I solutions

Note: Version B had slightly different numbers. But the basic problems were the same. You can recognize Version B by “Name” (instead of “Name:”) on the top line, i.e., a missing “:” after “Name”.

1. On questions 1a-f: [2pts] for the correct choice; [0pts] for no choice; [-1pt] for a wrong choice. If more than one choice is correct, any correct choice is fine.

1a.

\[P(A \cap B \cap C) = P(A|D)P(D) = P(A|B \cap C)P(B|C)P(C) = P(D) = P(B \cap C) \]

1b. By Bayes’ theorem:

\[P(A|B) = \frac{P(B|A)P(A)}{P(B|A)P(A) + P(B|A^c)[1 - P(A)]} \]

1c & d. Consider the following histogram of \(n = 300 \) measurements:

Denote with \(\bar{x} \) the sample mean, with \(Md \) the sample median, and with \(s^2 \) the sample variance. Which of the following statements is correct?

\[\bar{x} > Md \text{ and } s^2 < 4. \]

1e. Peter is preparing for the final exam in his history of France course. The exam will consist of 5 essay questions selected at random from a list of 10 the professor has handed out in advance. Not exactly a Napoleon buff, Peter has only prepared eight of the questions. Let \(y \) denote the number of questions on the exam which Peter has prepared.

\[y \text{ is a hypergeometric r.v. with } N = 10, r = 8, n = 5. \]

1f. \(p(2) = \frac{4}{5}, p(-1) = \frac{3}{5} \) and hence

\[E(y) = 2 \cdot \frac{4}{5} + (-1) \cdot \frac{3}{5} = -\frac{25}{5} = -0.4 \]

2. Businesses commonly project revenues under alternative economic scenarios. For a stylized example, inflation could be high or low and unemployment could be high or low. There are four possible scenarios, with the assumed probabilities:

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Inflation</th>
<th>Unemployment</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>high</td>
<td>high</td>
<td>0.20</td>
</tr>
<tr>
<td>2</td>
<td>high</td>
<td>low</td>
<td>0.20</td>
</tr>
<tr>
<td>3</td>
<td>low</td>
<td>high</td>
<td>0.36</td>
</tr>
<tr>
<td>4</td>
<td>low</td>
<td>low</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Hint: Denote with \(A \) the event “high inflation”, and with \(B \) the event “high unemployment”.

2a [3pts] \(P(A) = P(A \cap B) + P(A \cap B^c) = 0.20 + 0.20 = 0.4. \)

2b [4pts] \(P(B) = P(A \cap B) + P(A^c \cap B) = 0.20 + 0.36 = 0.56 \) and hence \(P(A|B) = P(A \cap B)/P(B) = 0.20/0.56 = 0.36. \)
3c [3pts] Are inflation and unemployment independent? No, because \(P(A) = 0.4 \neq P(A|B) = 0.36 \).

3. A family has two dogs (Rex and Rover) and a little boy (Russ). None of them is fond of the mailman. Given that they are outside, Rex and Rover have a 30% and a 40% chance, respectively, of biting the mailman. Russ, if he is outside, has a 15% chance of doing the same thing. Suppose only one of the three is outside when the mailman comes. Rex is outside 50% of the time, Rover 20% of the time and Russ 30% of the time.

3a [5pts] What is the probability the mailman will be bitten? Denote with \(A_1 \), \(A_2 \), \(A_3 \) the events that Rex, Rover and Russ, respectively are outside. Denote with \(B \) the event that the mailman is bitten.

\[
P(B) = \sum_{i=1}^{3} P(B|A_i)P(A_i) = 0.3 \cdot 0.5 + 0.4 \cdot 0.2 + 0.15 \cdot 0.3 = 0.275
\]

3b [5pts] If the mailman is bitten, what are the chances that Russ did it?

\[
P(A_3|B) = \frac{P(B|A_3)P(A_3)}{\sum_{i=1}^{3} P(B|A_i)P(A_i)} = \frac{0.15 \cdot 0.3}{0.275} = 0.16
\]

4. James Bond insists that his martinis be shaken, not stirred. A skeptical bartender tests Bond with 6 martinis (using six coin flips to determine which drinks to shake and which to stir). Bond errs on one and correctly identifies the other 5 before passing out. Denote with \(p \) the probability that Bond can tell the difference between shaken and stirred Martinis.

4a [3pts] If \(p = 0.5 \), what is the probability of guessing 5 or more Martinis correctly?

Let \(y = \# \) correctly guesses. \(y \) is a binomial r.v. with \(n = 6 \), \(p = 0.5 \).
Using the tables in the appendix we find \(P(y \geq 5) = 1 - \sum_{k=0}^{4} p(k) = 0.11 \).
(or, use the Minitab command: \(\text{pdf; binomial n=6, p=0.5} \))

4b [3pts] Find the value of \(p \) such that guessing 5 out of 6 Martinis correctly is highest.

To find \(\hat{p} \) such that \(p(5) \) is maximized we consider \(p(5) \) as a function of \(p \) and maximize it in \(p \).
It is easier to maximize \(f(p) = \log p(5) \) instead of \(p(5) \):

\[
f(p) = \log \left[c \cdot \hat{p}^5 (1-p)^1 \right] = \log(c) + 5 \log(p) + \log(1-p),
\]

where \(c \) is a factor which does not depend on \(p \) (and is hence irrelevant for the maximization).
To find the maximum of \(f(p) \), get the first derivative, and set it equal to zero:

\[
\frac{df}{dp} = \frac{5}{p} - \frac{1}{1-p} = 0 \quad \Rightarrow \quad p = \frac{5}{6}
\]

4c [2pts] Assume that instead of deciding initially to serve 6 Martinis, the bartender was serving Martinis until Bond guessed 5 correctly. Assuming \(p = 0.5 \), find the probability of erring once.

Denote with \(x \) the number of trials until Bond correctly guesses five times. \(x \) is a negative binomial r.v. with \(r = 5 \) and \(p = 0.5 \). Erring once implies \(x = 6 \), and thus:

\[
p_x(6) = 5 \cdot \hat{p}^5 (1-p)^1 = \frac{5}{2^6} = 5/64 = 0.08
\]

4d [2pts] Under the assumptions of 4c, find the value of \(p \) such that guessing 5 out of 6 Martinis correctly is highest.

The answer is the same as for 4b because \(p_x(6) = 1 \cdot \hat{p}^5 (1-p)^1 \) and \(p_y(5) = c \cdot \hat{p}^5 (1-p)^1 \), i.e., as a function of \(p \) the probability mass functions for \(x \) and \(y \) are proportional. Proportional functions have the same maximum.

\[\text{1Since the logarithm is a monotone transformation the value } p \text{ which maximizes the logarithm also maximizes the original function.}\]