start_lat <db
rate_code <chr>, store_and_forward <chr>, end_lon <dbl>, end_lat <dbl
payment_type <chr>, fare_amt <dbl>, surcharge <dbl>, mta_tax <chr>,
tip_amt <dbl>, tolls_amt <dbl>, total_amt <dbl>

30 / 41

Fix payment_type

taxi_tbl %>%
 group_by(payment_type) %>%
 summarise(count = n())

Source: spark<?> [?? x 2]
 payment_type count
 <chr> <dbl>
1 No Charge 40118
2 CASH 6024471
3 Credit 2865982
4 Cash 4995101
5 Dispute 8050
6 CREDIT 158691

taxi_tbl %>%
 mutate(payment_type = tolower(payment_type)) %>%
 show_query()

<SQL>
SELECT `vendor_name`, `pickup_datetime`, `dropoff_datetime`, `passenger_count`,
`distance`, `start_lon`, `start_lat`, `rate_code`, `store_and_forward`,
`end_lon`, `end_lat`, LOWER(`payment_type`) AS `payment_type`, `fare_amt`,
`surcharge`, `mta_tax`, `tip_amt`, `tolls_amt`, `total_amt`
FROM `yellow_taxi_2009`

31 / 41

Transform all payment types to lower case.

taxi_tbl <- taxi_tbl %>%
 mutate(payment_type = tolower(payment_type))

Bring everything back to R with collect() and check our result.

taxi_tbl %>%
 group_by(payment_type) %>%
 summarise(count = n()) %>%
 collect()

A tibble: 4 x 2
 payment_type count
 <chr> <dbl>
1 cash 11019572
2 no charge 40118
3 dispute 8050
4 credit 3024673

32 / 41

Summary analysis

Let's compute some summary information about taxi trips.

taxi_tbl %>%
 select(passenger_count, distance, tip_amt, fare_amt, total_amt) %>%
 mutate(
 cost_per_passenger = passenger_count / total_amt,
 tip_pct = tip_amt / fare_amt,
 cost_per_mile = fare_amt / distance
)

Source: spark<?> [?? x 8]
 passenger_count distance tip_amt fare_amt total_amt
 <int> <dbl> <dbl> <dbl> <dbl>
 1 1 2.63 0 8.9 9.4
 2 3 4.55 2 12.1 14.6
 3 5 10.4 4.74 23.7 28.4
 4 1 5 3.05 14.9 18.4
 5 1 0.4 0 3.7 3.7
… with more rows, and 3 more variables: cost_per_passenger <dbl>,
tip_pct <dbl>, cost_per_mile <dbl>

33 / 41

What query is being made with regards to Spark?

taxi_tbl %>%
 select(passenger_count, distance, tip_amt, fare_amt, total_amt) %>%
 mutate(
 cost_per_passenger = passenger_count / total_amt,
 tip_pct = tip_amt / fare_amt,
 cost_per_mile = fare_amt / distance
) %>%
 show_query()

<SQL>
SELECT `passenger_count`, `distance`, `tip_amt`, `fare_amt`,
`total_amt`,
`passenger_count` / `total_amt` AS `cost_per_passenger`,
`tip_amt` / `fare_amt` AS `tip_pct`,
`fare_amt` / `distance` AS `cost_per_mile`
FROM `yellow_taxi_2009`

34 / 41

Next, let's parse pickup_datetime to get the hour, day (as a name), month (as a name).
We'll also include the tip percentage and fare cost per mile. Lastly we'll compute some
summary measures.

taxi_tbl_summary <- taxi_tbl %>%
 select(pickup_datetime, dropoff_datetime, distance,
 fare_amt, tip_amt, total_amt) %>%
 mutate(
 pickup_day = date_format(pickup_datetime, "EEE"),
 pickup_hour = hour(pickup_datetime),
 tip_pct = tip_amt / fare_amt,
 fare_per_mile = fare_amt / distance
) %>%
 group_by(pickup_hour, pickup_day) %>%
 summarise(
 avg_dist = mean(distance),
 avg_fare = mean(fare_amt),
 avg_tip_pct = mean(tip_pct),
 avg_fare_per_mile = mean(fare_per_mile)
) %>%
 collect()

35 / 41

taxi_tbl_summary

A tibble: 168 x 6
 pickup_hour pickup_day avg_dist avg_fare avg_tip_pct avg_fare_per_mile
 <int> <chr> <dbl> <dbl> <dbl> <dbl>
 1 1 Thu 3.08 10.5 0.0448 5.33
 2 7 Sun 3.68 11.6 0.0401 5.32
 3 8 Sat 2.82 9.37 0.0377 5.00
 4 6 Tue 2.85 9.33 0.0375 5.29
 5 11 Fri 2.33 9.23 0.0400 6.25
 6 0 Wed 3.16 10.4 0.0530 5.38
 7 6 Mon 3.12 9.95 0.0377 5.16
 8 17 Mon 2.41 9.36 0.0440 5.91
 9 16 Thu 2.34 9.85 0.0408 13.0
10 10 Wed 2.13 8.98 0.0457 6.49
… with 158 more rows

36 / 41

We can now use taxi_tbl_summary just as we would any other object in R.

days <- c("Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat")

taxi_tbl_summary %>%
 ggplot(aes(x = pickup_hour, y = avg_tip_pct)) +
 geom_line() +
 facet_wrap(~factor(pickup_day, levels = days)) +
 scale_y_continuous(labels = scales::percent) +
 labs(x = "Pick-up hour", y = "Average tip percentage") +
 theme_bw()

37 / 41

Other useful functions

Perform joins with the *_join() family of functions.

Sampling can be done with sample_n() and sample_frac().

Write the results of your analysis into persistent storage with
spark_write_parquet(), spark_write_csv(), or
spark_write_json().

38 / 41

Family of sparklyr functions

Sparklyr family of
functions Description

spark_*() functions to manage and configure spark connections;
functions to read and write data

sdf_*() functions for manipulating SparkDataFrames

ft_*() feature transformers for manipulating individual features

ml_*()
machine learning algorithms - K-Means, GLM, Survival
Regression,
PCA, Naive-Bayes, and more

stream_*() functions for handling stream data

39 / 41

Exercise

Plot the pick-up locations for January 1, 2009 and January 2, 2009. Color code the points
based on the price of the cab ride with buckets of [0, 10], (10, 20], and 20+. Do all your data
wrangling in Spark and only collect the final tibble to plot using ggplot2 in R.

40 / 41

References

1. A Gentle Introduction to Apache Spark. (2021).
http://www.dcs.bbk.ac.uk/~dell/teaching/cc/book/databricks/spark-intro.pdf.

2. Javier Luraschi, E. (2021). Mastering Spark with R. https://therinspark.com/.

3. R Front End for Apache Spark. (2021).
http://spark.apache.org/docs/latest/api/R/index.html.

4. sparklyr. (2021). https://spark.rstudio.com/.

41 / 41

http://www.dcs.bbk.ac.uk/~dell/teaching/cc/book/databricks/spark-intro.pdf
https://therinspark.com/
http://spark.apache.org/docs/latest/api/R/index.html
https://spark.rstudio.com/

