Spark & sparklyr part II

Programming for Statistical
Sclence

Shawn Santo

Supplementary materials

Full video lecture available in Zoom Cloud Recordings
Additional resources

e sparklyr: R interface for Apache Spark
¢ R Front End for Apache Spark
e Mastering Spark with R

2/33

https://spark.rstudio.com/
http://spark.apache.org/docs/latest/api/R/index.html
https://therinspark.com/

Recall

What i1s Apache Spark?

* As described by Databricks, "Spark is a unified computing engine and a set of libraries
for parallel data processing on computing clusters".

o Spark's goal is to support data analytics tasks within a single ecosystem: data loading,
SQL queries, machine learning, and streaming computations.

e Spark is written in Scala and runs on Java. However, Spark can be used from R, Python,
SQL, Scala, or Java.

4/33

The Spark ecosystem

5/33

Spark's key features

¢ In-memory computation

Fast and scalable

o Efficiently scale up from one to many thousands of compute nodes

Access data on a multitude of platforms

o SQL and NoSQL databses
o Cloud storage
o Hadoop Distributed File System

Real-time stream processing

Libraries

o Spark SQL

o MLIib

o Spark streaming
o GraphX

6/33

What is sparklyr?

Package sparklyr provides an R interface for Spark. It works with any version of Spark.
e Use dplyr to translate R code into Spark SQL
e Work with Spark's MLIib

e Interact with a stream of data

GraphX

Spark SQL + MLIib Grah

DataFrames Steaming Machine Learning

Computation

Spark Core API

R SQL Python Scala Java

The interface between R and Spark is young. If you know Scala, a great project would be to
contribute to this R and Spark interaction by making Spark libraries available as an R
package.

7/33

Connecting to Spark

Configure and connect

library (tidyverse)
library (sparklyr)

add some custom configurations
conf <- list(

sparklyr.cores.local = 4,
"sparklyr.shell.driver-memory = "16G",
spark.memory.fraction = 0.5

create a spark connection
sc <- spark connect (master = "local", version = "3.1", config = conf)

9/33

R functions and Spark

Distrubted R

We've seen that in our data wrangling we can use dplyr, some base R functions,
sparklyr functions, and Hive functions. If none of these options are available for what
you need, it is possible to apply an R function to a Spark DataFrame.

diamonds tbl <- copy to(sc, diamonds)

diamonds tbl %>%

select (carat, price) %>%
scale ()

Error: Unable to retrieve a spark connection from object of class NULL

11/33

Last resort: spark apply ()

start <- Sys.time ()
diamonds_ tbl %>%
select (carat, price) %>%
spark apply (function (x)
end <- Sys.time ()

scale (x))

end - start

Time difference of 2.62 mins

start <- Sys.time ()
diamonds tbl %>%

select (carat, price) %>%

mutate (carat = (carat - mean(carat, na.rm = TRUE)) / sd(carat, na.rm =
price = as.double (price),
price = (price - mean (price, na.rm = TRUE)) / sd(price, na.rm =

end <- Sys.time ()

end - start

Time difference of 0.58 secs

12 /33

Why so slow?

Since we are using an R function, the data is not processed by Spark.
What happens:
1. chunks of the data are moved from Spark to R
2. data 1s converted to an appropriate R format -- data.frame
3. the R function 1s applied
4. the results are converted back to a format for Spark and sent back to Spark

If you can, try to use dplyr or code Spark can understand.

13/33

Group DataFrame partitions

diamonds_ tbl %>%
spark apply (

function (x) summary (lm(price ~ carat,
names = "r.squared",

group by = "cut"

)

Source: spark<?> [?? x 2]

cut r.squared

<chr> <dbl>
1 Premium 0.856
2 Ideal 0.867
3 Good 0.851
4 Fair 0.738
5 Very Good 0.858

Check that this is correct.

X)) Sr.squared,

14 /33

ML Pipelines

Whatisanml pipeline?

Spark’s ML Pipelines provide a way to easily combine multiple transformations and
algorithms into a single workflow, or pipeline.

Some Spark terminology:

e Transformer: a transformer is an algorithm which can transform one DataFrame into
another DataFrame

e Estimator: an estimator is an algorithm which can be fit on a DataFrame to produce a
Transformer.

e Pipeline: a pipeline chains multiple Transformers and Estimators together to specify a
machine learning workflow

e Pipeline model: a pipeline that has been trained on data so all of its components have
been converted to transformers

16 /33

Example: estimator

standardizer <- ft standard scaler(sc, input col = "predictors",
output col = "predictors standardized'
with mean = TRUE)

standardizer

StandardScaler (Estimator)
<standard scaler cad4bfc6 f4la 4bd4 bdeb 90cd54d4c071>
(Parameters -- Column Names)
input col: predictors
output col: predictors standardized
(Parameters)
with mean: TRUE
with std: TRUE

17 /33

Example: transformer

random df <- copy to(sc, data.frame(value = rpois (100000, 9))) %>%
ft vector assembler (input cols = "value", output col = "predictors")

standardizer algo <- ml fit (standardizer, random df)
standardizer algo

StandardScalerModel (Transformer)
<standard scaler cad4bfc6 f4la 4bd4 bdob 90cd54d4c071>
(Parameters —-- Column Names)
input col: predictors
output col: predictors standardized
(Transformer Info)
mean: num 9
std: num 3.01

18 /33

Example: transformer

We can now feed the transformer some data. This could be our random df or a new
dataset (think train / test).

standardizer algo 3%>%
ml transform(random df) $>%
glimpse ()

Rows: 7?7

Columns: 3

Database: spark connection

S value <int> o, 12, 9, 7, 5, 8, 13, 10, 12,

S predictors <list> o, 12, 9, 7, 5, 8, 13, 10, 12,..
$ predictors standardized <list> -0.9982689, 0.9979628, -0.0001..

19/33

NC flights data

Let's create a ML pipeline to classify if a flight is delayed in February 2020 for all NC
airports.

url <- str c("http://www2.stat.duke.edu/~smsl85/data/",
"flights/nc flights feb 20.csv")

download.file(url = url, destfile = "data/nc flights.csv")
nc_flights tbl <- spark read csv(sc, name = "nc flights",
path = "data/nc flights.csv")

Data is available from the Bureau of Transportation Statistics.

20/ 33

https://www.bts.gov/

df <- nc flights tbl
mutate (DEP_ DELAY
ARR DELAY
MONTH

DAY OF WEEK =

) 3>5%

$>%
= as
as

= as.

as

filter(!is.na (DEP DELAY))

select (DEP_DELAY, CRS DEP TIME, MONTH,

df

Source: spark<?> [?? x 5]
DEP_DELAY CRS DEP TIME

<dbl>
-7
-
-8
-10
—3

.. with more rows

g b w N

<int>
830
835
830
830
830

.numeric (DEP_DELAY),
.numeric (ARR DELAY),
character (MONTH) ,
.character (DAY OF WEEK)

DAY OF WEEK, DISTANCE)

MONTH DAY OF WEEK DISTANCE

<chr> <chr>

2

NN DN DN

5

N~ J o0

<dbl>
365
365
365
365
365

21/33

Pipeline

nc flights pipe <- ml pipeline(sc) %>%
ft dplyr transformer (tbl = df) $>%

ft binarizer (input col = "DEP DELAY",
output col = "DELAYED",
threshold = 15) %>%
ft bucketizer (input col = "CRS DEP TIME",
output col = "HOURS",
splits = seq(0, 2400, 400)) %>%

ft r formula (DELAYED ~ DAY
ml logistic regression()

OF WEEK + HOURS + DISTANCE) $>%

Pipeline (Estimator) with 5 stages
<pipeline 187aa28dcf960>
Stages
| -—1 SQLTransformer (Transformer)
| <dplyr transformer 187aaca3f397>
| (Parameters -- Column Names)

ft dplyr transformer () extracts the dplyr transformations used to generate object
tbl as a SQL statement then passesitonto £t sgl transformer (). Theresultisa
ml pipeline object.

22 /33

nc flights pipe <- ml pipeline(sc

ft dplyr transformer (tbl =
ft binarizer (input col
output col =
threshold =
ft bucketizer (input col =
output col =
splits =
ft r formula (DELAYED ~ DAY
ml logistic regression()

) %$>%
df) $>%
"DEP DELAY",
"DELAYED",
15) %$>%
"CRS DEP TIME",
"HOURS",
seq (0, 2400, 400)) %>%
OF WEEK + HOURS + DISTANCE)

--2 Binarizer (Transformer)
<binarizer 187aa5412bd32>

input col: DEP DELAY

|
|
| (Parameters -- Column Names)
|
|

output col: DELAYED

>%

23/33

nc flights pipe <- ml pipeline(sc

ft dplyr transformer (tbl =
ft binarizer (input col
output col =
threshold =
ft bucketizer (input col =
output col =
splits =
ft r formula (DELAYED ~ DAY
ml logistic regression()

) %$>%
df) $>%
"DEP DELAY",
"DELAYED",
15) %>%
"CRS DEP TIME",
"HOURS",
seq (0, 2400, 400)) 5%>%
OF WEEK + HOURS + DISTANCE)

—--3 Bucketizer (Transformer)
<bucketizer 187aa90f07cf>

input col: CRS DEP TIME

|
|
| (Parameters -- Column Names)
|
|

output col: HOURS

>%

24/33

nc flights pipe <- ml pipeline(sc)
ft dplyr transformer (tbl = df) $>%

>3

ft binarizer (input col = "DEP DELAY",
output col = "DELAYED",
threshold = 15) %>%
ft bucketizer (input col = "CRS DEP TIME",
output col = "HOURS",
splits = seq(0, 2400, 400)) %>%

ft r formula (DELAYED ~ DAY

OF WEEK + HOURS + DISTANCE) %>%

ml logistic regression()

--4 RFormula (Estimator)

<r formula 187aa79a9%b9b>
(Parameters -- Column Names)
features col: features
label col: label
(Parameters)
force index label: FALSE
formula: DELAYED ~ DAY OF WEEK + HOURS + DISTANCE
handle invalid: error
stringIndexerOrderType: frequencyDesc

25/33

nc flights pipe <- ml pipeline(sc

ft dplyr transformer (tbl =
ft binarizer (input col
output col =
threshold =
ft bucketizer (input col =
output col =
splits =
ft r formula (DELAYED ~ DAY
ml logistic regression()

label col: label

raw_prediction col:
(Parameters)
aggregation depth:
elastic _net param:
family: auto

fit intercept: TRUE
max iter: 100

reg param: 0

threshold: 0.5

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| tol: 1le-06

2
0

) %$>%
df) $>%
"DEP DELAY",
"DELAYED",
15) %>%
"CRS DEP TIME",
"HOURS",
seq (0, 2400, 400)) %>%
OF WEEK + HOURS + DISTANCE) %>%

--5 LogisticRegression (Estimator)
<logistic regression 187aa3ccd7a92>
(Parameters -- Column Names)
features col: features

prediction col: prediction
probability col: probability

rawPrediction

standardization: TRUE

26/33

Printed pipeline

Pipeline (Estimator) with 5 stages
<pipeline 187aa28dcf960>

Stages

|--1 SQLTransformer (Transformer)

| <dplyr transformer 187aaca3f397>
| (Parameters —-- Column Names)

|-=2 Binarizer (Transformer)
| <binarizer 187aa5412bd32>

input_col: DEP_DELAY
output col: DELAYED
--3 Bucketizer (Transformer)
<bucketizer 187aa%90f07cf>

input col: CRS DEP TIME
output col: HOURS
--4 RFormula (Estimator)
<r formula 187aa79%9a%ob9b>

features col: features
label col: label
(Parameters)

force index label: FALSE

handle invalid: error

(Parameters -- Column Names)

(Parameters —-- Column Names)

(Parameters -- Column Names)

formula: DELAYED ~ DAY OF WEEK + HOI

stringIndexerOrderType: frequencyDe

|--5 LogisticRegression (Estimator)

<logistic regression 187aa3ccd7a92>

(Parameters -- Column Names)
features col: features

label col: label

prediction col: prediction
probability col: probability
raw prediction col: rawPrediction
(Parameters)

aggregation depth: 2
elastic net param: 0

family: auto

fit intercept: TRUE
max_iter: 100

reg param: 0
standardization: TRUE
threshold: 0.5

tol: le-06

27/33

What can we do with this
pipeline?

1. Basily fit data withml fit ().
2. Make predictions with a fitted pipeline and m1 transform().

3. Save pipelines that result in Scala scripts withml save () and can be read back into
sparklyr (withml load()) or by the Scala or PySpark APIs.

28 /33

Pipeline model

Partition the data into train and test sets.

nc flights partition <- nc flights tbl %>%
sdf random split (training = 0.80, testing = 0.20)

Train the model

fitted pipeline <- ml fit(
nc_ flights pipe,
nc_flights partitionStraining

)

29/33

Predictions

predictions <- ml transform(
fitted pipeline,
nc_flights partitionStraining

)

sdf crosstab(predictions, "label", "prediction") 3%>%
arrange (label prediction)

Source: spark<?> [?? x 3]
Ordered by: label prediction
label prediction "0.0° "1.0°

<chr> <dbl> <dbl>
1 0.0 32193 177
2 1.0 7244 211

30/33

Save pipeline objects

Save the pipeline:

ml save(x = nc flights pipe, path = "nc flights pipeline")
Save the pipeline model (fitted pipeline with data):

ml save(x = fitted pipeline, path = "nc flights model")

Theml load () command can be used to re-load these objects. You could then create a
new pipeline model with new training data or make new predictions with the fitted pipeline
model.

31/33

Exercise

Use bike tbl tocreate anml pipeline object. Consider classification with member
type as the response. Also, consider creating buckets for duration and a binary variable for
round trips (bike starts and ends at the same location).

download.file(url = "http://www2.stat.duke.edu/~smsl85/data/bike/cbs 201"
destfile = "data/cbs bike 2017.csv")
bike tbl <- spark read csv(sc, path = "data/cbs bike 2017.csv")

32/33

References

1. A Gentle Introduction to Apache Spark. (2021).
http://www.dcs.bbk.ac.uk/~dell/teaching/cc/book/databricks/spark-intro.pdf.

2. Javier Luraschi, E. (2021). Mastering Spark with R. https://therinspark.com/.

3. OST_R | BTS | Transtats. (2020). Transtats.bts.gov.
https://www.bts.gov

4. R Front End for Apache Spark. (2021).
http://spark.apache.org/docs/latest/api/R/index.html.

5. sparklyr. (2021). https://spark.rstudio.com/.

33/33

http://www.dcs.bbk.ac.uk/~dell/teaching/cc/book/databricks/spark-intro.pdf
https://therinspark.com/
https://www.bts.gov/
http://spark.apache.org/docs/latest/api/R/index.html
https://spark.rstudio.com/

